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1. INTRODUCTION

Motivation
Recently [2], some second-order differential properties of generalized Fibonacci polynomials
and generalized Lucas polynomials were exhibited.
Here, we intend to
(i) obtain similar differential equations from a slightly different viewpoint in the more general
_context of the polynomials W, (x) and W, (x) [3], and
(i)) discover analogous equations for Jacobsthal polynomials J,(x) and Jacobsthal-Lucas polyno-
mials j,(x) [4], i.e., non-Fibonacci and non-Lucas polynomials.
Central to the process is the question:
Can we determine Rodrigues' formulas for J,(x) and j,(x) corresponding to those (in a
somewhat different notation) for U, (x) and V,(x) in [2]?

Background
Essentially, the following basic material [3] is needed:
W2 (x) = POV, () +q()W, (%),  Wo(x) =0, W(x) =1, (1.1)
Wora () = POOW, 1 () +aCOW,(x),  Wo(x) =2, Wi(x) = p(x), 1.2)
leading to (if we drop the functional notation)
w =2 Aﬂ , (1.3)
W, =a"+p", 1.4
where
a=z{p+A},
B=7{p-A}, (1.5)

A= p2+4q=a—ﬂ.

Differentiating once w.r.t. x gives
A= ﬂ}zi (1.6)

Specialized cases of (1.1) and (1.2) are generalized the Fibonacci and Lucas polynomials
F,=W, and L,=W,, for which p=x,q=1, and the Jacobsthal and Jacobsthal-Lucas poly-
nomials J, and j,, for which p=1,g=2x. (See [3] for other examples of "Fibonacci-type"
polynomials, e.g., Pell, Chebyshev, and Fermat.)
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Two dichotomous situations thus arise:

A. ¢ =0 for "Fibonacci-type" polynomials like F, and L ;
B. p'=0for J, andj,.

Immediately from (1.6) we have

). (1.6A)
a=12
29

A (1.6B)

Crucial to the theory are the derivatives [3]

Wy = {np’VK, (q'=0), a7
ng'W,, (@'=0),
so, in particular,
Ji=2n,. (1.8)
Finally, we record for later use the notation [2]
Cro 22@’;!—)! (n>0), (1.9)
and
Gy = (zn)’!’(!”z’?r;g!_ 5 (nzr=1), (1.10)
whence
cn,m:(nz—rz)cn’, nzr+121). (1.11)

Notation for Theorems: Letters " and J(j) will be appended as subscripts to the Theorem
number of theorems relating to Fibonacci-type polynomials and Jacobsthal-type polynomials,
respectively. In this symbolism, we will have Theorem 1, ..., Theorem 3;.

2. SOME BASIC DIFFERENTIAL EQUATIONS FOR RECURRENCES

A. Fibonacci-type Polynomials (g' = 0)

From (1.3)-(1.7), double differentiation of W, leads to

KWy = v (p')’ W, —np(p')' W,
whence, with W, =y,
Xy"+pp'y' ~(np')’y = 0. @1

Alternatively, if we follow the procedure in [2], while using our notation, then we arrive at

(2.1) also, a process left to the reader.

Differentiating (2.1) » times in conjunction with Leibniz' rule, we deduce that z = y( = W®
satisfies the differential equation
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Nz"+Q2r +D)pp'z' +(p')(* —nH)z =0, 2.2)

of which (2.1) is the special case when 7 = 0.

Tllustrations of (2.1) are:
(i) the associated Morgan-Voyce polynomial C, = y, for which p =2+x, g = -1, leading to [2]

x(x +4)y" +(x +2)y' —n*y =0;
(i)) the Chebyshev polynomial 7, = y, in which p =2x, ¢ = -1 (x = cos6), yielding
(1-x")y"~xy' +n’y =0,
in conformity with [6, p. 260].

Starting now with the double differentiation of /¥, in (1.3), we eventually arrive at the differ-
ential equation
KW+ 3pp W, - (P 0" =W, = 0. (23)

Compare this with (2.1). A quick check confirms that 7 =1 in (2.2) does indeed give us
(2.3), where we invoke (1.7) for ¢’ = 0. Particular instances of (2.3) are

(a) the Morgan-Voyce polynomial B,, for which p =2 +x, g = -1, giving
x(x+4)B!-3(x+2)B, - (n*-1)B, =0,

in conformity with [2, p. 455] on making the transformation » — n—1 for our B,;

(b) The Chebyshev polynomial S, (in the notation of [2, p. 453]), where p=2x, g=-1
(x = cos#), for which

(1-x*)8r-3xS, +(#* - 1)S, =0
asin [6, p. 260], n being replaced by n—1 for our §,.
Now (1.7), where ¢ = 0, immediately shows that W =np' W™ (r 2 1), ie,,

Wn(r-l) - L"W}')‘ 2.9
np’

Hence, W) satisfies (2.2). Combining this with (2.2), we deduce that

Theorem 1;: W™ and W, both satisfy (2.2).

Example (r=2,n=4; p=2x,q=1, Pell-type polynomials [3]): P =(8x*+4x) and 0P =
(16x* +16x* +2)" both satisfy
(x? +1)z"+5x2' 122 =0.

Observe that (2.2) can be cast in the more general form (cf. [2]):
[8412] = ()2 )Nz, 2.5)

Following the technique in [2] and using (2.5), we may establish the results corresponding to
equations (2.9)-(2.11) in [2], namely (with D" = fx;):
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D[R DTN = (P (r —r?) R DD, (2.6)
D[A—Zr-lD(n-r—l)AZn-—I] - (p,)z(nz _ (r + 1)2)A—-2r—3D(n—r—-2)A2n—1, (2.7)
D[AD™D A = ()2 (n+1)2 A D™ AP, (2.3)

B. Jacobsthal (= non-Fibonacci)-type Polynomials (p’' = 0)

Trying to apply the method used in [2], or variations of it, to J, and j, is likely to lead to
frustration.

Therefore, we abandon this approach and start afresh.

Differentiate twice in the pivotal relation (1.7) for p’=0. Then

KW+ (@' W, - n(n-1)(g')*W,_, =0, (2.9)

wherein the diminished subscript in the undifferentiated polynomial is particularly to be noted.
[Check (2.9) when, for example, j, =8x* +8x+1, j,=16x+36x*+12x+1, for which p=1,
g=2x, A =1+8x]

Continued differentiation with recourse to Leibniz' rule, as in [2], reveals the generalized
form of (2.9) to be (z, = W")

Az'+(4r +q")q'z, —n(n-1)(q")*z,, = 0. (2.10)

Putting 7 = 0 in (2.10) obviously leads us back to (2.9).
Repeated differentiation in (1.3) next yields, with little difficulty,

BT+ 3(q W, ~n(n = 1(@P W, = 0. @11)

Contrast this with (2.3). One may readily verify (2.11) for, say, J;=4x*+6x+1, J, =8x*+
24x” +10x +1.

Proceeding for the sake of interest to differentiate (2.11) may times, we eventually arrive at
the generalization (z, = W)

Azz,’,’+ (4r+q")q'z, —n(n- 1)(q’)zzn_2 =0. (2.12)

Substituting » = 1 clearly reproduces (2.11), since ¢’ =2.
Bearing in mind (1.7) with p’ =0 and (2.12), we conclude that

Theorem 1;: J¢V and j¢ both satisfy (2.10).
Analogously to (2.5), we see that (2.10) may be reformulated as
(87, = (@ nr- DAz, .
Corresponding to (2.6)-(2.8), we derive

D [A2r+lD(n+r)A2n—l] — (qr)Zn(n _ I)AZT—ID("+"‘3)A2”“1’ (2 13)
D [ A2r-1p(n=r=D A2n—1] = q,)z n(n-1) A 2r=3(n=r=4) 2n-1 ) (2.14)
D[ AD"D A2n+l] = (¢")*n(n+1)A' D2 A2+ 2.15)
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3. RODRIGUES' FORMULAS

Rodrigues’ formulas for W,, ‘W, (when ¢’ = 0) and for J,, j, (when p’=0) are now deter-
mined.

A. Caseq’'=0.
Procedures followed in [2] using (1.9) will largely be applied here.

Theorem 2r:

ncn’ 0

(i) m, = —TA_ID("—I)AZn—-l;
@)
.. o N
(ll) OW/;I :"—’;AD( )A )
(»)
Proof: Definitions (1.3) and (1.4) disclose that
Vo =310+ 87} G.1)

Assuming (i), (ii) in Theorem 25, we then have, on simplifying,
Wt = @’)l—!!(AiW[pD(")AZ"'I +np' DDA (3.2)
But, by Leibniz' rule,
DD A2n+1 _ () (@n+D)pp' A2n—l}
=(2n+1)p'{pDW A" + np' DONY
since p” =0. Accordingly, (3.2), (3.3) yield

__2(n+D'A DD A2
™ @n+2)\(py™

(3.3)

in conformity with Theorem 2(ii) and (1.9).
Furthermore, from (1.7),

1
W, =——W
n+l (n + l)p’ n+l
G +11>p' ((;31"’31 D(AD™P &™) " by Theorem 2(()
_ 2(n+1)
@)’

in agreement with Theorem 2(i). Consequently, Theorem 2 is completely proved.

Cii oS DPN™ by (2.8)

Example (Chebyshev polynomials [3], p = 2x, g = -1):

W =16x* —12x* +1 (=U, [5, p. 256]),
Wy = 2(16x° —20x> +5x) (=21 [5, p. 256)).
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See also [7, p. 755]. Be it noted that in [6] the Rodrigues formulas for Chebyshev polynomials
are given in terms of Gamma functions.
More generally,

Theorem 3 :

C
( l) n, rtl2 - A—-Zr—l D(n~r—1) A2n—1;
(p )n r—
(ll) cw(r) . —2 A—-2r+1 D(n—-r) AZn—
(p )n r
Proof:

(i) Induction onr is employed. The Theorem is true for r = 0 [Theorem 2(i)] and may be
verified for » =1,2. Assume it is true for » = k. Then

VVn(k+1) (pn):j;k—l D[ A2k pn=k=1) AZn—l] by Theorem 35 (1)
n

__ Gk [A 201 p-Gs-D A1) by (2.7)
n(p'y’2EHD1

as expected. Thus, the Theorem is true for r = k +1. Hence, it is true for all 7.
(@) W =np WD by (1.7)

=np' ;(—)-,3:5A’2’+1D("")A2’1 1 by Theorem 3 (i)

—_nmr A—2r+l D(n—r) A2n—
(p )n—2r

as desired. Thus, Theorem 3y is completely established.

Examples:
Chebyshev: W =8x(8x* -3);
Fermat: WP=36(27x*-4). (Here, p=3x,q=-2.)

B. Casep'=0.

Efforts to exploit the techniques of the theory when ¢’ =0 to the related situation when
p’ =0 are doomed to disappointment, due mainly to the differing natures of A’ in (1.6A) and
(1.6B). A fresh approach is therefore necessary.

Computations rapidly show that, since A’ =2¢q'/A (1.6B),

DOA = (2n-1)(2g")N"3,
DO = (2n-1)(2n-3)2q Y A%, (3.4)

DA = (2n-1)2n-3)(2n-5)- -+ 32¢")A,
whence
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n) %o (n-)A2n-1 _ (1
(J(»HAD A ‘(1)’

(n) n-2,0 A—ID(n—Z)AZn-— (3)A2’

@ (3.5
(nfl) (02;) A lD(l)AZn—l - (nfl)An—2’ n even,
(") L0 A“DUW"' =("A"", nodd.
Differentiating once more in (3.4) gives rise to
DA = 2n-1)2n-3)2n-5)-----3-12¢")' A (3.6)
Initially
D(O)AZn—l — A2n—l ) (37)

Reassembling the ideas in (3.4), (3.5), and (3.6), we arrive at

eame-()
Qe

(");;)" ADOA 1 = ("A" neven,

(1) or ADOA = (2 )AY, 7 odd

Because the left-hand forms in (3.5) and (3.8) resemble the Rodrigues formulas in Theorem
2r, we feel justified to appropriate to them the name of Rodrigues-type expressions.
Now, p=1and g =2x in (1.1), (1.3), and (1.5) indicate that

J, ={x8) ;(I"A) (& =1+8x)
[ ] ( n )An—z
w_ L |(n) ()2, (1) el n even,
2,._1 Z (2k+1)A T (1)*(3)A +(5)A +"'+{(:)An—1 {n odd,
= a sum of expressions of Rodrigues-type (3.5). 3.9

Similarly, use of (1.2), (1.4), and (1.5) gives rise to

(5]
fn=<1+A>"+a—A>"=%,§(z’}c)w

1 | (n) (1) .o ( ) 4 (m)Ar n even,
=— Ho |AH| LA+ +
21 [(0) (2) {( n A1 | |7 odd,
= a sum of expressions of Rodrigues-type (3.8). (3.10)
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Combining (3.9) and (3.10), we then conclude that

Theorem 2;: The Rodrigues formula analogs for J, and j, are given by (3.9) and (3.10).

Examples:

J = 5%[(?}@(1 +8%) +(§) (1+8x)2] =1+8x+12x%

Jo= 315[(8)+(g)(1+8x) +(2)(1+8x)2 +(g)(l+8x)3} = 1+12x+36x% +16x°.

Our last major program is to generalize Theorem 2,. Recall, first, that j =2nJ,_, (1.8).
Elementary calculations involving (1.3) and (1.4) for J, and j, quickly tell us that

5P = (Zsa- 1) G.11)
Subéequent differentiation reveals that
IO =0 =1J, 5 ~3/],
= 5lnn =D, -5I),
JO == DJ2, -1,
and so on, suggesting the proposition that
Theorem 3;: J = —32— nn-1)JP - 2r-1Jv Y, r>2.

Proof: Induction on r demonstrates the validity of this assertion.

Successive differentiations in (1.8) then establish that
Theorem 3;: jO=2nJ P = %[(n -D(n-2)J0 ~(2r-3)J" 2], r=3.
Example of Theorems 3;,3; (r=2,n=9):
12
JP = m[24j7 — JO]=24(8x* +20x +5) = — J§g>

Observations

(i) Summation procedures beginning with the definitions (1.3) and (1.4), and ending with (3.9)
and (3.10), cannot be applied to the Fibonacci-type polynomials. This is because (3.9) and
(3.10) are tied irrevocably to (3.5) and (3.8), both of which depend on p’ = 0.

(if) Corresponding to (3.1) for Fibonacci-type polynomials, for .J, and j, we may derive
W, = W, —q'W,

n+l n-1-

(3.12)

Use of the Leibniz rule nexus in Theorem 25 is impossible in the case of Jacobsthal-type
polynomials J, and j, because of the diminished subscript for ‘W' on the right-hand side.
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(iii) In (3.11), where r =1, the appearance of % j,_;, which seems to break the pattern of the
theorem, requires explanation. From (1.8),

n, _n f‘i-

2])‘1-1 2 Jo de"_

n-2 >

n x _
ldx:E-Z(n—l)jan_zdx=n(n—1)J( b

where integration is represented by the negative unit superscript. With this symbolism, the
pattern in Theorem 3, is valid for 7 > 1, and hence that in Theorem 3; for » > 2.

4. ILLUSTRATION OF THEORY WHEN n =5 (i.e.,2n-1=9)

Now
DONX =9(pp’'+2q")A7, where A* = p* +4q (1.5),
DOK = o{7(pp' +29)2 8 + (P AT}, o
DOK =9(7[5(pp' +29')’ A +3(p')(pp' +29)N]},
DOKR =9-7-35(pp' +2q')' A+10(p)(pp' +24'Y' K +(p')' K]
Therefore,
S5AIDWA 1

9753 @) {G) (pr' +29")" +G) @) (pp +29'V K + ((5)) (p’)4A4}_ %)
So, for g’ = 0, on simplifying,

1
2—4(R.H.S.) =p*+3p’q+q* =W,

16x* +12x2 +1 for the Pell polynomial A [3]: p=2x,9=1,
(1+6x+4x®>  for the Jacobsthal polynomial Ji: p =1, g = 2x).

Differentiate (I) again to get
’ n3S
DON =9.7. 5-3-[@1’—1‘\2‘1—)——+ 10')2(pp’ +29")° & +5(p")* (pp' + 2q’)A3]. 1))
Then

ADON 1
9.7-5:3-1.(p) ()

whence, for ¢’ =0,

{@) (pp'+247) + @ (P')(pp' +29'Y’ & + G) () (pp' + 2q')A4}, 1)

1
o (R.H.S.) = p*+5p°q+5pg* =W,

_ |32x°+40x>+10x  for Pell - Lucas polynomials [3],
(1+10x +20x? for Jacobsthal - Lucas polynomials).

On the other hand, when p’ = 0, we obtain the results (3.4)-(3.8) and hence (3.9) and (3.10).
Notice, particularly, that the general expressions for W, and Wy above are valid for both
Fibonacci-type and Jacobsthal-type polynomials, even though ¢’ = 0.
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This is because the binomial coefficients associated with the powers of A in (I') and (II') are
the same as those in (3.9) and (3.10), since (1)=(,".).

n—m

Expressions for #, and W, may be sighted in [5] in a notation slightly varied from that used
here.

5. CONCLUSION

While the author of [2] evidently did not consider this theory as applying to Jacobsthal-type
polynomials, one observes that if his numerical parameter q in [2, eqns. (1.1), (1.2)] is allowed to
be functional g(x) = —2x with accompanying change in his x and p, then J, and j, can be incor-
porated into his system. For example, his Us ([2, eqn. (1.12)] reduces to 1+ 6x +4x? = J;.

So we come to our rest, having achieved the objectives (i) and (ii) in Section 1 which moti-
vated our undertaking. Many facets of the work were revealed with others to be investigated.
The unexpected complications in the patterns of behavior of J, andj, (and W, and W, ) have
added zest to the hunt.

Questions: Does there exist a general formula for the coefficients of the Jacobsthal-type
polynomials in terms of the Gamma function in the sense of [1, Table 22.3]? If so, is it attainable
using the techniques of this paper? Can, further, the theory be extended to the situation when
both p(x) and g(x) are linear polynomials?
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