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1. INTRODUCTION 

Many macroscopic properties in nature represent the response of a system to an applied 
disturbance. Such properties as electrical or thermal conductivity, magnetic permeability, and 
dielectric permittivity fall into this category. They can all be described by the same model of an 
induced flux produced by an applied field or potential gradient. In this study we shall present the 
solution to a problem in plane geometry involving cardioids and ellipses which has arisen in the 
study of the interaction of electromagnetic waves with matter. 

A major area of research in the field of condensed matter physics is the optical response of 
composite materials. Moreover, recent advances in nanostructure technologies have generated 
particular interest in the physical properties of composite thin films [4]. Such structures are made 
up of an otherwise uniform thin film of one material into which are embedded shafts or cylinders 
of a different material. The film constituents can be chosen so as to obtain desired bulk properties. 
In practice, the major constituent is a dielectric material into which metal columnar inclusions are 
deposited. The optical properties of the metal-dielectric thin films can be intermediate between 
those of the metal and of the dielectric. These films also exhibit significant angular and spectral 
selectivity. The former feature has practical importance in the production of window coatings 
which minimize solar heating and glare while the latter feature is of use in solar collectors. Com-
posite thin films have recently been analyzed mathematically by means of a conformal mapping 
technique [10]. A schematic diagram of the film microstructure for obliquely deposited circular 
cylindrical columns is shown in Figure 1. 

FIGURE 1. Film Microstructure 

In general, the cylinder lengths are approximately equal to the film thickness. Therefore, by 
ignoring end effects such as fringing fields and restricting attention to a cross-section (normal to 
the cylinder axis), it becomes sufficient to model such a film as a plane figure. We therefore 
obtain a two-dimensional array of circles in the plane, each of which represents the cross-section 
of an individual cylindrical inclusion. During the production of the films it often happens that two 
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columns are deposited very close to each other and give the appearance of merging into one 
another. A mathematical model for this particular situation has recently appeared [9] which 
employs a symmetric pair of cardioids to describe the two-dimensional cross-section of the merg-
ing columns. During the analysis, the problem arose of determining the axis lengths of an ellipse 
of "best fit11 enveloping the cardioid pair. The problem was solved and only the final numbers 
were presented. It was discovered that by choosing a suitable definition of best fit, the parameters 
of an optimal elliptical envelope for a cardioid pair could be determined exactly in terms of the 
golden section. We now present the full derivation of this interesting and unexpected result 
together with some concomitant findings that have been unearthed subsequently. An elliptical 
envelope for a pair of cardioids is shown in Figure 2. 

FIGURE 2. Cardioid Pair with Elliptical Envelope 

2, GENERAL SCENARIO 

The particular problem of interest can be considered as a special case of the following situa-
tion. We begin with the complex transformation 

-\ln 
W„ (2.1) 

in which w = u + iv and z = x+iy. If we consider contours in the (Cartesian) z plane defined by 
u = Re(w) = constant and set z = rew,we obtain 

r = co^(d/n) (2.2) 

as the contour in the z plane which is mapped onto the straight line u - 1 in the wn plane. When 
« = l w e have a circle of radius j centered at the Cartesian point (y, 0). For n = 2 we obtain a 
cardioid symmetric about the x axis whose equation may be written as 

r ^ O + cos^). (2.3) 

By superimposing the closed curves given by (2.2) with their respective reflections in the y axis, 
we obtain pairs of intersecting contours. The conformal mappings (2.1) corresponding to n = 1 
and n- 2 have been used to study the polarization response of touching [7], [8] and intersecting 
[9] particles, respectively. As n -» oo, the degree of merging of the particle pair increases until, in 

46 [FEB. 



ELLIPSES, CARDIOIDS, AND PENROSE TILES 

the limit, the contour corresponding to u - 1 becomes the unit circle centered at the origin. In this 
paper we shall be considering elliptical envelopes for a pair of (left- and right-hand) cardioids (the 
n - 2 case). 

The approach to be adopted here will be to eliminate 0 and then ultimately express the ellipse 
area in terms of the radial coordinate of the point of tangency. Due to the symmetry of the car-
dioid pair with respect to both the x and thej axes, it will clearly be sufficient to work just within 
the first quadrant. Moreover, due to the shape of the cardioid pair, the horizontal axis of the 
desired optimal ellipse will be the major one. Hence, we can restrict attention to the right-hand 
cardioid in the first quadrant where 0 < 0 < n 12 and search for unrotated ellipses centered at the 
origin with horizontal and vertical semi-axis lengths of a and b, respectively, where a > b > 0. 

The first step in determining our optimal ellipse is, naturally, to find the points of intersection 
of the relevant curves. In the genera! case, we must therefore begin by finding the points of inter-
section of the w-cardioid (2.2) and the ellipse. The polar equation of an ellipse with horizontal 
and vertical semi-axis lengths of a and 5, respectively, is given by 

ab 
^a2 + (b2-aY)co^0'' 

a^O^b. (2.4) 

Eliminating 0 between (2.2) and (2.4) leads to the following polynomial equation for the value of 
the radial coordinate of the point(s) of intersection (p9 <p): 

p2(^Up)-^-l) + M = ®, a*b, (2.5) 

where the functions Tn(s) are the Chebyshev polynomials of the first kind [11] and 

3 b2 a2b2 , 
a1 -bl a1 - bl 

which can be rearranged as 

In order that the solutions p represent points of tangency, we must also require that the 
slopes of the ellipse and the w-cardioid be the same at their point(s) of intersection (p, <p). We 
can specify the slope of a curve at a given point by considering the angle y between the tangent 
and radial vectors at that point. If we denote these angles for the ellipse and the /i-cardioid by yE 

and yc, respectively, then the tangency condition at (p, q>) can be written 
tmyE = tmyc, (2.7) 

where 
rd0 r($) n*\ 

tmy= — = -f-±. (2.8) 

dr r'{0) 

Substituting (2.2) and (2.4) into (2.7)-(2.8) yields, for a * b, 
A + sin2fi? 1 Jq>\ _ A . . 

sin 2̂ 7 2 \nj 
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or, by using (2.2) at (p, <p): 

X + \ = T^'") + ^"Tn{py")Un_x{pv"), p*\, (2.9) 

where the U„(s) are the Chebyshev polynomials of the second kind [11]. 

In the next section, we shall consider the interesting case of enveloping a pair of standard 
(n - 2) cardioids by an ellipse. In anticipation of the results to be obtained, we conclude this 
section by introducing the golden section^ T = (1 + V5)/2, a number also familiar as the positive 
solution to 

x2-x-l = 0, (2.10) 

which is the characteristic equation for the sequence of Fibonacci numbers {Fn}. This sequence 
has many connections with the Chebyshev polynomials mentioned above [6], [11]. In addition, 
the identity 

— [ — = m
2

+n-n\, (2.11) 
m+nr m+ mn-n 

which is well known from the field Q(V5), will be found useful in later sections. 

3. THE ELLIPSE 

We shall define an optimal elliptical envelope (or ellipse of best fit) to be an ellipse of mini-
mal area which is tangent to and completely contains the cardioid pair. This provides precisely 
the right number of conditions necessary to determine the three key parameters: the value of the 
radial coordinate of the point of tangency, r = p, and the semi-axis lengths a and b of the desired 
ellipse. We will solve the problem in terms of p and then substitute back to find the required 
ellipse dimensions. 

The first condition is that the cardioid and the ellipse must intersect. For a * b this is just 
(2.5) with n - 2, which leads to the following equation for p: 

ju = Ap2+4p3-4p4. (3.1) 

The second condition is the tangency requirement which is (2.9) with n = 2. This yields 

A = 2p(4p-3). (3.2) 

We now obtain an expression for ju in terms of p by substituting (3.2) into (3.1) to find that 

M = 2p\2p-l). (3.3) 

Substitution into (2.6) of the respective expressions (3.2) and (3.3) for /land//, together with 
some subsequent simplification, leads to: 

'-'!%£• "'ffi-'*1"-31*- <x4) 

The expression for the area of an ellipse tangent to the cardioid pair in terms of p then follows 
directly from (3.4): 
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A(P) = ^P2 f*p-V2) 
(p-3/4)(p-l/4)' 

p*V4, 3/4. (3.5) 

Expression (3.5) for the ellipse area is defined only when p = 0, l/4<p<\/2 or 3/4<p<\. In 
other words, an ellipse intersecting the cardioid at a point (p, <p) at which both curves have the 
same slope is only possible for p values in the above intervals. The graph of the ellipse area A(p) 
for 0 < p < 1 is plotted in Figure 3. 

A(p) 21 

I 

l ^ _ 

V 
1/4 p.p, 1/2 

P 
3/4 P+ 1 

FIGURE 3* Graph of Ellipse Area 

We can examine the meaning of these permissible intervals by considering what sort of ellipse 
will appear as the point of tangency moves along the right-hand cardioid. For the point P(l, 0) we 
have p-\ and, by (3.4), obtain an ellipse with a - 1 (as expected) and h = V2 / 3 . As our point 
moves (in the positive 9 sense) along the cardioid, the p value decreases from unity and we 
approach the point of maximum vertical elevation. At this point, the tangent to the cardioid is 
horizontal and so the touching ellipse in this case will have an infinitely long horizontal axis and its 
area will be undefined. This point corresponds to p- 3/4 and so, from (3.4), we see that a is 
undefined (as expected) and that b = 3V3 / 8. 

Before completing the problem, we pause briefly to dispose of the two cases not encom-
passed in the above derivation. These are the cases for which a = h and p = \ (<p = 0). In the 
former case, the point of intersection is P(l, 0) and the covering ellipse reduces to the unit circle 
centered at the origin. In the latter case, we obtain ellipses for which b<a = l. All such ellipses 
share a common vertical tangent with the cardioid at the point P, where their curvature is given by 
lib2. MP the cardioid has a curvature equal to 3/2 [12]. Only those ellipses whose curvature at 
P is less than 3/2 will lie completely outside the cardioid. Hence, we must have b2 > 2 /3 . The 
ellipse of least area satisfying this condition, E say, is obviously the one for which b = -s/2/3 . The 
generic expressions (3.4) therefore reproduce this result for the p = 1 case. In fact, the tangency 
condition (3.2) implies that the solutions p are double roots of (3.1), and p- 1 is indeed such a 
double root for a - 1 (A = //) precisely when b = v273 . 
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4. GENERIC SOLUTION 
The final stage of the generic solution Is to determine the geometrically reasonable (p>0) 

critical points of the area function A(p). The third condition is therefore the choosing of those p 
values for which the derivative A'(p) becomes zero. By imposing this requirement, we will find 
the p value corresponding to the outer elliptical envelope of minimal area—that is, the optimal 
ellipse. However, due to the nature of this approach, in determining the critical points of A(p) 
we shall find another tangent ellipse whose dimensions will also be of interest. 

Differentiating the square of (3.5) with respect to p, simplifying, and then setting the result 
to zero, leads to the equation p4g(p) - 0, where 

g-(p)-128/73-208p24-!00p-15. (4.1) 

The solutions of interest will naturally come from the zeros of the cubic polynomial g(p) defined 
in (4.1). As we now show, these can all be determined exactly. 

As g(l) is nonzero and 0 < p < 1; there will be no integer solutions for g(p) - 0 (excluding 
the trivial case). Therefore, since the coefficients of g(p) are all integral, any rational solutions 
will have the form p/q, where p\l5, q|128, and p<q [1]. The only nontrivial rational zero of 
g(p) is found to be px = 3 / 8. This leads to the factorization 

•g(p) = (8p-3)(16p2-20p + 5). (4.2) 

The remaining critical points are the zeros of the quadratic factor on the right-hand side of (4.2). 
These can be written as 

p+ = ̂ (2 + r), p . = i ( 3 - r ) . (4.3) 

By considering the sign of the second derivative of A(p) (or otherwise), it is readily seen that the 
rational solution pY corresponds to a local maximum for the area of the tangent ellipse while the 
remaining two conjugate solutions p± correspond to local minima for this area. This is also clear 
from the graph of A{p) displayed in Figure 3. We shall denote by E± the ellipses corresponding 
to p±, respectively. The larger of the two (conjugate) ellipses, E+, is the desired unique optimal 
ellipse completely enclosing the cardioid pair. Its area is less than that of the two additional plane 
figures considered separately above, namely, the unit circle and the ellipse E. 

The semi-axis lengths of the ellipse E+ and the angular coordinate <p+ of its point of inter-
section P+ with the right-hand cardioid are found by substituting p+ into (3.4) and (2.3), respec-
tively. With the aid of (2.11) and the fact that r satisfies (2.10), we obtain 

and 
C0SP+ = f' (4'5) 

or just (see [2]) <p+ - K 15. We can immediately determine the focus F+ and eccentricity e+ of E+ 
from (4.4): 

F ^ T ^ ? ^ V W 1 ^ (4.6) 
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The relative area excess of E+ over the double cardioid, DC, turns out to be 

^E+ ^DC 

^DC 
= a+A+/(3/8 + l /^)- l« .1223. 

5. CONIUGACY RELATIONS 

There Is a whole series of interesting relations linking the dimensions of the two conjugate 
ellipses E±. In these last two sections we present this material together with some related geo-
metric constructions. We therefore begin by considering the tangent ellipse E_ and implicitly 
drop the restriction that 0 < ^ < / r / 2 . By substituting p_ into (3.4) and (2.3) and again using 
(2.10) and (2.11), we obtain the following semi-axis lengths for E_: 

S "> - (5.1) a_ 4V2 4V2 
and the following angular coordinate <p_ for the point of intersection P_ of E_ with the right-hand 
cardioid: 

! 
cos^?_ :0-i), (5.2) 

or just (see [2]) <p_=27tl5. The focus F_ and eccentricity e_ of E_ follow from (5.1): 

F_=^4V^\, e_ = j | V 2 ^ T . (5.3) 

The ellipse E_ has its major axis lying along the y axis and actually cuts both cardioids. However, 
this ellipse can still be said to be tangential to the cardioid since, at the point of intersection, the 
curves have the same slope. In Figure 4 the two ellipses E± are shown superimposed onto the 
right-hand cardioid. We also make note of the angle <px which corresponds to the rational zero px 
of (4.1) and which, by (2.3), satisfies 

COS01 = - —. 
4 

(5.4) 

FIGURE 4. Might-Hamd Cardioid with Conjugate Ellipses 
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In the following, we list several conjugacy results based on the values of the various ellipse 
parameters. Identities (2.10) and (2.11) for r have been used where convenient to simplify the 
working. 

Straightforward calculations employing (4.6) and (5.3) and then (4.5), (5.2), and (5.4) lead to 

•~-=T, - T - - T = 1? and cos<p+cos(p_=cos(pl. r_ ei ez 

Using (4.4) and (5.1), it can also be shown that 

2 ̂  a+a_ J 2 \a_h+ 

from which one immediately obtains 

\(aj>- , b+b_ 
Ka_b+ a+a_ 

By considering the ratios of corresponding quantities for the two conjugate ellipses E±9 it can be 
shown that the following set of quotients are all equal to r : 

_______ fd+ _ [®±- [P+ - [*±-y± 
h_ \ A_ y a_ y p_ y x_ y_' 

where the A± are the areas of the respective conjugate ellipses and the lengths x± and y± denote 
the Cartesian coordinates of the corresponding points /+. 

Another interesting result involves arc lengths along the (right-hand) cardioid. The expres-
sion for the arc length along the cardioid (2.3) from the point P(l, 0) is s(0) =2sin(0/2) (see 
[12]). At the points P± we therefore obtain 

$(<p+) = 2 s i n ^ = T- 1, s(<p_) = 2sin^p = r, 

where we have used (4.5) and (5.2). The arc length along the cardioid from P+ to P_ is thus 
precisely one unit. 

We can also consider curvatures. The curvature of the ellipse (2.4) at a point (r, 6) is given 
by (see [12]) 

a4b 
(a4+ (h2-a2)r2 cos? Of 

K(r,6)~ / „ 4 . / t 2 _2x_.2_._2/A3/2- ( 5 5 ) 

Substituting the polar coordinates of the points P± into (5.5), using (4.4) and (5.1), and then 
taking the resulting ratio, leads to 

%-r. (5.6) 

where the K+ denote the curvatures of the ellipses E± at their respective points of intersection P+ 
with the right-hand cardioid. A result analogous to (5.6) can also be shown to hold for the ratio 
of the curvatures of the right-hand cardioid at the points P±. 
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6* PENROSE TILES 

A routine calculation reveals that the slope of the tangent line at P+ is equal to tan4#/5. By 
drawing in that part of this tangent line which lies in the first quadrant and then repeating the 
analogous procedure in the other three quadrants, we obtain a rhombus R with angles of 2K 15 on 
the x axis and angles of 3TT 15 on the y axis. This quadrilateral is in fact known as a Penrose 
rhombus because it can be divided up to form two Penrose tiles [5]. This is shown in Figure 5. 
The two Penrose tiles with colored vertices (which do not concern us here) have been dubbed 
darts and kites (after John Horton Conway) [3]. The partition BGD (where A.BGD = 4;r/5) 
divides R into the dart BCDG and the kite ABGD. Using some simple trigonometry, it can be 
shown that the length of OG is in fact equal to p_. Also, the partitions formed by the rays OP+ 

and OP+ form another Penrose rhombus OP+AP+ which is one-quarter the size of J?. Some ele-
mentary algebra also reveals that E+ is in fact the ellipse of greatest area that can be inscribed 
within R. 

FIGURE 5. Right-hand Cardioid and Optimal Ellipse with Penrose Rhombus 
Divided into a Dart and a Kite 

Another construction highlights the relationship between the darts and kites and the inter-
section points. It is possible to use intervals through these points to form new darts and kites. 
The upper and lower points of intersection of E_ with the left-hand cardioid will be denoted Q_ 
and QL, respectively. We first produce both CB and OQ_ until they meet at H and then do the 
same with both CD and OQ_ and the point /. In this way we form the dart OHCL The contigu-
ous quadrilateral AB'OD' then turns out to be a kite. These structures are displayed in Figure 6. 
After some elementary geometric considerations, it can be shown that the ratio of the area of the 
dart OHCI to that of the kite AB'ODf is precisely equal to the golden section, r. 
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FIGURE 6. Additional Darts and Kites 
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