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The aim of this note is to generalize the work on finite sums of inverses of binomial coeffi-
cients that are part of a paper by Andrew Rockett [1] which was published in this Quarterly in 
1981. Our work rests on the following lemma. 

Lemma 1: For any positive integers n and/?, with p < n\ 

i (n\l 

n + \\P, 

Proof: Use the well-known formulas of Euler, 

= jV(i-0"-^. 

f tu-\\-t)v-ldt=T^Y{y} and T(k + \) = k\, Jo T(u + v) 
that are valid for any positive real numbers u and v, and any positive integer k. 

Now we define 

q0 = l and ^(*, j ) — I ^ W ^ 

for arbitrary nonzero complex numbers x and y. Let G(z) be the generating function 
+00 

G(z) = Ydz"q„(x,y). 
n=Q 

Theorem 1: For any real numbers x,y, and z such that \z\< min(|l/x|, |1/>>|): 

r<-\ - lo%(1" xz^+ lo%(1 ~ ->*) - " 1OB0- " az + bz^ 
yJ\Z) — 2 ~ i 7 ' 

az - hz az - bz 
where a = x+y and b = xy (that is, x and y are the roots of the equation in S: S2 - aS + b = 0). 

Proof: We have 
r1 

«»(^^) = ^(xty(y(i-t)y-?dt 
0p=0 

and, therefore, for any z such that |z | < min(| l /x | , | l / j / | ) , 

rl r 
I +00 / « 

Jo"=0V>=° 

A 
df 

because of the uniform convergence (deduced from its absolute convergence) of the series over 
t e [0,1]. By the Cauchy rule for the product of powers series, this is equivalent to 
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rh 
G(Z): E(*0" SfcvO-0)"k= —y 

n=0 J \n=Q J <J 0 l LXl l' 

1 -dt, 
™ A -zy{l-t) 

from which we obtain the stated result by elementary techniques of calculus. 

The restriction to real values allows us not to manipulate many-valued complex functions 
such as the log of complex argument, and will not impair our work since its main objective is the 
polynomial identities that follow; these, once proved for the real values of the variables, are also 
proved for the complex values because the identity for all real values implies the identity of the 
coefficients of the like powers of the variables on both sides of the relation. 

This leads to Theorem 1 of Rockett [1], 

P=o 

w + 1 w+l 

Z i n \ _ w + i Y ±_ 
2"+l & k 

by taking x = y = l, because in that case, 

G(z) = _2Mi- £ ) ! 
LZ~Z 

log(l-z) 
z-(z2/2) \n=0 W + 1 

/'-He „n 

\n=0 z 

and the result follows by applying the Cauchy rule for the product of power series and then 
equating the coefficients of the like powers of z on both sides of the identity. (This formula 
previously appeared in the literature in 1947 in a paper by Tor B. Staver [2].) 

If we take x = -l and y = 1, we obtain 

G(Z) = _M!_^!); 
Z 

from which it is easy to derive the closed formula 
In / « . . \ - l 

K-iy 
p=0 

In 2w + l 
w + 1 ? 

already found independently by Tor B. Staver [2] and T. S. Nanjudiah [3]. 

Theorem 2: If (U„(u9 v)) denotes the generalized Fibonacci sequence of the recurrence rn+2 -
urn+l + vrn = 0, then 

qn{x,y) = \lUn+l{atM)dt. (1) 

Proof: An equivalent statement of Theorem 1 is, for x, y, and z real: 

™=u 1 
•afz + btz2 dt. 

But since 

— — j = E znUn^{u, v), 
l-UZ + VZ* *~* n=Q 

we obtain, by integrating term by term with regard to t, 
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G(z) = -Zz"jU„+l(at,bt)dt, 

and the stated theorem follows by equating the coefficients of like powers of z on both sides of 
the identity. Since both sides of relation (1) are polynomials in x mdy, this relation is also valid 
for all the complex values of these variables. 

Given the well-known Lucas identity [4] 

we obtain as a direct consequence of Theorem 2 the explicit expression for qn(x,y) as a function 
of a and A, 

["] 

! < * . < " , * » * ! = U„+1(at,bt). 

from which we can deduce the converse relation 
( (at-yl(at)2-4bt at + V(aQ2 - 4bt Y| 

2 ' 2 
V )) 

Another consequence of Theorem 2 is that, for any positive integer m, we can compute recur-
sively the development in powers of z of 

mG(z)= G ( z ) . W (a-bz)m 

In effect, if we define 
\(x, y) = j\u„+1(at,bt)dt 

by the fundamental second-order recurrence satisfied by (U„(u, v)) and Theorem 2, we obtain 

?„(*, y) = a lqn-i(x, y)-b V„_2(x, y). 

From this last relation, one can deduce easily that 1G(z) is a generating function for Cq„(x,y)). 
By recursion on m, and the same kind of reasoning, it can be shown that mG(z) is a generating 
function for (mq„(x, y)) defined as 

mq„(x,y) = j\'"Un+1(at,bt)dt 
since 

m'lqn(x, y) = amqUx, y)- b\_2(x, y). 

With the previously used Lucas identity, we are able to compute an explicit expression of 
mq„{x,y)-

Another relation deduced from Theorem 2 is 

2q„(x, y) - aV„_!(x, y) = jl
QV„(at, bt) dt 
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if (yn(u,v)) denotes the generalized Lucas sequence of the recursion rn+2 - urn+l + vrn = 0, as a 
consequence of the well-known relation 

Vn(u, v) = 2Un+l(u, v) - uUn(u, v). 

Theorem 3: The sequence (qn(x, y)) satisfies the following third-order recurrence [by writing for 
convenience, qn(x, y) = qj: 

a(n + 2) qn+l - {a2(n +1) 4- b(n + 2)}qn+ ab(2n +1) qn_t - b2nqn_2 = 0. 

Proof: From Theorem 1, we deduce that 

(az - bz2)J^ znqn(x, y) = - log(l - zx) - log(l - zy) 

By comparing the coefficients of z"+2 on both sides, we obtain 

n + 2 - a ^ i bq„. 

Then the recursion Vn+2(@, b) - aVn+l{a, b)+bVn(a1) b) = 0 becomes 

a(n + 2)qn+l-{a\n + l)+b(n + 2)}qn+ab(2n + l^ 

as stated. 
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