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1. INTRODUCTION 

Motivation 
Recently [2], some second-order differential properties of generalized Fibonacci polynomials 

and generalized Lucas polynomials were exhibited. 
Here, we intend to 

(i) obtain similar differential equations from a slightly different viewpoint in the more general 
context of the polynomials Wn(x) and °W„(x) [3], and 

(ii) discover analogous equations for Jacobsthal polynomials Jn(x) and Jacobsthal-Lucas polyno-
mials jn(x) [4], i.e., non-Fibonacci and non-Lucas polynomials. 
Central to the process is the question: 
Can we determine Rodrigues9 formulas for Jn(x) and jn(x) corresponding to those (in a 

somewhat different notation) for Un{x) and Vn(x) in [2]? 

Background 
Essentially, the following basic material [3] is needed: 

W„+2(x)=p(x)Wn+l(x) + q(x)Wn(xl W0(x) = 0, Wx(x) = l9 (1.1) 

^ + 2 W = ̂ R + i W + ? ( ^ W ? %(*) = 2, %(x) = p(x)9 (1.2) 
leading to (if we drop the functional notation) 

W„-^^, (1.3) 

X = a"+fi", (1.4) 

where 
cc = ±{p + A}, 

A = ^Jp2+4q = a-p.\ 

(1.5) 

Differentiating once w.r.t. x gives 
x = PPL±*L. (1.6) 

A 
Specialized cases of (1.1) and (1.2) are generalized the Fibonacci and Lucas polynomials 

Fn = Wn and Ln = <Wn9 for which p = x,q = l, and the Jacobsthal and Jacobsthal-Lucas poly-
nomials Jn and jn9 for which p = l,q = 2x. (See [3] for other examples of "Fibonacci-type" 
polynomials, e.g., Pell, Chebyshev, and Feraiat.) 

1997] 361 



RODRIGUES' FORMULAS FOR JACOBSTHAL-TYPE POLYNOMIALS 

Two dichotomous situations thus arise: 
A. q' = 0 for "Fibonacci-type" polynomials like F„ and Ln; 
B. p' = 0 for Jnmdj„. 

Immediately from (1.6) we have 

PPL 
A ' 

2 £ 
A ' 

(1.6A) 

(1.6B) 

,np'W„ (q' = 0), 

Crucial to the theory are the derivatives [3] 

i 
\nq'Wn_x (p' = 0), 

so, in particular, 
J^2nJ„_l. (1.8) 

Finally, we record for later use the notation [2] 

c«,o = 2 7 ^ 7 (»*0), (1.9) (2n)l 
and 

n\n(n + r)\ 
{2n)\(n+r){n-r)\ 

whence 

^=2^:^::^ .„ ( » ^ D , O.I<» 

cn,r+i = (»2-r2)cn<r (»>r + l> l ) . (1.11) 

Notation for Theorems: Letters F and J(j) will be appended as subscripts to the Theorem 
number of theorems relating to Fibonacci-type polynomials and Jacobsthal-type polynomials, 
respectively. In this symbolism, we will have Theorem lF,..., Theorem 3y. 

2, SOME BASIC DIFFERENTIAL EQUATIONS FOR RECURRENCES 

A. Fibonacci-type Polynomials (q' = 0) 
From (1.3)-(1.7), double differentiation of cWn leads to 

A2^=n2(pfWn-np(pfWn 

whence, with Wn = y, 
A2/'+pp'y' - {np'fy = 0. (2.1) 

Alternatively, if we follow the procedure in [2], while using our notation, then we arrive at 
(2.1) also, a process left to the reader. 

Differentiating (2.1) r times in conjunction with Leibniz' rule, we deduce that z = y^ = °MAr) 

satisfies the differential equation 
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AV + (2r + \)pp'z' + {p'f{r2 - n2)z = 0, (2.2) 

of which (2.1) is the special case when r = 0. 

Illustrations of (2.1) are: 
(i) the associated Morgan-Voyce polynomial Cn = y, for which p = 2 + x,q = -l, leading to [2] 

x(x + 4)y" + (x + 2)y! - n2y = 0; 

(ii) the Chebyshev polynomial Tn - y, in which p = 2x, q = -1 (x = cos0), yielding 

(l-x*)y"-xy' + n2y = 0, 

in conformity with [6, p. 260]. 

Starting now with the double differentiation of Wn in (1.3), we eventually arrive at the differ-
ential equation 

A2W^+3pp^-(pf(n2 -l)Wn = 0. (2.3) 

Compare this with (2.1). A quick check confirms that r = 1 in (2.2) does indeed give us 
(2.3), where we invoke (1.7) for qf = 0. Particular instances of (2.3) are 

(a) the Morgan-Voyce polynomial Bn, for which p = 2 + x,q--l, giving 

x(x + 4)B^~ 3(x + 2)B'n - (n2 - l)Bn - 0, 

in conformity with [2, p. 455] on making the transformation n -» n -1 for our .B„; 
(b) The Chebyshev polynomial S„ (in the notation of [2, p. 453]), where p = 2x, q~~\ 

(x = cos$), for which 

(l-x2)S>>-3xS>+(n2-l)Stl = 0 

as in [6, p. 260], n being replaced by n-1 for our S„. 

Now (1.7), where q' = 0, immediately shows that °W$r) = np'W%r~l) {r > 1), i.e., 

^ - D = _ L ^ ) . (2.4) 
np' 

Hence, W^~l) satisfies (2.2). Combining this with (2.2), we deduce that 

Theorem 1F: W^r~l) and°l^(r) both satisfy (2.2). 

Example (r=2,m = 4;p = 2x, q = l, Pell-type polynomials [3]): P}1) = (8x3 + 4x)f and Q*2) = 
(16x4 + 16x2 + 2)» both satisfy 

(x2 + i)z" + 5xz'-l2z = 0. 

Observe that (2.2) can be cast in the more general form (cf. [2]): 

[A2r+Vf = (pf(n2 -r2)A2r~lz. (2.5) 

Following the technique in [2] and using (2.5), we may establish the results corresponding to 
equations (2.9)-(2.11) in [2], namely (with D(r) s -£) : 
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D[A2r+1Din+r)A2"-1] = (pf(n2 _r2)A2r-li)(«+r-l)A2»-l? QQ 
£[A-2r-l£(*-r-l)A2«-lj = (^2^2 _ ^ + ^^r-3^n-r-2)^n-l^ Q ? ) 

D[AZ)(w+1)A2n+1] - (pf(n +1)2 A'lD(n)A2n+l. (2.8) 

B. Jacobsthal (= eoii-Fiboiiacci)-type Polynomials (pf = 0) 
Trying to apply the method used in [2], or variations of it, to Jn andy„ is likely to lead to 

frustration. 
Therefore, we abandon this approach and start afresh. 
Differentiate twice in the pivotal relation (1.7) for p'• = 0. Then 

AX"+ (<7')X' - <n-l)(q')2°W„_2 = 0, (2.9) 

wherein the diminished subscript in the undifferentiated polynomial is particularly to be noted. 
[Check (2.9) when, for example, y4 = 8x2+8x + l, j6 = 16x3 + 36x2 + 12x + l, for which p = l, 
q = 2x, A2 = l + 8x.] 

Continued differentiation with recourse to Leibniz' rule, as in [2], reveals the generalized 
form of (2.9) to be {zn = °W<r)) 

A2z^(4r + q')q^-n(n-l)(qfzn_2=0. (2.10) 

Putting r = 0 in (2.10) obviously leads us back to (2.9). 
Repeated differentiation in (1.3) next yields, with little difficulty, 

A2^"+ XqfW; ~ n(n - l)(qfWn_2 = 0. (2.11) 

Contrast this with (2.3). One may readily verify (2.11) for, say, / 5 = 4x2+6x + l, J7 = 8x3 + 
24x2+10x + l. 

Proceeding for the sake of interest to differentiate (2.11) may times, we eventually arrive at 
the generalization (zn = W^'^) 

A2<+(4r + q')q>z>n - n(n - l)(qfzn_2 = 0. (2.12) 

Substituting r = 1 clearly reproduces (2.11), since qf = 2. 
Bearing in mind (1.7) with p' = 0 and (2.12), we conclude that 

Theorem 1,; J(
n
r~l) mdj^ both satisfy (2.10). 

Analogously to (2.5), we see that (2.10) may be reformulated as 

[A2r+lzti' = (q?n(n-l)A^lzn_2. 

Corresponding to (2.6)-(2.8), we derive 

DJA2r+ljD(„+r)A2»-lj = (^)2„(„ _ tytfr-ltfntr-Vtfn-l^ Q ] 3 ) 

D [A-2r"1
JD("-'-1)A2fl-1] = (q'fn(n - i)fr*r-sD(n-r-4)gr,-i ̂  (2 M ) 

£>[A£>(n+1)A2"+1] = (qfn(n + \)^D{"-2^2n+l. (2.15) 
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3, RODRIGUES* FORMULAS 

Rodrigues' formulas for Wn, °Wn (when q' = 0) and for Jn, jn (when p' = 0) are now deter-
mined. 
A. Case 9 '= 0. 

Procedures followed In [2] using (1.9) will largely be applied here. 

Theorem 2F: 

(») °W„ = ^hL-ADwA2n-\ 

Proof: Definitions (1.3) and (1.4) disclose that 

Wn+l = ±[p°Wn + A2W„}. (3-1) 

Assuming (i), (ii) in Theorem 2F, we then have, on simplifying, 

^ i = " ! A [pD^A^+np'D^A2"-1}. (3.2) 
"+1 (2»)!(p') J 

But, by Leibniz' rule, 
£,(»+!) A2»+i = jD("){(2« + i)^p'A2n-1} 

= (2/i + l)p'{PD^A2"-1 +np'D^"-l)A2"-1}, 

since p " = 0. Accordingly, (3.2), (3.3) yield 

w = 2(» + l)!A D(n+i)/fn+\ 
"+1 (2n+2)\(p')"+l 

in conformity with Theorem 2P(ii) and (1.9). 
Furthermore, from (1.7), 

w , = I °w> , 
"+1 (n + \)p' "+1 

=(n+\)P'^rD{AD"n+l)A2"+l) b y T h e o r e m 2 - ( i i ) 

= ̂ -cn^A~^A2^ by (2.8) 

in agreement with Theorem 2^-(i). Consequently, Theorem 2F is completely proved. 

Example (Chebyshev polynomials [3], p = 2x, q = -1): 

W5 = 16x4 - 12x2 + 1 (=U4 [5, p. 256]), 
°W5 = 2(16x5 - 20x3 + 5x) (= 2T5 [5, p. 256]). 
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See also [7, p. 755]. Be it noted that in [6] the Rodrigues formulas for Chebyshev polynomials 
are given in terms of Gamma functions. 

More generally, 

Theorem 3F: 

0) e^-TT^brr^-1^-1)*2"-1; n{pf) 

(ii) ^ z . - ^ — A - ^ ^ ^ A 2 " - 1 . 
(p'T 

Proof: 
(i) Induction on r is employed. The Theorem is true for r = 0 [Theorem 2^(0] and may be 

verified for r = 1,2. Assume it is true for r = k. Then 

0**+D = °n*+\ D[A-2k-W"-k-»A2"-1] by Theorem 3F(i) 
w(p') 

u/i,ifc+2 =r[A-2(*+lM£)(n-(*+lM)A2n-l] b y ( 2 ? ) 

«( /? ' ) W " 2 ( * + 1 ) " 

as expected. Thus, the Theorem is true for r = k +1. Hence, it is true for all r. 
(ii) W^^np'W^ by (1.7) 

= nP' , C?nM A-^+iD(n-r)A2n-i b T h e 0rem 3F(i) 

- °^r A-2r+lD(«-r) A2»-1 
- {pr-2r A 

as desired. Thus, Theorem 3F is completely established. 

Examples: 
Chebyshev: W}x) = 8x(8x2 - 3); 
Feraiat: 1^2)= 36(27x2 -4 ) . (Here, p = 3x,q = -2.) 

B. Case/>' = 0. 
Efforts to exploit the techniques of the theory when qf = 0 to the related situation when 

/?' = 0 are doomed to disappointment, due mainly to the differing natures of A' in (1.6A) and 
(1.6B). A fresh approach is therefore necessary. 

Computations rapidly show that, since A' = 2q' IA (1.6B), 

Z W " 1 = (2#i - l)(2g')A2"""3, 

D(2)gn-l = ( 2 / | _ ^ _ 3)(2g')2 A2""5
3 

D(n-l)A2n-l = ^ _ 1 ) ( 2 ^ _ 3 ^ _ 5 ) 3(2^')"-! A, 

whence 
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(3.5) 

L - ^ - ^ A 2 " - 1 ^ ) ^ neven, 
(9')' 

(3.6) 

(3.7) 

Differentiating once more in (3.4) gives rise to 

D(n)A2n-i = (2n - l)(2w - 3)(2#i - 5) 3 • l(2q')n A"1. 

Initially 

Reassembling the ideas in (3.4), (3.5), and (3.6), we arrive at 

W^AD<'>A'-' = t1)A"-'.nodd. 

Because the left-hand forms in (3.5) and (3.8) resemble the Rodrigues formulas in Theorem 
2F, we feel justified to appropriate to them the name of'Rodrigues-type expressions. 

Now, p = l and q - 2x in (1.1), (1.3), and (1.5) indicate that 

(3.8) 

(1 + Ar-(1-Ar ( t f = 1 + te) 
A 

=—y 
ntt-l Z J 
Z it=0 

» + si*+ (!>• + •••+< 
f(n-,)A-
(-)A"-1 

/i even, 
1/2 odd, 

= a sum of expressions of Rodrigues-type (3.5). 
Similarly, use of (1.2), (1.4), and (1.5) gives rise to 

[f] 
;„=(i+Ar+ ( i-Ar=^i(2^* 

(3.9) 

2k 

, n - l »l + (»W+(»|A4 + ...+ 
fC;)A" n even, 

wodd, 

= a sum of expressions of Rodrigues-type (3.8). 
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Combining (3.9) and (3.10), we then conclude that 

Theorem 2j: The Rodrigues formula analogs for Jn andy„ are given by (3.9) and (3.10). 

Examples: 

"/6~32 
J_ 
32 

= \ + %x + \2xL; 

Je = 

{i)+(3) 0-+8x)+ff) ^ + S x ? 

(o) + (2)(1 + 8:c) + (4)(1 + 8 x ) 2 + (6)(1 + 8 x ) 3 

,2. 

= l + \2x + 36x2+l6x3. 

Our last major program is to generalize Theorem 23. Recall, first, that ffi - 2nJn_l (1.8). 
Elementary calculations involving (1.3) and (1.4) for Jn andy„ quickly tell us that 

^ " A ' U ^ " 1 J"J (3.11) 

Subsequent differentiation reveals that 

jP=^[n{n-l)J?\-lJ?l 

and so on, suggesting the proposition that 

Theorem^: J$> = ±{«(»-!)Jt? ~Qr-l)^}, r>2. 

Proof: Induction on r demonstrates the validity of this assertion. 
Successive differentiations in (1.8) then establish that 

Theorem^: tf = 2nJ<g> ^[(n - l)(n - 2)4^-(2r-3)^1 r>3. 

Example of Theorems 3j,3j (r = 2, n = 9): 

A2) = i ^ 2 4 ^ - 4 ! ) ] = 24(8x2 + 20* + 5) = ± $ . 

Observations 
(i) Summation procedures beginning with the definitions (1.3) and (1.4), and ending with (3.9) 

and (3.10), cannot be applied to the Fibonacci-type polynomials. This is because (3.9) and 
(3.10) are tied irrevocably to (3.5) and (3.8), both of which depend on p' = 0. 

(ii) Corresponding to (3.1) for Fibonacci-type polynomials, for Jn and jn we may derive 

W^AX-^-v (3.12) 
Use of the Leibniz rule nexus in Theorem 2F is impossible in the case of Jacobsthal-type 
polynomials Jn andj„ because of the diminished subscript for °W on the right-hand side. 
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(i) 

(iii) In (3.11), where r = \, the appearance of | jn_x, which seems to break the pattern of the 
theorem, requires explanation. From (1.8), 

f >»-i = f JT^»- i^ = f •2("-1)ioy»-2 <& = n(n-l)4-Jl 
where integration is represented by the negative unit superscript. With this symbolism, the 
pattern in Theorem 3j is valid for r > 1, and hence that in Theorem 3j for r > 2. 

4. ILLUSTRATION OF THEORY WHEN n = 5 (i.e., 2« - 1 = 9) 

Now 
D(1)A9 = 9(pp' + 2q')A\ where A2 = p2 + Aq (1.5), 
£>(*>A9 = 9(70/7' + 2q'f A5 + (pf A7}, 
D<3)A9 = 9{7[5(/7/?' + 2^')3 A3 + 'iip'fipp' + 2q')A5]}, 
£>(4)A9 = 9 . 7 . 3 [ 5 t e ? / + 2^')4 A + I0(p'f(pp' + 2q')2A3 + (p')4 A5]. 

Therefore, 

So, for q[ = 0, on simplifying, 

^ (R .H.S . ) = / + 3p2
? + ^ - r 5 ? 

Jl 6x4 +12x2 +1 for the Pell polynomial P5 [3] :p = 2x9q = 1, 
[(1 + 6x + 4x2 for the Jacobsthal polynomial J5: p = \q = 2x). 

Differentiate (I) again to get 

Z/5) A9 =9.7.5.3. (PP' + 2<lff + i 0 ( p f ( ^ + 2^03A2 + S(p>f(pf + 2gOA3 . (II) 

Then 

TJ^W=(M5 ̂ +2?f+$){p , f {pp'+2q , )3A2+(i)^)4(^'+2*,}4 w 
9 

whence, for q' = 0, 

^ ( R . H . S . ) = p 5 + 5/g-f-5M
2 = °r59 

[32x5 + 40x3 + lOx for Pell - Lucas polynomials [3], 
}(1 +1 Ox + 20x2 for Jacobsthal - Lucas polynomials). 

On the other hand, when p' = 0, we obtain the results (3.4)-(3.8) and hence (3.9) and (3.10). 
Notice, particularly, that the general expressions for W5 and °M̂  above are valid for both 

Fibonacci-type and Jacobsthal-type polynomials, even though q' = 0. 
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This is because the binomial coefficients associated with the powers of A in (V) and (IV) are 
the same as those in (3.9) and (3. JO), since (̂ ) = („"J. 

Expressions for Wn and W„ may be sighted in [5] in a notation slightly varied from that used 
here. 

5. CONCLUSION 

While the author of [2] evidently did not consider this theory as applying to Jacobsthal-type 
polynomials, one observes that if his numerical parameter q in [2, eqns. (1.1), (1.2)] is allowed to 
be functional q(x) = -2x with accompanying change in his x and p, then Jn and jn can be incor-
porated into his system. For example, his U5 ([2, eqn. (1.12)] reduces to 1 + 6x + 4x2 = J5. 

So we come to our rest, having achieved the objectives (i) and (ii) in Section 1 which moti-
vated our undertaking. Many facets of the work were revealed with others to be investigated. 
The unexpected complications in the patterns of behavior of Jn andy„ (and Wn and °Wn ) have 
added zest to the hunt. 

Questions: Does there exist a general formula for the coefficients of the Jacobsthal-type 
polynomials in terms of the Gamma function in the sense of [1, Table 22.3]? If so, is it attainable 
using the techniques of this paper? Can, further, the theory be extended to the situation when 
both p(x) and q(x) are linear polynomials? 
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