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INTRODUCTION AND BACKGROUND 

Fibonacci trees and generalized Fibonacci trees have been defined and studied by Horibe [4], 
Chang [2], and the author [1]. The k^ tree in the sequence of r-ary generalized Fibonacci trees, 
T(k), has T(k-c(i)) as the Ith leftmost subtree descending from its root node for k>r, and 
T(k) consists of a single root node for k-\ ...,r. Here c(i), z' = l,...,r, are positive integers 
with greatest common divisor 1 and are nondecreasing in z. In the case in which r = 2, c(l) = 1, 
c(2) = 2, the generalized Fibonacci trees are the Fibonacci trees of Horibe [4]. 

In addition to the construction of generalized Fibonacci trees by the recursive specification of 
their subtrees, there is an equivalent construction by the method of "types." The two construc-
tions can be seen to be equivalent by induction. In the method of types, each leaf node is assigned 
one of c(r) "types" denoted by aha2, ...,ac(r). Then T(k + l) is constructed from T(k) according 
to the following set of rules. A leaf node of type ax in T(k) will be replaced by r descendant 
nodes of types ac(1), ac(2),..., ac(r) in left to right order in T{k +1). A leaf node of type Qj in T{k) 
will be replaced by a node of type aj_x in T(k + l), j = 2,..., c(r). The sequence of trees begins 
with T(T) which consists of a single root node of type ac^. 

The construction by leaf node type has an interpretation in connection with Yarn's algorithm 
for the solution of a particular unequal costs coding problem [5]. Thus, the recursive subtree 
method also generates Yarn's code trees. In the coding problem, a path from the root to a leaf 
describes a codeword, a sequence of r-ary symbols used to represent the source symbol assigned 
to the leaf. It is assumed that the code trees are exhaustive, that is, every interior node has exactly 
r descendants. In the case that the Ith code symbol, i = 1, ...,r, costs c{i), the generalized Fibo-
nacci tree minimizes the average codeword cost for equally likely source symbols when the num-
ber of leaives in the generalized Fibonacci tree is the same as the number of source symbols. In 
Yarn's algorithm for the optimal code tree, leaf nodes of least cost, say c, in an optimal tree for a 
given number of leaves are replaced by r descendant leaf nodes of cost c + c(i), i - 1,..., r, in left 
to right order in generating the optimal tree for the appropriate larger number of leaves; the 
sequence begins with a single root node of cost 0. The correspondence between Yarn's algorithm 
and the construction of generalized Fibonacci trees by the method of types is immediate because 
the method of types is exactly a mechanism for keeping track of each leaf node until it is a node of 
least cost in Yarn's sense. Easy recurrence relations for the resulting number of leaves and aver-
age code cost can be obtained through the recursive subtrees perspective. 

In this paper, a further generalization of Fibonacci trees is examined: the case of multiple 
coupled, recursively-generated sequences of trees. These sequences of trees have interesting 
structure and, under certain conditions, can be interpreted as optimal code trees for a generaliza-
tion of Yam's unequal costs coding problem. One arbitrarily selected example will be considered 
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in detail. The general case can be treated in an obviously similar fashion; however, this is not 
done here in order to avoid notational complexities. 

EXAMPLE OF COUPLED SEQUENCES OF 
RECURSIVELY-GENERATED TREES 

Consider the particular example of four coupled recursively-generated sequences of binary 
trees, T(k), U(k), V(k), and W(k), £ = 1,2,..., defined as follows. Let T(k) have U(k-t) 
as its leftmost subtree and V(k-2) as its rightmost subtree, k>4, and denote this by 
T(k) = U(k - l)*V(k - 2). Similarly, let U(k) = W(k - 2)*V(k - 2), V(k) = U(k - l)*V(k - 4), and 
W(k) = W(k-3)*V(k-2). Initialize by letting T(k), U(k), V(k), and W(k), k = \ ..., 4, consist 
of single root nodes. (More generally, the number of coupled sequences need not be 4 but rather 
any positive integer, the trees need not be binary but rather r-ary for any integer r > 2 fixed for all 
sequences, the positive integer lags can be set arbitrarily, and the assignment of trees from various 
of the sequences as subtrees in the same or other sequences can be made arbitrarily. The largest 
lag value is the number of single root node trees used to initialize the sequences. In some cases, 
some sets of subsequences will not be coupled with others.) 

The same sequences of trees can also be constructed by a method based on the notion of 
node type. Start with T(l) given by a single root node of type a4, £/(!) a single root node of b4, 
V(l) a single root node of type c4, and W(l) a single root node of type d4. (More generally, the 
largest index value and the index of the types of nodes used to initialize the sequences is the 
largest lag value.) A leaf node of type xj9 x = a, b, c, ord, in X(k), X=T,U, V, or W9 will be 
replaced by a node of type Xj_x in X(k +1) if j = 2,3,4. Denote this by a2 ~ax, and so on. A 
node of type ax in X(k) will be replaced by two descendant nodes of types bx and c2 in left to 
right order in X(k + V). Denote this by ax ~ (bx +c2). Similarly, let bx ~(d2+c2), cx~ (bx +c4), 
and dx ~ (d3 +c2). (In general, the substitution rules correspond to the subtree recursions with 
one type symbol x identified with each tree sequence X and indices subscripted to x identical to 
lags in the argument of X There is one substitution rule involving ~ for each subtree recursion 
involving *.) 

The equivalence of these two sets of sequences of trees can be verified by induction as in the 
case of a single sequence of trees treated previously in the literature. The set of sequences is 
given in part in Table 1. The trees are described using the following compact notation. Sibling 
nodes in left to right order are separated by + signs, and parentheses are used to indicate depth in 
the tree from the root so that, for example, (((d3+c2)+(bl+c4))+((d2 +c2) + c3)) denotes a binary 
tree with 6 depth 3 leaves and 1 depth 2 leaf from left to right, with the left subtree made up of 4 
depth 2 leaves and the right subtree made up of 2 depth 2 leaves and 1 depth 1 leaf. The leaves 
are labeled by type in left to right order as d3, c2, bv c4, d2, c2, c3, respectively. Using this notation 
for the trees, each line of the table comes from the previous line according to the substitution rules 
given, with - used to denote substitution, together with + ~ + and ( ) ~ ( ). 

Costs can be assigned to the leaf nodes of these trees in such a way that nodes of types xt are 
of equal cost and of least cost in a tree of index k. Thus, the substitution rules can be interpreted 
as tracking the leaf nodes by type so that their indices indicate their relative costs until they are of 
least cost and about to be replaced by their descendants. This is like Varn's algorithm for con-
structing a code tree, although we do not yet have any coding problem in mind for which the 
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resulting tree is a minimum-average-cost solution. Assign costs, based obviously on the substitu-
tion rules as follows: When a node of type al9 which costs ca, splits, its descendants cost ca+\ 
and ca +2 in left to right order. When a node of type \ , which costs cb, splits, its descendants 
cost cb +2 and cb + 2. When a node of type c1? which costs cc, splits, its descendants cost cc + 1 
and cc + 4. When a node of type <f1? which costs cd, splits, its descendants cost cd + 3 and ĉ  + 2. 
The process starts with root nodes of type x4, which cost 0, and if a node of type xj9j= 1, 2, or 
3, is not created by a split, its cost in X(k +1) is the same as the cost of xJ+l in X(k). The trees 
of the example are given in part in Table 2 with leaf nodes labeled by cost. 

TABLE 1. Trees of Example,, Leaves Labeled by Type 

[~k 
1~ 
2 

1 3 
4 
5~ 
6~ 

r~ T 
r~ 8 

9 
10 

T(k) 
a4 

«3 

<h 
ax 
ih + ci) 
((d,+c,) + q) 
( ( 4 + C l ) + (*l+C4)) 

(((& + Cl) + & + C4» + ((^2 + Cj) + C,)) 
(((tf, + q ) + ((d, + C2) + Cj)) + ( ( # + C,) + C,)) 

(«ft + (*L + C4)) + ((4 + C,) + C,)) 
+ (((flr3+C2) + (i1+C4)) + C1)) 

_ fW 1 
^ 
ft3 

*2 

*1 

(^2+C2) I 
(A+<0 
( ( ^ + c j ) + (*i + c4)) 

((4z+<i) + «&+Cz)+ <<»)) 
((rf1+(Z>1 + c4)) + ((tf1+c1) + c2)) 
(((a?3+C2) + ((rf2+C2) + C3)) 
+ (((^3+C2) + (*l+C4)) + C1)) 

We can find expressions for the average costs of the trees from recurrence relations on the 
number of leaves of each type. First, let exj(k) denote the number of leaves of type Xj in T(k) for 
x = a, b, c, ord and j = 1,2,3, or 4. Initialize with ea4 = 1 and, except for this case, exj(k) = 0 
for k = 1,2,3,4. Then we have, for k > 4: 

ea3(*) = U * - l ) 
ca2 

a4V 

ea2{k-\) 
(k): 

eM(*) = 0 

«*3(*) = ^MC*" 1 ) 

«M(*) = eai(k -1) + cM(* -1) + eel(k -1) 
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«<a(*) = eai(k -1) + ebl(k -1) + ec3(k -1) + edl(k -1) 

««(*) = 0 

««(*) = *M(* - 0+«<«(*-1) 

We can obtain similar expressions for fxj(k), which denotes the corresponding quantities for 
U(k), as well as gxj(k) for V(k) and /»„(*) for W{k); however, that will not be pursued here. 

TABLE 2. Trees of Example, Leaves Labeled by Cost 

1 *~~ 
1 
2 
3 
4 

1 5 

1 6 
1 7 
1 8 
1 9 

10 

71*) 
0 
0 
0 
0 
(1 + 2) 
((3 + 3) + 2) 
((3+ 3)+ (3+ 6)) 
(((6 + 5) + (4 + 7)) + ((5 + 5) + 6)) 
(((6 + 5) + ((6 + 6) + 7)) + ((5 + 5) + 6)) 
(((6 + (6 + 9)) + ((6 + 6) + 7)) 
+ (((8 + 7) + (6 + 9)) + 6)) 

W) 1 
0 
0 
0 
0 
(2 + 2) 
(2 + 2) 
( ( 5 + 4 ) + ( 3 + 6)) 
((5+ 4)+ ((5+ 5)+ 6)) 
((5 + (5 + 8)) + ((5 + 5) + 6)) 
(((8+ 7)+ ((7+ 7)+ 8)) 
+ (((8 + 7) + (6 + 9)) + 6)) 

By the method of generating functions, with EXJ(z) = ^eXJ(k)zk, we have: 

Ea,{z) = z> 

Eal(,z) = z" 
Eb4(z) = Eb3(z) = Eb2(z) = 0 
Ebl(z) = (z5+z1-zs-z9-zl0+zn)/p(z) = z5 + z1+zs+2zw + ... 
Ec4(z) = (z7+z8-zn)/p(z) = z7+z* + 2zl0 + ... 
Ec3(z) = (zs+z9-z12)/p(z) = zs+z9 + ... 
Ec2(z) = (z5 +z6 - z9) / p(z) = z5 + z6 + 2z8 + 2z9 + 2z10 +... 
Ecl(z) = (z6 + z7 - z10) / p(z) = z6+z7+ 2z9 + 2z10 +... 
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Ed4(z) = 0 
Ed3(z) = (z8

+zl0-zl2)/p(z) = zs+z10 + ... 
3ra(*) = (z6 + 2? - z10) I P{z) = z6 + z* + 2z9 + ... 
Edl(z) = (z1+z9-zn)/p(z) = z7+z9+2z10 + ... 

where p(z) = 1 - 2z3 - z4 - z5 + z6+z1. The coefficients of zk obtained from the right-hand sides 
of these expressions give exj(k). 

It follows from E(z) = "EE^z) that 

E(z) = (z1 + z2 + z3 - z4 - z5 - z6 + z1 + 3z8 + z9 - z11 - z12) / p(z) 
= zl + z2 +z3+z4 +2z5 + 3z6 +4z7 + 7z8 + 8z9 + llz10 +.... 

Here E(z) is the generating function of e(k) = Y,exj(k), the number of leaves in T(k). (Similarly, 
we can find the generating function of f(k), the number of leaves in U(k), to be 

F(z) = (zl + z2 +z3 - z 4 - z 5 -2z6 + z7 +z8 +z9 -z11)/p(z) 
= z1 + z2+z3+z4 + 2z5 + 2z6+4z7 + 5z8 + 6z9 + 10z10 + ....) 

Inverting the expression for E(z), we have 
e(k) = 2e(k - 3) + e{k - 4) + e(k - 5) - e(k - 6) - e(k - 7) 

+ <5(£ -1) + S(k - 2) + S(k - 3) - J(yt - 4) - S(k - 5) - S(k - 6) 
+ S(k - 7) + 3S(k - 8) + S(k - 9)-S(k-11)-S(k-12), 

where <5(&) = 1 for k = 0 and 0 otherwise. Equivalently, 
e(k) = 2e(k - 3) + e(k - 4) + e(k - 5) - e(k - 6) - e(k - 7) 

for A:>12, where e(l) = l, e(2) = l, c(3) = l, e(4) = l, e(5) = 2, e(6) = 3, e(7) = 4, e(8) = 7, 
e(9) = 8, e(10) = 11, e(l 1) = 17, e(12) = 21. The recurrence for e(k) in terms of its own lagged 
values does not appear to illuminate the tree structure of T{k). 

Then observe that, for the example, in the tree X(k), a leaf node of type Xj costs k+j-
(4 + 1) (and, more generally, this expression is k+j-(max. lag + 1)), as can be verified by induc-
tion. Thus, the average cost of T(k), C(T(k)), is given by 

C(T(k))= S(* + i -^M*) + ̂ (*) + ̂ (*) + ^(*))M*), 
l</<4 

and similarly for C(U(k)) in terms of the corresponding quantities with / replacing e? etc. The 
generating function for the unnormalized cost of T(k) is then 

zdE(z)/dz+ Y,U-5)(EaJ(z) + EbJ(z) + ECJ(z) + EdJ(z)) 

or 
(3z5 + 8z6 +15z7 + 26z8 + 8z9 - 6z10 - 40zl l - 3 8z12 -18z13 

+ 13z14 + 28z15 + 17z16 + 5z17 - 9z18 - 5z19) / p2(z) 
= 3z5 + 8z6 + 15z7 + 38z8 +46z9 +76z10 +.... 
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Then C(T(k)) is given by the ratio of the coefficient of zk in this expression to the coefficient of 
zk in E(z) (see Table 3). 

TABLE 3. Costs of Example 

k 

1 5 
1 6 
1 7 
1 8 

1 9 
1 10 

T(k) 

e(k) 

2 
3 
4 
7 
8 

11 

C(T(k)) 

1.5 
2.7 
3.8 
5.4 
5.8 
6.9 

Bound 
10.5 
10.7 
10.8 
11.1 
11.1 
11.2 

U(k) 

Ah) 
2 
2 
4 
5 
6 

10 

C(U(k)) 

2 
2 

4.5 
5 

5.7 
7.3 

Bound 

10.5 | 
10.5 | 
10.8 | 
10.9 J 

n.o 1 
11.2 1 

CORRESPONDING CODING PROBLEM 
The example trees do in fact minimize average cost for particular unequal costs coding 

problems, although this is not the case for all choices of multiple coupled recursively-generated 
sequences of trees. First, let us identify the coding problems for which the trees of Table 2 are 
code trees compatible with the cost structure of the coding problem. Then, let us verify that in 
this case the substitution rules are such that the code trees are, in addition, the minimum-average-
cost code trees for the coding problem. 

Each of the T(k) trees is a finite subtree of an infinite tree with the specified cost structure. 
That infinite tree can be described by the finite state diagram of Figure 1 in which a path through 
the tree starts with state a (denoting a root node of type at for some i), branches left (labeled 0) 
with cost 1 into state b (denoting a node of type bi for some i) or right (labeled 1) with cost 2 into 
state c. Similarly, a path through the diagram from b to c is a right branch in the infinite tree from 
a node of type bt for some i to a node of type q for some i at a cost of 2, and so on. 

1/2 r ^ \ 1^2 

1/4 
FIGURE 1. Finite State Diagram for Example 
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Every finite subtree of this infinite tree shares a common cost structure. We can read it off 
from the tree. In the case in which we start in state a9 the first 0 in a row in a codeword costs 1, 
the second 0 in a row costs 2, the third and subsequent O's each cost 3, the first 1 in a row in a 
codeword costs 2, and the second and subsequent l's each cost 4. Loosely speaking, long runs of 
O's or l's are penalized, and O's are generally less costly code symbols than l's. The T(k) trees 
share this cost structure. 

Similarly, the U(k) trees are finite subtrees of the infinite tree described by the finite state 
diagram of Figure 1 only starting in state b. For the infinite tree starting in b, the first symbol 
costs 2 whether it is 0 or 1. After that, if the first symbol is 0, subsequent O's cost 3 until the first 
1, which costs 2. From here on, or following the first symbol if it is 1, repeated l's each cost 4 
until the first 0, which costs 1 and restarts the cost rules. This is a slightly different formulation of 
the notion that long runs of like symbols are penalized in the codewords by the cost structure, 
with O's begin generally less costly than l's. Similarly, for V(k) start in state c9 and for W(k) in d. 

The coding problem is to find the finite subtrees of particular size that minimize the sum of 
the costs of the branches along the paths to the leaves. Yarn's algorithm for finding the minimum-
average-cost tree when the costs of each code symbol are constant throughout the tree, although 
they maty differ from symbol to symbol, does not necessarily carry over to the more general cost 
structures discussed here. Rather, in general, the sequence of optimal trees can be obtained from 
the root node by successively creating the least costly substitution of descendant nodes for their 
parent. For each leaf node y in one tree in the sequence, say its cost is c(y), compute the 
additional total cost by replacing it by its descendants, (r - l)c(y) + c(y, 1) + c(y, 2)-\— + c(y9 r), 
where c(y, i) is the cost of the Ith leftmost branch descending from y in the cost structure, and 
select the least of these in constructing the next tree in the sequence. The trees constructed in this 
way will be the same as the trees constructed by splitting the least costly leaf node whenever 
(r - l)c(y) 4- c(y, 1) + c(y, 2) + • • • 4- c(y, r) is least whenever c(y) is least. 

One sufficient condition on the cost structure for splitting the least costly node to yield the 
optimal trees is for c(y,l) + c(y,2) + ---+c(y,r) to equal either m or m + l or m + 2 or ... or 
m + r -1 for all nonroot y9 where m is a positive integer. In this case (r - l)c(y) + c(y9 1) + c(y9 2) 
+ "-+c(y,r) is not strictly less than (r-l)c(z) + c(z, l) + c(z,2) + --«+c(z,r) whenever c(z) is 
minimum and y is any leaf node other than z. The argument has two parts and is immediate if 
c(y) > c(z). If c(y) = c(z), consider z to be a leaf node of minimal cost for which c(z9 1) + c(z9 2) 
H— + c(z, r) is also minimum. Split z and continue with the now reduced set of leaf nodes y such 
that c(y) = c(z). 

The example treated here satisfies this condition for T(k)9U(k)9V(k)9 and W(k)9 since all 
nonroot nodes are equivalent to either yb9 yC9 or yd9 where c(yb9 l)+c(yb9 2)= 2+2 = 4, c(yC91) + 
c(ycJ 2) = 1 + 4 = 5, and c(yd91) + c(yd9 2) = 3 + 2 = 5. Therefore, splitting the least costly leaf node 
at each stage generates the optimal tree, leading to the corresponding recursively-constructed 
sequence of trees from subtrees. 

Clearly, there are many other examples of cost structures or finite state diagrams that also 
satisfy these conditions and many that do not. One example that does not is to let each 0 cost 1, 
the first 1 in a codeword cost 1, but each subsequent 1 in a row cost 10, thereby penalizing long 
runs of l's only. Here, the splitting algorithm leads to a tree of 4 leaves given by ((2+2)+(2 +11)) 
while the minimum cost tree is (((3 + 3) + 2) +1). 
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PERFORMANCE ANALYSIS 

An upper bound on the resulting expected cost, in the case that the trees solve a minimum-
average-cost coding problem, can be obtained from the work of Csiszar [3] who provides a sub-
optimal coding scheme for cost structures represented by finite state diagrams such as the one in 
Figure 1. Csiszar's method applies to arbitrary probability distributions on the source symbols. 
Because the coding scheme given here is optimal (for finite state cost structures satisfying the 
sufficient conditions) for the case of equally likely source symbols, Csiszar's upper bound when 
specialized to the uniform probability distribution on N leaves applies here as well, but only for 
binary trees. That is because his code trees are not necessarily exhaustive, and it is possible that 
the optimal exhaustive code is more costly than the suboptimal nonexhaustive code; however, for 
binary trees, all codes are exhaustive. 

The upper bound on average cost for N equally likely source symbols when optimally binary 
coded is (logP_1)(log# + log0-f-i?, where P, Q, and R are obtained from the finite state 
diagram. The notation describing the finite state diagram used below generally follows [3] and 
should not be confused with the tree or cost notation used in the example. The base of the log is 
arbitrary and will be taken as 10 in the example for convenience. 

For costs described by a finite state diagram, as in Figure 1, let us use the following notation. 
The set of code symbols is Y - {yj}, j eJ, and in the example Y= {0,1}. The set of states is 
S = {^}, i el, and in the example S = {a,b, c,d). The function F(i, j) specifies the new state 
^7(/j) if the symbol yj has been used at the state si9 and in the example F(a, 0) = b, F(a, 1) = c, 
F(b, 0) = d, F(b, 1) = c, F(c, 0) - b, F(c, 1) = c, F(d, 0) = d, F(d, 1) = c. In F(i, j), j takes on 
values in the set J(i), and in the example J(i) = J for all #'. Also define Jk(i) to be the set of 
symbols in J(i) for which F(i, j) = k, and in the example Ja(a) = Ja(b) = Ja(c) = Ja(d) = Jb(b) = 
Jb(d) = Jd(a)=Jd(c)=0* Jb(a) = Jb(c)=Jd(b) = Jd(d)= {0}, Je(a) = Jc(b)= JM= Je(d)= {1}. 
The quantity ttj is the cost of the symbol y} if used at the state si9 and in the example ta0 = l9 

ta\ ~ 2, h® - 23 tbl = 2, tc0 = 1, tcl = 4, tdQ = 3,tdl = 2. 
R is defined as max7 J(l) tij9 and in the example R = 4. P and Q are defined in terms of a 

matrix A(w) whose entries % , i e / , k el, are given by Sj&(/) w~tiJ -I0, where I0 is the identity 
matrix, and in the example 

[-1 w~l w~2 0 1 

[ 0 0 w~2 w" 3 - l j 

P is defined as the greatest positive root of the equation det A(w) = 0, and in the example this 
equation is p(z) = 0 evaluated at z = w"1 and P = 1/0.73 = 1.37. For the column vector a with 
entries at and the column vector 0 of all 0 entries, solve the matrix equation A{P)a = 0, and in the 
example a1=c(2 + P" 2 -P- 4 ) = 2.25c, a2 = c(2-P~4)/P~l = 235c, a3 = c, a4 = cP~21(2- P~3) = 
0.33c for an arbitrary c. Q is defined as max at lak, and in the example Q = 2.35 / 0.33 = 7.12. 

Thus, for the example, expected cost is upper bounded by 7.3(log10iV + 0.85) + 4 as given in 
Table 3 above. 
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Also, note that in the genera! case for finite state costs described in this notation, the corre-
sponding coupled tree sequences for Tt(k), i el, k> max tij9 are Tt(k) = *JGJ TF{Uyj)(k -ttJ) using 
*jeJ in the obvious sense. The general recurrence relations and generating functions can also be 

identified using this notation. Again, however, the focus here is on the specific, arbitrary, example 
in order to avoid the notational complexities of the general case. 
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