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1. INTRODUCTION

In a series of articles [1]-[3], André-Jeannin has recently defined the polynomials U, (p,q; x)
and V,(p,q; x) by the recurrence relations (1) and (2), and has studied some of the combinatorial
properties of the coefficients of U, and ¥V, as well as some of the differential properties of these
polynomials.

U,=(x+pU,,—qU,, n22), Uy=0,U;=1 ¢y
and '
Vi=(x+pWV—qV,, 022), Vo=2Vi=x+p. (2)
The parameters p and q as well as the variable x are real numbers. If a and S are defined by
a+f=x+p, affi=q, 3
then it is well known that [5]
an ___ﬁn
U,= 4
n JK > ( a)
and
Vo=a"+p", (4b)
where .
A=(x+p)*-4q. )

The purpose of this article is to introduce and study some of the properties of the generalized
polynomial W, (p,q; x) defined by

W,=G+pW,_—qW,, (n22), , ©)

where W, and W, are specified, as well as those of two other polynomials u,(p,q;x) and
v,(p,q; x) that are very closely associated with U, and V,. We shall define these polynomials

u,(p,g; x) and v,(p,q; x) to be

u,=(x+pu, ,—qu, , (n=2), u0=1,u1:x+p—ﬁ )
and

vn:(x+p)v—l_qvn—2 (7122), v0=13vl:x+p+ﬁ' (8)

2. SOME BASIC RELATIONS AMONG U,,V,,u, AND v,

Using the well-known properties of W, (a,b, p,q) introduced by Horadam [5], we may derive
a number of relations between U, and V,. However, we shall not do so except to list a few of the
important ones that will be required for the remainder of this article. It is easy to show that ¥, as
defined by (6) may be evaluated using the relation [5],
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W, =WU,~qWU,, (n=1). ©
From (9) we can immediately derive the following relations:
Vei=Uu—qU, (10)
#,=Up =4 U,, ()]
Y =Upa+44 U, (12)
Vo=t +q = v, =g, (13)

From the results in [5], we may also derive the following "Simson" formulas:

UpiUpr =Uy ==q", (142)
Vila Vi =q"'A, (14b)
Upithy — 1 =4 A, (14c)
VartVat —Va = —q" A, (14d)
where
Au=x+p—2\/5, (15a)
A,=x+p+2.q, ‘ (15b)

A=ANA,. (15¢)
From (14a-14d), we have the interesting result that

qU,, U, -U 3 ) [ A I/nz) = (Uit — ”3 Y Vi1V — "3 )= “qzn_lA . (16)
3. ZEROS AND ORTHOGONALITY PROPERTY OF U,,V,,u,, AND v,

n " n nd

André-Jeannin ([1], [2]) has shown that

a—1y/2 Sinné
U, =q" Wzm (17a)
and
V. =2q"" cosnf, (17b)

where cosf = (x+p)/ 2\/5 . Hence, from (11) and (17a), we get
w2 Cos(2n+1)8/2

= 17
"= cosf/2 (17¢)
Similarly, from (12) and (17a), we have
an Sin(2n+1)6/2
= —_— 17d
=4 sin@/2 (17d)
Hence, the zeros of U,,,V,, u,, and v, are given by
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U,: xk:—p+2,/qcos(£—-n), k=12 ..n-1, (18a)
) 2k -1
V,: x,=-p+2,/qcos o k=12,..,n, (18b)
2k -1
: =-p+2, . k=12, ..
un xk 14 qcos(2n+1 ﬂ)r 5 Ly ey 1T, (]'SC)
v, xk:—p+2,/qcos( 2k -7[) k=12,..,n. (18d)
n 2n+1 > e > b

Of these, André-Jeannin ([1], [2]) has given the zeros for U, and V. It should be observed that,
if p =2 and g =1, then the above results correspond to the already known results for the zeros of
B,(x), C,(x), b,(x), and ¢,(x) (see [6], [7], [4]).

André-Jeannin ([1], [2]) has shown further that U, and ¥V, are orthogonal over the interval
(-p—-24/q, — p+2./q) with respect to the weight functions wy, (x) = v~A and w,(x) = 1/w,(x),
respectively. Using expressions (17c) and (17d), we may easily prove that u, and v, are also
orthogonal over the same interval, but with respect to the weight functions w,(x) =/—-A, /A,
and w,(x) = 1/w,(x), respectively.

4. Q-MATRIX AND FORMULAS FOR W,, ,, W,, AND W,, ,

If we define the generating matrix 0 to be

_|*¥tP —9q
o-*17 ) a9
then it is straightforward to show by induction that
U —qU,
PoOF :{ " i } 20
0 U, —-q9U,, (20)

The characteristic equation of P is given by
B = U= qU,)A+qU; = Up iUy ) = 0.
Using relations (10) and (14a), we may reduce the above equation to
2 -V,A+q* =0.
Hence, by the Cayley-Hamilton theorem, we have
P*=V,P-q"I. (21)

Starting with (21), we may easily show by induction that

P(x) = 2,(0)P(x) = 4" 2,1 ()], (22)

where A,(x) satisfies the recurrence relation
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2,(X) =V, (A, ()= g2, ,(x) (n=2), A,=0,1,=1. (23)
Hence, from (20) and (22), we have
0™ (x) = 2,(0)0" () ~ 4" 2,,()1 . 24
Therefore, we have
Upi(¥) = 4,(x)U (%), (25a)
Une1(6) = A ()1 () = 4 2,1 (), (25b)
e Upes (%) = 2y (U () + 474, 4(%). (25¢)

We now derive similar results for the polynomial W7, and thus for the polynomials 7, u, and v.

Consider the matrix
R= I:VVnkﬂ _qVVnk :I
e W

Using relation (9), we may rewrite R as

U -qU :l [ U, -qU,_ ]
R= W nk+1 nk |_ W nk nk—1
1[ Ui _qUnk—l ™ Upr ~qUps

=W,Q™ —qW,0™"", using (20),

= 0" (W1 -qW,0™).
Hence,

l:m:kﬂ —qWy ]=|:Unk+1 —qUy }[W1 - ]
Wi —qWou U —qUuJ|Wo W —(x+p)W,

From the above identity, we may derive the following relations after some manipulations using (9)
and (25a-25c):

W = A~ Wid (262)
I/Vrlk-0~l = A’nVVkH - qkalﬂ'n—la (26b)
Wi = AWy + qk_l/?'n—l{n/l ~(x+ p)W,}. (26¢)

Using appropriate values for W, and I in (26a-26¢c), we may now derive the following rela-
tions for the polynomials V, u, and v:

Vi =AY~ 24 2, (272)

Vs = AV =4 (c+ DDA, (27b)
Ve = A =47 e+ P) A5 (27¢)
U = Aty =G Aoy (28a)

U = At =G e+ D= @)A1, (28b)
Upey = Ay — qk_l/zﬂ’n-l ; (28¢)
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Vor = ﬂ’nvk - qéﬂ"n—la (29&)
vnk+1 = A’nvk+1 - qk (x + p + '\/_(';)/ln—-l) (29b)
Vik-1 = lzilvkq +¢ VA, (290)

It is clear from (23) that, if }5 |1, _,, then V, |1, also. However, ¥V} |4, since 1, =V,. Hence,
by induction, it follows that V|4, when n is even. Thus, we see from (25a) that V, |U,,, for even
n, while U, |U,, for all n. Further, we see from (27a) that V, |V}, for odd n. Thus, we have the
following results:

U, U, foralln (30a)
V.|\U,,  forevenn; (30b)
Ve lVin for odd n. (30c)

It is evident that similar results hold for Fibonacci and Lucas polynomials, Pell and Pell-Lucas
polynomials, etc., since these polynomials are special cases of U, and V. In particular, for the
Fibonacci, Lucas, Pell, and Pell-Lucas numbers F,, L, P,, and (J,, we obtain from (30) the
already known results:

E,|Fy, BB, foralln (G1a)
L \F,., OB, forevenn,; (31b)
L\L,, O.|B, foroddn. Blc)

5. SPECIAL CASEWHEN g =1

This corresponds to a modified version of the Morgan-Voyce polynomials, where x+2 is
replaced by x + p in the difference equations. We shall denote the modified Morgan-Voyce poly-
nomials by B,(x), b,(x), C,(x), and &,(x), where

B,(x) =U,.(p,1; %), (32a)
C.(x) =V, (p.1, %), (32b)
b,(x) =u,(p.}; x), (32¢)
¢, (x)=v,(p,1; x). (32d)
Hence, from (14a-14d), we have the "Simson" formulas:
BB, -Bl=-1, (332)
CriCr = Cl = (x+p) —4=A=AA,; (33b)
bybpr =8 =x+p-2=4,; (33¢c)
Gy Gy = ~(x+p+2) =4, (33d)

André-Jeannin [3] has shown that B® (x) and C®(x), k =0, 1,2, .., where k stands for the
k™ derivative, satisfy the following second-order differential equations:
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B®(x): A" +@k+3)(c+p)y +{(k+1) - (n+1)*}y =0, (342)
COG): A" +@k+D)(x+p)y +(k*-n*)y =0, (34b)

where
A=(x+p)*-4. (34¢)

We will now derive similar results for bN,,(k)(x) and ¥ (x). It is already known (see [6]) that
b,(x) satisfies the differential equation

x(x +4)b)(x)+2(x+1)b, (x)—n(n+1)b,(x) =0. (35)
Changing x to x + p—2 and noting that an(x) =b,(x+p—2), we find that equation (35) reduces

to
AB"(x)+2(x+p-Db!(x)-nn+1)b (x) =0, (36)

where A is given by (34c). Differentiating (36) & times and using the Leibniz rule, we can show
that 5 ®(x) satisfies the differential equation

B®(x): Ay +2{(k +1)(x+ p) -1}y + (k(k + 1) —n(n+1)}y = 0. (7a)
Similarly, we can show that £*(x) satisfies the equation
g00): A" +2{(k+D(x+p) + By +{k(k + 1) ~n(n+1)}y =0. (7b)
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