
COUPLED SEQUENCES OF GENERALIZED FIBONACCI TREES
AND UNEQUAL COSTS CODING PROBLEMS

Julia Abrahams
Mathematical, Computer and Information Sciences Division,

Office of Naval Research, Arlington, VA 22217-5660
(Submitted December 1995)

INTRODUCTION AND BACKGROUND

Fibonacci trees and generalized Fibonacci trees have been defined and studied by Horibe [4],
Chang [2], and the author [1]. The k^ tree in the sequence of r-ary generalized Fibonacci trees,
T(k), has T(k-c(i)) as the Ith leftmost subtree descending from its root node for k>r, and
T(k) consists of a single root node for k-\ ...,r. Here c(i), z' = l,...,r, are positive integers
with greatest common divisor 1 and are nondecreasing in z. In the case in which r = 2, c(l) = 1,
c(2) = 2, the generalized Fibonacci trees are the Fibonacci trees of Horibe [4].

In addition to the construction of generalized Fibonacci trees by the recursive specification of
their subtrees, there is an equivalent construction by the method of "types." The two construc-
tions can be seen to be equivalent by induction. In the method of types, each leaf node is assigned
one of c(r) "types" denoted by aha2, ...,ac(r). Then T(k + l) is constructed from T(k) according
to the following set of rules. A leaf node of type ax in T(k) will be replaced by r descendant
nodes of types ac(1), ac(2),..., ac(r) in left to right order in T{k +1). A leaf node of type Qj in T{k)
will be replaced by a node of type aj_x in T(k + l), j = 2,..., c(r). The sequence of trees begins
with T(T) which consists of a single root node of type ac^.

The construction by leaf node type has an interpretation in connection with Yarn's algorithm
for the solution of a particular unequal costs coding problem [5]. Thus, the recursive subtree
method also generates Yarn's code trees. In the coding problem, a path from the root to a leaf
describes a codeword, a sequence of r-ary symbols used to represent the source symbol assigned
to the leaf. It is assumed that the code trees are exhaustive, that is, every interior node has exactly
r descendants. In the case that the Ith code symbol, i = 1, ...,r, costs c{i), the generalized Fibo-
nacci tree minimizes the average codeword cost for equally likely source symbols when the num-
ber of leaives in the generalized Fibonacci tree is the same as the number of source symbols. In
Yarn's algorithm for the optimal code tree, leaf nodes of least cost, say c, in an optimal tree for a
given number of leaves are replaced by r descendant leaf nodes of cost c + c(i), i - 1,..., r, in left
to right order in generating the optimal tree for the appropriate larger number of leaves; the
sequence begins with a single root node of cost 0. The correspondence between Yarn's algorithm
and the construction of generalized Fibonacci trees by the method of types is immediate because
the method of types is exactly a mechanism for keeping track of each leaf node until it is a node of
least cost in Yarn's sense. Easy recurrence relations for the resulting number of leaves and aver-
age code cost can be obtained through the recursive subtrees perspective.

In this paper, a further generalization of Fibonacci trees is examined: the case of multiple
coupled, recursively-generated sequences of trees. These sequences of trees have interesting
structure and, under certain conditions, can be interpreted as optimal code trees for a generaliza-
tion of Yam's unequal costs coding problem. One arbitrarily selected example will be considered

1997] 309

COUPLED SEQUENCES OF GENERALIZED FIBONACCI TREES AND UNEQUAL COSTS CODING PROBLEMS

in detail. The general case can be treated in an obviously similar fashion; however, this is not
done here in order to avoid notational complexities.

EXAMPLE OF COUPLED SEQUENCES OF
RECURSIVELY-GENERATED TREES

Consider the particular example of four coupled recursively-generated sequences of binary
trees, T(k), U(k), V(k), and W(k), £ = 1,2,..., defined as follows. Let T(k) have U(k-t)
as its leftmost subtree and V(k-2) as its rightmost subtree, k>4, and denote this by
T(k) = U(k - l)*V(k - 2). Similarly, let U(k) = W(k - 2)*V(k - 2), V(k) = U(k - l)*V(k - 4), and
W(k) = W(k-3)*V(k-2). Initialize by letting T(k), U(k), V(k), and W(k), k = \ ..., 4, consist
of single root nodes. (More generally, the number of coupled sequences need not be 4 but rather
any positive integer, the trees need not be binary but rather r-ary for any integer r > 2 fixed for all
sequences, the positive integer lags can be set arbitrarily, and the assignment of trees from various
of the sequences as subtrees in the same or other sequences can be made arbitrarily. The largest
lag value is the number of single root node trees used to initialize the sequences. In some cases,
some sets of subsequences will not be coupled with others.)

The same sequences of trees can also be constructed by a method based on the notion of
node type. Start with T(l) given by a single root node of type a4, £/(!) a single root node of b4,
V(l) a single root node of type c4, and W(l) a single root node of type d4. (More generally, the
largest index value and the index of the types of nodes used to initialize the sequences is the
largest lag value.) A leaf node of type xj9 x = a, b, c, ord, in X(k), X=T,U, V, or W9 will be
replaced by a node of type Xj_x in X(k +1) if j = 2,3,4. Denote this by a2 ~ax, and so on. A
node of type ax in X(k) will be replaced by two descendant nodes of types bx and c2 in left to
right order in X(k + V). Denote this by ax ~ (bx +c2). Similarly, let bx ~(d2+c2), cx~ (bx +c4),
and dx ~ (d3 +c2). (In general, the substitution rules correspond to the subtree recursions with
one type symbol x identified with each tree sequence X and indices subscripted to x identical to
lags in the argument of X There is one substitution rule involving ~ for each subtree recursion
involving *.)

The equivalence of these two sets of sequences of trees can be verified by induction as in the
case of a single sequence of trees treated previously in the literature. The set of sequences is
given in part in Table 1. The trees are described using the following compact notation. Sibling
nodes in left to right order are separated by + signs, and parentheses are used to indicate depth in
the tree from the root so that, for example, (((d3+c2)+(bl+c4))+((d2 +c2) + c3)) denotes a binary
tree with 6 depth 3 leaves and 1 depth 2 leaf from left to right, with the left subtree made up of 4
depth 2 leaves and the right subtree made up of 2 depth 2 leaves and 1 depth 1 leaf. The leaves
are labeled by type in left to right order as d3, c2, bv c4, d2, c2, c3, respectively. Using this notation
for the trees, each line of the table comes from the previous line according to the substitution rules
given, with - used to denote substitution, together with + ~ + and () ~ ().

Costs can be assigned to the leaf nodes of these trees in such a way that nodes of types xt are
of equal cost and of least cost in a tree of index k. Thus, the substitution rules can be interpreted
as tracking the leaf nodes by type so that their indices indicate their relative costs until they are of
least cost and about to be replaced by their descendants. This is like Varn's algorithm for con-
structing a code tree, although we do not yet have any coding problem in mind for which the

310 [NOV.

COUPLED SEQUENCES OF GENERALIZED FIBONACCI TREES AND UNEQUAL COSTS CODING PROBLEMS

resulting tree is a minimum-average-cost solution. Assign costs, based obviously on the substitu-
tion rules as follows: When a node of type al9 which costs ca, splits, its descendants cost ca+\
and ca +2 in left to right order. When a node of type \ , which costs cb, splits, its descendants
cost cb +2 and cb + 2. When a node of type c1? which costs cc, splits, its descendants cost cc + 1
and cc + 4. When a node of type <f1? which costs cd, splits, its descendants cost cd + 3 and ĉ + 2.
The process starts with root nodes of type x4, which cost 0, and if a node of type xj9j= 1, 2, or
3, is not created by a split, its cost in X(k +1) is the same as the cost of xJ+l in X(k). The trees
of the example are given in part in Table 2 with leaf nodes labeled by cost.

TABLE 1. Trees of Example,, Leaves Labeled by Type

[~k
1~
2

1 3
4
5~
6~

r~ T
r~ 8

9
10

T(k)
a4

«3

<h
ax
ih + ci)
((d,+c,) + q)
((4 + C l) + (*l+C4))

(((& + Cl) + & + C4» + ((^2 + Cj) + C,))
(((tf, + q) + ((d, + C2) + Cj)) + ((# + C,) + C,))

(«ft + (*L + C4)) + ((4 + C,) + C,))
+ (((flr3+C2) + (i1+C4)) + C1))

_ fW 1
^
ft3

*2

*1

(^2+C2) I
(A+<0
((^ + c j) + (*i + c4))

((4z+<i) + «&+Cz)+ <<»))
((rf1+(Z>1 + c4)) + ((tf1+c1) + c2))
(((a?3+C2) + ((rf2+C2) + C3))
+ (((^3+C2) + (*l+C4)) + C1))

We can find expressions for the average costs of the trees from recurrence relations on the
number of leaves of each type. First, let exj(k) denote the number of leaves of type Xj in T(k) for
x = a, b, c, ord and j = 1,2,3, or 4. Initialize with ea4 = 1 and, except for this case, exj(k) = 0
for k = 1,2,3,4. Then we have, for k > 4:

ea3(*) = U * - l)
ca2

a4V

ea2{k-\)
(k):

eM(*) = 0

«*3(*) = ^MC*" 1)

«M(*) = eai(k -1) + cM(* -1) + eel(k -1)

1997] 311

COUPLED SEQUENCES OF GENERALIZED FIBONACCI TREES AND UNEQUAL COSTS CODING PROBLEMS

«<a(*) = eai(k -1) + ebl(k -1) + ec3(k -1) + edl(k -1)

««(*) = 0

««(*) = *M(* - 0+«<«(*-1)

We can obtain similar expressions for fxj(k), which denotes the corresponding quantities for
U(k), as well as gxj(k) for V(k) and /»„(*) for W{k); however, that will not be pursued here.

TABLE 2. Trees of Example, Leaves Labeled by Cost

1 *~~
1
2
3
4

1 5

1 6
1 7
1 8
1 9

10

71*)
0
0
0
0
(1 + 2)
((3 + 3) + 2)
((3+ 3)+ (3+ 6))
(((6 + 5) + (4 + 7)) + ((5 + 5) + 6))
(((6 + 5) + ((6 + 6) + 7)) + ((5 + 5) + 6))
(((6 + (6 + 9)) + ((6 + 6) + 7))
+ (((8 + 7) + (6 + 9)) + 6))

W) 1
0
0
0
0
(2 + 2)
(2 + 2)
((5 + 4) + (3 + 6))
((5+ 4)+ ((5+ 5)+ 6))
((5 + (5 + 8)) + ((5 + 5) + 6))
(((8+ 7)+ ((7+ 7)+ 8))
+ (((8 + 7) + (6 + 9)) + 6))

By the method of generating functions, with EXJ(z) = ^eXJ(k)zk, we have:

Ea,{z) = z>

Eal(,z) = z"
Eb4(z) = Eb3(z) = Eb2(z) = 0
Ebl(z) = (z5+z1-zs-z9-zl0+zn)/p(z) = z5 + z1+zs+2zw + ...
Ec4(z) = (z7+z8-zn)/p(z) = z7+z* + 2zl0 + ...
Ec3(z) = (zs+z9-z12)/p(z) = zs+z9 + ...
Ec2(z) = (z5 +z6 - z9) / p(z) = z5 + z6 + 2z8 + 2z9 + 2z10 +...
Ecl(z) = (z6 + z7 - z10) / p(z) = z6+z7+ 2z9 + 2z10 +...

312

COUPLED SEQUENCES OF GENERALIZED FIBONACCI TREES AND UNEQUAL COSTS CODING PROBLEMS

Ed4(z) = 0
Ed3(z) = (z8

+zl0-zl2)/p(z) = zs+z10 + ...
3ra(*) = (z6 + 2? - z10) I P{z) = z6 + z* + 2z9 + ...
Edl(z) = (z1+z9-zn)/p(z) = z7+z9+2z10 + ...

where p(z) = 1 - 2z3 - z4 - z5 + z6+z1. The coefficients of zk obtained from the right-hand sides
of these expressions give exj(k).

It follows from E(z) = "EE^z) that

E(z) = (z1 + z2 + z3 - z4 - z5 - z6 + z1 + 3z8 + z9 - z11 - z12) / p(z)
= zl + z2 +z3+z4 +2z5 + 3z6 +4z7 + 7z8 + 8z9 + llz10 +....

Here E(z) is the generating function of e(k) = Y,exj(k), the number of leaves in T(k). (Similarly,
we can find the generating function of f(k), the number of leaves in U(k), to be

F(z) = (zl + z2 +z3 - z 4 - z 5 -2z6 + z7 +z8 +z9 -z11)/p(z)
= z1 + z2+z3+z4 + 2z5 + 2z6+4z7 + 5z8 + 6z9 + 10z10 +)

Inverting the expression for E(z), we have
e(k) = 2e(k - 3) + e{k - 4) + e(k - 5) - e(k - 6) - e(k - 7)

+ <5(£ -1) + S(k - 2) + S(k - 3) - J(yt - 4) - S(k - 5) - S(k - 6)
+ S(k - 7) + 3S(k - 8) + S(k - 9)-S(k-11)-S(k-12),

where <5(&) = 1 for k = 0 and 0 otherwise. Equivalently,
e(k) = 2e(k - 3) + e(k - 4) + e(k - 5) - e(k - 6) - e(k - 7)

for A:>12, where e(l) = l, e(2) = l, c(3) = l, e(4) = l, e(5) = 2, e(6) = 3, e(7) = 4, e(8) = 7,
e(9) = 8, e(10) = 11, e(l 1) = 17, e(12) = 21. The recurrence for e(k) in terms of its own lagged
values does not appear to illuminate the tree structure of T{k).

Then observe that, for the example, in the tree X(k), a leaf node of type Xj costs k+j-
(4 + 1) (and, more generally, this expression is k+j-(max. lag + 1)), as can be verified by induc-
tion. Thus, the average cost of T(k), C(T(k)), is given by

C(T(k))= S(* + i -^M*) + ̂ (*) + ̂ (*) + ^(*))M*),
l</<4

and similarly for C(U(k)) in terms of the corresponding quantities with / replacing e? etc. The
generating function for the unnormalized cost of T(k) is then

zdE(z)/dz+ Y,U-5)(EaJ(z) + EbJ(z) + ECJ(z) + EdJ(z))

or
(3z5 + 8z6 +15z7 + 26z8 + 8z9 - 6z10 - 40zl l - 3 8z12 -18z13

+ 13z14 + 28z15 + 17z16 + 5z17 - 9z18 - 5z19) / p2(z)
= 3z5 + 8z6 + 15z7 + 38z8 +46z9 +76z10 +....

1997] 313

COUPLED SEQUENCES OF GENERALIZED FIBONACCI TREES AND UNEQUAL COSTS CODING PROBLEMS

Then C(T(k)) is given by the ratio of the coefficient of zk in this expression to the coefficient of
zk in E(z) (see Table 3).

TABLE 3. Costs of Example

k

1 5
1 6
1 7
1 8

1 9
1 10

T(k)

e(k)

2
3
4
7
8

11

C(T(k))

1.5
2.7
3.8
5.4
5.8
6.9

Bound
10.5
10.7
10.8
11.1
11.1
11.2

U(k)

Ah)
2
2
4
5
6

10

C(U(k))

2
2

4.5
5

5.7
7.3

Bound

10.5 |
10.5 |
10.8 |
10.9 J

n.o 1
11.2 1

CORRESPONDING CODING PROBLEM
The example trees do in fact minimize average cost for particular unequal costs coding

problems, although this is not the case for all choices of multiple coupled recursively-generated
sequences of trees. First, let us identify the coding problems for which the trees of Table 2 are
code trees compatible with the cost structure of the coding problem. Then, let us verify that in
this case the substitution rules are such that the code trees are, in addition, the minimum-average-
cost code trees for the coding problem.

Each of the T(k) trees is a finite subtree of an infinite tree with the specified cost structure.
That infinite tree can be described by the finite state diagram of Figure 1 in which a path through
the tree starts with state a (denoting a root node of type at for some i), branches left (labeled 0)
with cost 1 into state b (denoting a node of type bi for some i) or right (labeled 1) with cost 2 into
state c. Similarly, a path through the diagram from b to c is a right branch in the infinite tree from
a node of type bt for some i to a node of type q for some i at a cost of 2, and so on.

1/2 r ^ \ 1^2

1/4
FIGURE 1. Finite State Diagram for Example

314 [NOV.

COUPLED SEQUENCES OF GENERALIZED FIBONACCI TREES AND UNEQUAL COSTS CODING PROBLEMS

Every finite subtree of this infinite tree shares a common cost structure. We can read it off
from the tree. In the case in which we start in state a9 the first 0 in a row in a codeword costs 1,
the second 0 in a row costs 2, the third and subsequent O's each cost 3, the first 1 in a row in a
codeword costs 2, and the second and subsequent l's each cost 4. Loosely speaking, long runs of
O's or l's are penalized, and O's are generally less costly code symbols than l's. The T(k) trees
share this cost structure.

Similarly, the U(k) trees are finite subtrees of the infinite tree described by the finite state
diagram of Figure 1 only starting in state b. For the infinite tree starting in b, the first symbol
costs 2 whether it is 0 or 1. After that, if the first symbol is 0, subsequent O's cost 3 until the first
1, which costs 2. From here on, or following the first symbol if it is 1, repeated l's each cost 4
until the first 0, which costs 1 and restarts the cost rules. This is a slightly different formulation of
the notion that long runs of like symbols are penalized in the codewords by the cost structure,
with O's begin generally less costly than l's. Similarly, for V(k) start in state c9 and for W(k) in d.

The coding problem is to find the finite subtrees of particular size that minimize the sum of
the costs of the branches along the paths to the leaves. Yarn's algorithm for finding the minimum-
average-cost tree when the costs of each code symbol are constant throughout the tree, although
they maty differ from symbol to symbol, does not necessarily carry over to the more general cost
structures discussed here. Rather, in general, the sequence of optimal trees can be obtained from
the root node by successively creating the least costly substitution of descendant nodes for their
parent. For each leaf node y in one tree in the sequence, say its cost is c(y), compute the
additional total cost by replacing it by its descendants, (r - l)c(y) + c(y, 1) + c(y, 2)-\— + c(y9 r),
where c(y, i) is the cost of the Ith leftmost branch descending from y in the cost structure, and
select the least of these in constructing the next tree in the sequence. The trees constructed in this
way will be the same as the trees constructed by splitting the least costly leaf node whenever
(r - l)c(y) 4- c(y, 1) + c(y, 2) + • • • 4- c(y, r) is least whenever c(y) is least.

One sufficient condition on the cost structure for splitting the least costly node to yield the
optimal trees is for c(y,l) + c(y,2) + ---+c(y,r) to equal either m or m + l or m + 2 or ... or
m + r -1 for all nonroot y9 where m is a positive integer. In this case (r - l)c(y) + c(y9 1) + c(y9 2)
+ "-+c(y,r) is not strictly less than (r-l)c(z) + c(z, l) + c(z,2) + --«+c(z,r) whenever c(z) is
minimum and y is any leaf node other than z. The argument has two parts and is immediate if
c(y) > c(z). If c(y) = c(z), consider z to be a leaf node of minimal cost for which c(z9 1) + c(z9 2)
H— + c(z, r) is also minimum. Split z and continue with the now reduced set of leaf nodes y such
that c(y) = c(z).

The example treated here satisfies this condition for T(k)9U(k)9V(k)9 and W(k)9 since all
nonroot nodes are equivalent to either yb9 yC9 or yd9 where c(yb9 l)+c(yb9 2)= 2+2 = 4, c(yC91) +
c(ycJ 2) = 1 + 4 = 5, and c(yd91) + c(yd9 2) = 3 + 2 = 5. Therefore, splitting the least costly leaf node
at each stage generates the optimal tree, leading to the corresponding recursively-constructed
sequence of trees from subtrees.

Clearly, there are many other examples of cost structures or finite state diagrams that also
satisfy these conditions and many that do not. One example that does not is to let each 0 cost 1,
the first 1 in a codeword cost 1, but each subsequent 1 in a row cost 10, thereby penalizing long
runs of l's only. Here, the splitting algorithm leads to a tree of 4 leaves given by ((2+2)+(2 +11))
while the minimum cost tree is (((3 + 3) + 2) +1).

1997] 315

COUPLED SEQUENCES OF GENERALIZED FIBONACCI TREES AND UNEQUAL COSTS CODING PROBLEMS

PERFORMANCE ANALYSIS

An upper bound on the resulting expected cost, in the case that the trees solve a minimum-
average-cost coding problem, can be obtained from the work of Csiszar [3] who provides a sub-
optimal coding scheme for cost structures represented by finite state diagrams such as the one in
Figure 1. Csiszar's method applies to arbitrary probability distributions on the source symbols.
Because the coding scheme given here is optimal (for finite state cost structures satisfying the
sufficient conditions) for the case of equally likely source symbols, Csiszar's upper bound when
specialized to the uniform probability distribution on N leaves applies here as well, but only for
binary trees. That is because his code trees are not necessarily exhaustive, and it is possible that
the optimal exhaustive code is more costly than the suboptimal nonexhaustive code; however, for
binary trees, all codes are exhaustive.

The upper bound on average cost for N equally likely source symbols when optimally binary
coded is (logP_1)(log# + log0-f-i?, where P, Q, and R are obtained from the finite state
diagram. The notation describing the finite state diagram used below generally follows [3] and
should not be confused with the tree or cost notation used in the example. The base of the log is
arbitrary and will be taken as 10 in the example for convenience.

For costs described by a finite state diagram, as in Figure 1, let us use the following notation.
The set of code symbols is Y - {yj}, j eJ, and in the example Y= {0,1}. The set of states is
S = {^}, i el, and in the example S = {a,b, c,d). The function F(i, j) specifies the new state
^7(/j) if the symbol yj has been used at the state si9 and in the example F(a, 0) = b, F(a, 1) = c,
F(b, 0) = d, F(b, 1) = c, F(c, 0) - b, F(c, 1) = c, F(d, 0) = d, F(d, 1) = c. In F(i, j), j takes on
values in the set J(i), and in the example J(i) = J for all #'. Also define Jk(i) to be the set of
symbols in J(i) for which F(i, j) = k, and in the example Ja(a) = Ja(b) = Ja(c) = Ja(d) = Jb(b) =
Jb(d) = Jd(a)=Jd(c)=0* Jb(a) = Jb(c)=Jd(b) = Jd(d)= {0}, Je(a) = Jc(b)= JM= Je(d)= {1}.
The quantity ttj is the cost of the symbol y} if used at the state si9 and in the example ta0 = l9

ta\ ~ 2, h® - 23 tbl = 2, tc0 = 1, tcl = 4, tdQ = 3,tdl = 2.
R is defined as max7 J(l) tij9 and in the example R = 4. P and Q are defined in terms of a

matrix A(w) whose entries % , i e / , k el, are given by Sj&(/) w~tiJ -I0, where I0 is the identity
matrix, and in the example

[-1 w~l w~2 0 1

[0 0 w~2 w" 3 - l j

P is defined as the greatest positive root of the equation det A(w) = 0, and in the example this
equation is p(z) = 0 evaluated at z = w"1 and P = 1/0.73 = 1.37. For the column vector a with
entries at and the column vector 0 of all 0 entries, solve the matrix equation A{P)a = 0, and in the
example a1=c(2 + P" 2 -P- 4) = 2.25c, a2 = c(2-P~4)/P~l = 235c, a3 = c, a4 = cP~21(2- P~3) =
0.33c for an arbitrary c. Q is defined as max at lak, and in the example Q = 2.35 / 0.33 = 7.12.

Thus, for the example, expected cost is upper bounded by 7.3(log10iV + 0.85) + 4 as given in
Table 3 above.

316 [NOV.

COUPLED SEQUENCES OF GENERALIZED FIBONACCI TREES AND UNEQUAL COSTS CODING PROBLEMS

Also, note that in the genera! case for finite state costs described in this notation, the corre-
sponding coupled tree sequences for Tt(k), i el, k> max tij9 are Tt(k) = *JGJ TF{Uyj)(k -ttJ) using
*jeJ in the obvious sense. The general recurrence relations and generating functions can also be

identified using this notation. Again, however, the focus here is on the specific, arbitrary, example
in order to avoid the notational complexities of the general case.

REFERENCES

1. J. Abrahams. "Vam Codes and Generalized Fibonacci Trees." The Fibonacci Quarterly 33.1
(1995):21-25.

2. D. K. Chang. "On Fibonacci £-ary Trees." The Fibonacci Quarterly 24.3 (1986):258-62.
3. I. Csiszar. "Simple Proofs of Some Theorems on Noiseless Channels." Inform. Contr. 14

(1969):285-98.
4. Y. Horibe. "Notes on Fibonacci Trees and Their Optimality." The Fibonacci Quarterly 21.2

(1983):118-28.
5. B. F. Varn. "Optimal Variable Length Codes (Arbitrary Symbol Cost and Equal Code Word

Probabilities)." Inform. Contr. 19(1971):289-301.
AMS Classification Numbers: 11B39, 94A45

Announcement of

EIGHTH INTERNATIONAL CONFERENCE ON
FIBONACCI NUMBERS AND THEIR APPLICATIONS

June 21-Jime 26,1998
ROCHESTER INSTITUTE OF TECHNOLOGY

ROCHESTER, NEW YORK, U.S.A.

LOCAL COMMITTEE INTERNATIONAL COMMITTEE
Peter G. Anderson, Chairman A. F. Horadam (Australia), Co-chair M. Johnson (U.S.A.)
John Biles A. N. Philippou (Cyprus), Co-chair P. Kiss (Hungary)
Stanislaw Radziszowski G. E. Bergum (U.S.A.) G. M. Phillips (Scotland)

P. Filipponi (Italy) J. Turner (New Zealand)
H. Harborth (Germany) M. E. Waddill (U.S.A.)
Y. Horibe (Japan)

LOCAL INFORMATION
For information on local housing, food, tours, etc., please contact:

PROFESSOR PETER G. ANDERSON
Computer Science Department, Rochester Institute of Technology, Rochester, New York 14623-0887

anderson@cs.rit.edu Fax:716-475-7100 Phone:716-475-2979
CALL FOR PAPERS

Papers on all branches of mathematics and science related to the Fibonacci numbers, number theoretic facts as well as
recurrences and their generalizations are welcome. The first page of the manuscript should contain only the title, name, and
address of each author, and an abstract. Abstracts and manuscripts should be sent in duplicate by May 1, 1998, following the
guidelines for submission of articles found on the inside front cover of any recent issue of The Fibonacci Quarterly to:

PROFESSOR F. T. HOWARD, Organizer
Box 117, 1959 North Peace Haven Road, Winston-Salem, NC 27106

e-mail: howard@mthcsc.wfii.edu

1997J 317

