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1. INTRODUCTION

Some of the properties of the Brahmagupta matrix [see (1) below], and polynomials x, and
¥, in two real variables (x, y) (see § 3) have been studied in [6]; we know that the Brahmagupta
polynomials contain the Fibonacci polynomials, the Pell and Pell-Lucas polynomials [2], [5], and
the Morgan-Voyce polynomials [4], [7]. The convolution properties that hold for the Fibonacci
polynomials and for the Pell and Pell-Lucas polynomials also hold for Brahmagupta polynomials.

In this paper we extend analytically the properties of the Brahmagupta matrix and polyno-
mials derived in [6] from two real variables to two complex variables z and w, which belong to
two distinct complex planes. We denote this space by C>. A typical member in C? has the form
¢ =(z,w). Since C is simply R* with the additional algebraic structure, we realize that C? is
(topologically) R* with some additional algebraic properties. We have a natural way to identify
points in C? with points in R*. This is described by the scheme:

Crs(z,w) & (x+iy,u+iv) & (x, y,u,v) eR*

In particular, we measure the distance in C? in the customary Euclidean fashion: if £, =(z;, w;)
and ¢, = (z,, w,) are points in C2, then |, =&, | = (|2, — 2, * +|w, —w, |* ).

Another interesting feature of the Brahmagupta polynomials z, and w, in C? is that, when the
polynomials are expressed in terms of real and imaginary parts with z = x +iy and w = u +iv, the
resulting polynomials x,, y,,u,, v, satisfy recurrence relations (11)-(18). The functions x,, y,,
u,, v, are solutions of the second-order partial differential equations (19) and (20).

Since the calculations go through without change in the complex case, we just list some of

the properties.
2. BRAHMAGUPTA MATRIX

Let B be a matrix (a Brahmagupta matrix) of the form
lz w
B= [,w z ] 0]

where 7 is the fixed real number and z and w are complex variables; further, we shall assume that
det B = f=z2—tw? # 0. Using its eigenrelations, B has the following diagonal form:
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Define

Then the above diagonalization enables us to compute

e 0 TIE VR
B" = L
[a SEL o s W A @

Since B™! = B"B, we have the following recurrence relations:

%NI»—

Zy =22, IWW,, W, =2ZW, +WzZ,, 3)

with z, =z and w, =w. From (2) we derive the following Binet forms for z, and w,:

z, = —;—[(z +wﬁ)” +(z -w\/;)"], 4
W, =2—f/7[(z+w«ﬁ>" —(z-wVEY1, (5)

and z, +/tw, = (z+/tw)". Note that if we set z=1/2=w and ¢ =5 then = —1; then 2w, = F,
is the Fibonacci sequence, while 2z, = L, is the Lucas sequence, where 7> 0.

Let E=z+wlt,n=z-wJt, & =z, +wJt, n,=z,~wJt and B, = z2 —tw?, with n, =7,
£,=¢,and B,=/0. Then we have £, =£", i, =", and S, =p". To prove the last equality,
consider 7= (22~ tw?)' = E""= £,1, = (22~ w?) = B,

We also have the following property:

p_1| ef+e” (=)

ef == , dete® =e%.
4{Jt(ef e ef+el ]

To prove these results, set 2z, = & + 7%, 24/tw, = £k —n*. Since
< BF B 1]z w

e?=% = and —=—[ k k],
]Z;) k! Kkl klltw, 2z

we express z;, and w, in terms of £ and 7 to obtain the desired results.
Recurrence relations (3) also imply that z, and w,, satisfy the difference equations:
2 2Zzn —len—lﬂ Woel = ZZWH _ﬂwn—l' (6)
Conversely, if z, =1, z, =z, and w, =0, and w, =w, then the solutions of the difference equa-
tions (6) are given by the Binet forms (4) and (5).
The expressions z, and w, can be extended to negative integers by defining z_, =z,6™" and
w_,=-w,f". Then we have

-n_| Z wn_ Zon Yol 2
weefp i s

where we have used the property
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—1\" n
z w (1l z -wi|| _1{ 2z -w,
w z A\l oz ) gl oz, |
All of the recurrence relations extend to the negative integers also. Notice that B® = I, where I is
the identity matrix. For negative integers, z, and w,, are rational functions of z and w.

3. THE BRAHMAGUPTA POLYNOMIALS

Using the Binet forms (4) and (5), we deduce some results: Write z, and w,, as polynomials in
z and w using the binomial expansion:

— N n)\ _n-2, 2 n—4_.4
z,=z +t(2) we+1t (4) w4+
-1 n =313 + 12 5,5
w, =nz" w+t(3) w? + (5) "W

The first few polynomials are z, =1, z; =z, z, = 22 +W?, z; = 2° + 31z2w?, z, = 2* + 612°w* + 1*w*,
s Wo =0, wy=w, w,=2zw, W, =32%w+m3, w, =4z°w +41zw®, ... Notice that z, and w, are
homogeneous in z and w; therefore, they are analytic (in the classical one-variable sense) in each
variable separately. Also, z, and w, satisfy the Cauchy-Riemann equations in each variable separ-
ately: If z, = x, +iy,, then
0%y _ Oy Oy _ Oy

oy’ dy
D 0% _ Oy

and

é’u oy’ v

Similar relations are satisfied by the polynomials w, =u, +iv,.
If ¢ > 0, then z, and w,, satisfy:

—Jiw
IEA
n—so W, —\/t_ if z+§wl>l
H —JIw
g W z+Aftw if __‘_—;+\/7w <1,
llmzn =llm—w" =
nyeZpy n3eWnt oz tw  if Zﬁx >1;
oz, ow, nz
oz ow P
0z ow
0‘\: = t_o”-zﬂ =ntw,_,
From the above relations, we infer that z, and w, are the polynomial solutions of the "wave equa-
tion":
o 1 5
— U=0. 7
(é’z2 t 5w2) ™
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Since the partial differential equation (7) is linear, by the principle of superposition its general
solution is

Uz, w) =Y (42, +Bw,),

where 4, and B, are constants.

4. RECURRENCE RELATIONS

From the Binet forms (4) and (5), we record the following obvious recurrence relations:

W) zpn =22, +W,W,, ~v) w,+tBW, ,=2zw,,
W) Wpp =2,W, +W,2,, i)  z,,,+p"z,_,=2tw,w,,
(i) Bz, ,=z,z,—tww,, (vii}) W, +B"™W, _, =2z,w ®
@) BV =2 W= Z Wy, (X) 2z~ ZynZen) = BB~ 23,),
M) Zpin B 2= 22,2, ) Zyy = 2 Wy = B2,

Putting m=n in (i) and (i) above, we see that z,, =z>+mw? and w,, = 2z,w,; these relations
imply that: (a) z,, is divisible by z, iv/tw, if £>0; (b) z,, is divisible by z, +~/tw, if £ <0;
(c) w,,, is divisible by z, and w, and, if r divides s, then z,, and w,, are divisors of w,,.

Let 2;_; = 2. Then, using the Binet forms, it is not difficult to see the following facts:

. _ﬂzn—zn+l+z~ﬂ

O 2=t

.. _Ppw,—w, W

@ Zw ="t

2 _Pon—Zmatn-B  fB"-1

W) 25 = vy 2(p=])

Tw? = ,8222,, ~Za T2 - B _ BB -1
k WP -2z, +1)  24(B-1)°

B,

V) 2Xzz, 4 =Nz, + w

(iv)

. pw,
V) 22X W =12y — Tv—ﬂ

(Vil) 22Xz W,y =2 X W2,y = W,y

Now we generalize a result satisfied by the generating functions of Fibonacci (F,) and Lucas
(L,) sequences; namely,

> |

F=Y5r  1o=YLs

Then L(f) =™ [3]. A similar result holds between z, andw,. Let Z and W be generating
functions of z, and w,, respectively; that is,
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z2=Y 2y, w=Sws". ©)
n
1 1
Then W(s) = swe?4) _ Since the proof is similar to the real case (see [6]), we omit it here.

5. SERIES SUMMATION INVOLVING RECIPROCALS OF z, AND w,

All the properties of infinite series summation involving x, and y, can be extended to the
complex variables case also. Since the arithmetic goes through without any changes, we shall just
list them here. For details, see [6].

1 i 2z _p+1)_1
o i\ Ze1 % z
) i 2z fB+1 1 i 2z p+1 1
ka1 \Zk=1%k+1 Zp+1Zk zrzr+l kol \ Wk=1Wk41 Wi iWg W,W,+1
0 0 0 o0
2zz 1 2zw 1 +1
3. z k- z _— ﬂ ! z 4Tk Z :B
kol Zk-1%k41 S\ Zk-1 Zk kers1 Wk- W tarr1 \ Wk-1 Wk+1

o o1 (2 pa1)_1 i 2, _Br+1)__1
Z Z(k—l)r Zgr 2,2y, ’ (k+l)r w(k—l)r Wir W, W,

k=2 “(k+Dr k=2

o 'Bz"-‘—z
5. = .
k§2 Yok (x+y1)?

. 52 —L(izg—:_k(zi\/{w)}

n=1 ZnZp+k tWWk
where the plus sign should be taken if |[£/7|<1 and the minus sign should be taken if |£/n|> 1.
To show item 6, we consider
ZyiZnik ~ Znik1Zn = Znat @ity HIWW, ) = Zyp (22, HIWW,, )

n—1%n
= W(Z, Wkt — ZpakmWnet) = twﬂ"‘ w

Thus,
N n
ﬂ — 1 Zn-12n+k ~ Zn+k=1%n
n=1 ZnZntk tWWk ZnZnik

n n=1 “n n=N+1 "1

b S Zewa )1 (Sz Nz
twwkngl(z Zik ww, Zz Z z, )
Now fix k& >1 and let N tend to infinity. Using the property we derived in Section 3, we obtain
the required result. Similarly, we show that

o (n-1) k
k ﬂ — 1 Wa-1 _
B = o, (Z]Z ", k(ziﬁw)j,

n=1

where the plus sign should be taken if |£/ 77| <1 and the minus sign should be taken if |£/ 77|> 1.
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6. CONVOLUTIONS FOR z, AND w,

Suppose that a,(z, w) and b,(z, w) are two homogeneous polynomial sequences in two vari-
ables z and w, where 7 is an integer > 1. Their first convolution sequence is defined by

n
1)
(@,%b)" = Z By =D 000
=t

In the above definition, we have written a, = a,(z, w) and b, =b,(z, w). To determine the convo-
lutions z,*z,, z,*w,, and w, * w,, we use the matrix properties of B, namely,

n+l1
I: Z wil — l: Zn+l Wi - Bn+l - BjBn+l—j - Zj wj Zn+l-j wn+1—j
Wz Mo Zpn Wiz || Wy Zpeg

) ntl _ 70 wd
B, = Z By = Z B L0
n

1
Jj=1 IW;S’

Let

Note that B” = B,. We prefer using the subscript notation. Since _; B,,; =nB,,,;, the above

j~1
result can be written as

B Z, % Z,HIW, kW, 2z, % w, B zZ0 W _ RO
el = 2iz,%w, Z,kZ,+W, %W, w® Z;(}) n >

where we have written 37, = 3. Therefore, we have z{¥ = nz,,; and w(’ = nw,,,, or

p,

+
w

2z, %2z, =nz

0t and 2w, % w, =nz,,, —

>

from (8) parts (v) and (vi). The above result can be extended to the 4™ convolution by defining

BP = ZB (BD)-
We can show that

B® = (n +II: - l)BHk‘

We shall prove the result by induction on k. Since B =nB,,,, the result is true for £ =1.
Now consider

(k+1) =y BJ B®)  — =Y Bn+1_,-( B(.k))

n+1-j

+k-1 +k-1 +k ‘
=ZBn+1—j(J k )Bj+k" +k+lz(1 ) (’]1+1)Bn+k+1a

(%), to derive the above

which completes the induction. We have used the property (/¥
result.
From the above results, we can write the following & convolutions, namely,

z,(,k)=(n+llcc_l)zn+k and wf,k)z(n+ll§_l)wn+k. (10)
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Result (10) enables us to write the convolutions z,* z), w, * w®) | z x w® and w,* 2. First,
we shall show that

n
W _[(n+k k ik
2Zn * 2y = Zpsknr T sz zn—j+1ﬂ zn+l-2j—-k'
+1 ot
j=
We consider

2z %28 =2% zj?z,,_j+1
j+k—1
= 2Z(J k )Zj+kz - j+1

i+k~1
:22(] k )(zjzk+tijk)zn—j+l

n(j+k-1
ZjZn- j+1 +2twkz ( k ijzn-—jﬂ

J=1

3 j+k-1
)

i+k—1 » i+k—1 -
=z Z [(J k )Zn+1 + ﬂjzn—2j+l:| W Z (J k )(wn+l - ﬂjwn—2j+l)
i+k—-1 (j+k-1
=X (J k ) (@21 H W) 2 B (J k )(Zkzn—-2 PRE (UATAPYY

+k i+k—1) 5
= (’]Z + l)zn+k+l +2 (J k )ﬂj+kzn+l—2j—k .

We have used (10) and (8) part (i) to derive the above result. Similarly, we can show that

+k i+k—1) ;)
2w, * Wr(zk) - (’;f + l)zn+k+l - Z(J k )ﬁj+kz”+l“2j-k’

7. THE IMPLICATIONS OF z, AND w, IN R*

Let z=x+iy and w=u+iv. Then z,=x, +iy,, w,=u,+iv,, and f=z>-w?=a+iy,
where a = x? — y? —t(u® —v?*) and y =2(xy —tuv). Note that detB = 0 impli¢s that either o # 0
or y #0. Recurrence relations (3) now become:

Xpp1 = 2XX, =2y, = QX 1+ Yy, (11)
Vs = 2%, + 259, = P01 = Wy (12)
Uyyy = 20U, = 2yV, — QU _ PV, 1, (13)
Vst = 20V, + 2V, ~ yU,_ —QV, y, (14)
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with x,=1, =0, 4,=0, vy=0 and x,=x, y,=y, uy=u, v, =v. By (11)-(14), the first few
polynomials are given by
x, = X2 =yt +1(u? —v?),
Y2 =2(xy +tuv),
wy = 2(xu— yv),
vy = 2(xv + yu).
X3 = x° = 3xy? +36cu® - 36xv2 - 6tyuv,
V3 =3x%y — )3 +6txuv+ 3tyu® - 3m0?,
uy = 3x%u - 3y*u— 6xyv — 3tuv? + 1,
vy = 6xyu+3x%v - 3y*v + 3tutv -2, .

By expressing equations (8) parts (i) and (ii) in terms of the real and imaginary components, we
find that the recurrence relations transform to

Xmin = Xy = YV + LV = V,), 15)
Ymin = XV + Xp Y + WV = UyV,y), (16)
Uppsn = Xplhy + X0 = Y,V = VoV, 17
Vien = XV T XV + Vol + VU - (18)

To transform the partial differential equation (7) in z and w to the one in variables x, y, #, and
v, we use the partial differential operators:

oz 2\ox Oy 0z 2\dx oy)

Then equation (7) becomes

o’ & 1 & P
Ee e sy 8 )
(S )a-0 @)

where f, = x, or u, and g, =y, or v,. By the principle of superposition, the solution of differen-
tial equations (19) and (20) are, respectively,

f(x’ y’ u’ v) = Z (anxn +bnun) and g(x’ y’ u’ v) :z (cnyn +dnvn)’
0 0

where a,, b,, ¢,, and d, are constants.

n» ~n> wn>

Now we express relation (9) in Section 4, i.e., W(s) = swe?*®) in terms of real and imaginary
parts. Let Z(s) = X(s)+iY(s) and W(s) =U(s)+iV (s). Then (9) transforms to

U(s) = use*©(ucos¥(s) - vsin ¥ (s))
and
V(s) = vse* (v cos¥(s) +usin Y (s)).
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Now, let us turn our attention to the convolutions in Section 6. Result (11), expressed in
terms of real and imaginary components, becomes

n+k-1 n+k-1
x’(1k) =( k )xn+kr y’(’k) =( k )yn+k,

n+k-1 n+k-1
u'(’k) = ( k )un+k’ vr(lk) = ( k )vn+k'

We have seen here some of the properties of the matrix B with complex entries; we are sure
there are many more of them.
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