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1. INTRODUCTION 

In this paper we shall associate a semigroup with the &-bonacci numbers, which describes the 
self-similar structure of the dynamical system associated with the substitution 1 -> 12, ...(& -1) -» 
Ik, k->l for k > 3 „ The operation that defines the semigroup is used to handle the cylinders of 
the partitions defined by the self-similar structure of the symbolic system. This collection of 
cylinders is called the standard partition. The relation between the standard partition and the 
semigroup is given by Theorem 2. 

The dyamical system that arises from this substitution admits geometrical representations as: 
• an irrational translation on the (k -1) -dimensional torus [7], 
• an interval exchange map in the circle [1], and 
• a map on a geodesic lamination on the hyperbolic disc' [8]. 
The self-similar structure of the symbolic system is translated to its geometrical realizations. 

The understanding of the self-similar structure of the symbolic system and its geometric relations 
on the torus and the circle, using the semigroup, plays an important role in the construction of the 
geodesic lamination, given in [8], and also in the proofs of other dynamical properties of these 
systems [8], 

2. THE SEMIGROUP 

The &-bonacci numbers are obtained by the recurrence relation 

&+* = &+*-! + • -+a , + i + R , forw>0 (1) 
with initial conditions gj-2J for 0< j < k-1. We can represent each natural number in a unique 
way as a sum of the gt

 fs with no k consecutive gt
 !s in the present sum. This is a generalization of 

the Zeckendorf representation of the nonnegative [10] integers using this recurrence relation 
instead of the Fibonacci relation. 

In the rest of this section, we work with the Tribonacci numbers. However, the following 
constructions and results are valid for all the &-bonacci numbers. 

Let n and m be given in the Tribonacci Zeckendorf representation 
N M 

/=0 j=Q 

Define nOmby 
N M 

n<>m = JlTaibjSi+j' (2) 

Unlike the Fibonacci multiplication ([5], [2]), this operation is not associative. 
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Now we define a new binary operation in N: Let n = g{ +•••+&, with gt < gl when j < q, 
be the Zeckendorf representation of n. Observe that we can write n in the following way: 

» = » 0 o( i+a I - i 0 + - + a i - / 0 ) 
= &0o(i+a1-/0o(i+-+ai-/1) 

= «„ 0(1+^-/0 o ( 1 + - + » , _ , - / « O O + S H M ) - ) ) -

Definition 1: Define the binary operation * by 
N x N - > N 
w*w = fioo(i+aiWoo(i+.--+^ 

Properties: 

• 1 * / W = I W * 1 = /W. 

® lfn = gq thenn*m = gq Orn. 
• * is not commutative: e.g., 9 * 3 = 22 and 3*9 = 18. 
• In general, it is not associative: e.g., 3 * (3 * 2) = 10 and (3 * 3) * 2 = 13. 

For this reason, we keep the following convention: 

ml*m2*~-*me =ml* (m^ *(•••* (m£_2 * {me_l * me)) •••)). 

However, this operation is associative in a subset of the natural numbers. Let nx = gt = 2, 
"I = So +gi = 1 + 4 = 5, i% = go +Si + ^3 = 1 + 2 + 7 = 10, n0 = g0 = l, and S> the set generated by 
nh ŵ , f% under the operation * ? i.e., 

^ = {^*-*Hj i y = l,2,or3fiiraU7}, % = {1}, .9= U > 0 ^ . 

Given any three natural numbers w, wi, and rri then the associativity in n*m*m' fails when 
we do the operation n*m and we get an expression with three consecutive g 's and, therefore, we 
have to use the relation (1) to express the number according to the Zeckendorf representation. 

Easy calculations show that when we compute nt * «. for ij = 0,1,2,3 we never get three 
consecutive gt 's. So the operation * : g? x SP -» S? is associative. Therefore, we have proved 

Theorem 1: (SP, *) is a semigroup. 

3. THE SUBSTITUTION 

A substitution in a finite alphabet si is a map, II, from the alphabet to a set of words in this 
alphabet. This map extends to a map from the set of words in the alphabet si into itself by juxta-
position, i.e., Yl(UV) = II(C/)II(F), where U and Vare words in the alphabet and 11(0) = 0. In 
this way, the substitution is extended to the set of infinite sequences in the alphabet si. See [6] 
for an introduction to the theory of substitutions. In this paper we consider the substitution 

n:{l,2>...)»r^{l,2,...,«f 

I^>l2,2^l3,...,(k-l)^lk,k^kl. (3) 
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This substitution is Pisot, since the Perron-Frobenius eigenvalue of the matrix that represents the 
substitution is a Pisot number. A Pisot number is an algebraic integer such that all its Galois con-
jugates are strictly inside the unit circle [3]. 

The map II has a unique fixed point u = uQux.... We consider the closure, in the product 
topology on {1,2,..., k}N\ of the orbit under the shift map—a(u0ulu2...) = ulu2....—of the fixed 
point. This space is denoted by fl. The dynamical system (Q, a) is minimal. The dynamical and 
geometrical properties of this substitution have been studied in [7], [1], [4], [8], [9]. 

Note that the relation of this substitution to the ^-bonacci numbers is the following: if \V\ 
denotes the length of the word V9 and gj=\HJ(l)\9 we have the recurrence relation gn+k -
gn+k-i + • •' + Sn > s i n c e the substitution satisfies 

ir+*(i) = ir+*-1(i)irf *-2(i) •.. ir+1(i)ir(i) \/n > o. 
The space O admits a natural self-similar partition {Ol3..., Clk}, where Qt = {v eQ|v0 =i}. 

The self-similarity among the elements of this partition comes from the commutativity of the 
diagram,: 

O—^->Q 

where a denotes the induced map of a on Ol3 i.e., 

In the rest of the paper we will assume that k = 3. However, the results are valid for k > 3. 
We are going to show how to express C7w(u) as a composition of powers of II, applied to 

cr(u), and a (without using its powers). In particular, we shall associate with each natural 
number n an operator OaM(n) such that an(m) = OatU(n)(a(u)). Moreover, we shall prove the 
property 

OaJi(m) o OaM{n) = OaM{m * n). 

Definition 2: Let n = gt + -°+gJ£ be the representation of n according to the recurrence relation 
(1). Then 

" = a0 oO+a^ o(1+-+»^rt.2 ofl+fi,-^)---)). 
We define 

a5n(«)-°->°; 

Lemma 1: The map 0^n(n) satisfies the properties: 

(a) Oa,n(nXa(2d) = ^(l) f o r any w ^N. 
(b) Oa9U(m)o0^u(n) = Oain(m^n) for m.nG^. 

First, we are going to prove the following proposition. 
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Proposition 1: Let gq be the q^ Tribonacci number, then 

(a) o*<(M) = IF(cr(j£)), 
(b) a8«(u) = a8«+l(u), 
(c) a8«*n(m) = crn<>gq(u) = WcTn(u) forall^eN*. 

Proof of Proposition 1: 
(a) This fact is proved by induction on q. In the case q - 1: 

1 = u0a(u) = kr(n) so u = II(u) = II(l)II(<7(ii)) = l2Yl(a(u)). 

Therefore, cr2(u) = no"(u)but 2 = gi. Hence, a81 (u) = II((T(U)). Let the expression of u be 
given as 

H = «b . • • %-iV8*00 =• I P ( 1 ) ^ ( u ) . 

Since u is the fixed point of the substitution, we have u = Uq+l(l)U(a8q (u)). Therefore, we have 

<T**+I(U) = n(a^d)) = n(TP(o-(u)) = IF+VGO)-

(b) As we showed in part (a) of this proposition, agq+l (u) = U(a8q (m)). Since H o a ^ 
a o l l , we have 

n(a^(u)) = af̂ (n(u)) 
and, since u is the fixed point of the substitution, we have agq+l (u) = agq (u). 

fcj Let » = gt + • • • + gf . We can write u-u0... u^o^fu); according to [7]: 

and using the fact that u is a fixed point of the substitution II, we have 

ii = n^(u) = ir'^(i) - m+<i(i)Wan(m). 
Therefore, 

n%"(ii) = a8i<+q+'"+8i°+q(m) = a8q°*(M). Q.E.D. 

Proof of Lemma 1: 

(a) Let 
* = fi0+ •••+«< 

= a0 0(1+^-/0 o(1+-+^_rt_2 o O + s ^ ) - ) ) . 
By Proposition 1, 

n/^-,(a(u)) = c7 -̂̂ (u) 

dl* ' - ' ' - 1 (cr(u)) = or14**'-*- (M) 
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But the last term is a"(u) by using the expression for n given at the beginning of the proof. But, 
by Definition 2, OaU(n) = It'dtf^'o- • • • IT^ - ' . Hence, Oa n(«)(o-(u)) = a"(u). 

(b) Let 
m = gJo + ---+gj andmeSP 

So 

°a,nim) = nAcjn-/i"y»a- • • • nJi~J<-1 

and 

M f f l ) o 0 . , n ( » ) = 
nyooiiyi"Aa • • • n''-'*-1 n/oon'i_'»(T • • • n''~''->. 

Since/« and « eSP, 

/w*» = ^ o o O + . - o C n - ^ . ^ og/Q o ( l + s W o o ( l + -o(l+&,_,,_,)•••))))• 

Therefore, 
Oa,n('w*w) = Offfn(w)o0^n(/i). Q.E.D. 

Each of the sets Oy Is similar to O: 

nx = n(O); 
Q2 = CF(XI2(Q)) = ^(11(00); 
O3 = a(n(a(n2(o»)) = <r(n(c<ri(Oi)))) = cr(n(o2)). 

This similarity induces a partition in each of the Q/s and each of these cylinders can be subdivided 
into three subcylinders according to the maps II, oil2, and allo-II2. 

Definition 3: The collection of subsets of O generated by the system of iterated maps (II, ofl2
? 

alioTL2) is called the standard partition o/Q. The elements of this collection are called cylin-
ders. 

Theorem 2: R is a cylinder of the standard partition if and only if there exists an element n of 3P 
such that R = OaM(n)(Q). 

Proof: Let n be an element of 2? so n = nf ••••*ty , where /, e{l,2,3}, then Oa5n(w) = 
Oa,nK)'"Ocr,n(^X s^ce w^f t , w^gb + fe* "j = Sb+fi + ft = «> + fi 0(^0+^2), a n d w e 

have 
3,.nfa) = n, 0^(1%) = rfi2, o^eC^-ancxn2. 

Hence? Offin(w)((l) is a cylinder of the standard partition. 
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Reciprocally, given R a cylinder of the standard partition, by construction it is equal to a 
composition of II, crll2, and aUofl2, i.e., it is of the form OaU{nt )OaU(ni )'"Oan(nj ). By 
Lemma 1, we have that R = OaU(m)(Q), where m = niQ * • •. * nik. Q.E.D. 
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