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1. INTRODUCTION 

Some of the properties of the Brahmagupta matrix [see (1) below], and polynomials xn and 
yn in two real variables (x, y) (see § 3) have been studied in [6]; we know that the Brahmagupta 
polynomials contain the Fibonacci polynomials, the Pell and Pell-Lucas polynomials [2], [5], and 
the Morgan-Voyce polynomials [4], [7]. The convolution properties that hold for the Fibonacci 
polynomials and for the Pell and Pell-Lucas polynomials also hold for Brahmagupta polynomials. 

In this paper we extend analytically the properties of the Brahmagupta matrix and polyno-
mials derived in [6] from two real variables to two complex variables z and w, which belong to 
two distinct complex planes. We denote this space by C2. A typical member in C2 has the form 
£ = (z,w). Since C is simply R2 with the additional algebraic structure, we realize that C2 is 
(topologically) R4 with some additional algebraic properties. We have a natural way to identify 
points in C2 with points in R4. This is described by the scheme: 

C2 3(z, w) <r+ (x+iy,u + iv) «-> (x, y, u, v) eR 4 

In particular, we measure the distance in C2 in the customary Euclidean fashion: if C,x -(zx, wx) 
and £2 - (z2> wi) a r e poi^s in C2, then \gx - £21 = (\z\ ~ zi \2 +1w\ ~ w2 2\l/2 ! ) 

Another interesting feature of the Brahmagupta polynomials zn and wn in C2 is that, when the 
polynomials are expressed in terms of real and imaginary parts with z - x + iy and w = u + iv, the 
resulting polynomials xmymumvn satisfy recurrence relations (11)-(18). The functions xmyn, 
un, vn are solutions of the second-order partial differential equations (19) and (20). 

Since the calculations go through without change in the complex case, we just list some of 
the properties. 

2. BRAHMAGUPTA MATRIX 

Let B be a matrix (a Brahmagupta matrix) of the form 

B = \ z w 
tw z (1) 

where t is the fixed real number and z and w are complex variables; further, we shall assume that 
deti? = p = z2 - tw2 * 0. Using its eigenrelations, B has the following diagonal form: 

z w 

tw z 
V2 \ 2 

^2" -"V2" 

Z + W«Jt 

0 

0 
z-w4t 

V2 V2f 

V2" ~V2F_ 

* This paper, presented at the Seventh International Research Conference held in Graz, Austria, in July of 1996, 
was scheduled to appear in the Conference Proceedings. However, due to refereeing problems and deadline dates, 
we are publishing it in this issue of The Fibonacci Quarterly to assure its timely publication. 
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Define 

Bn = z 
tw 

w 
z 

Zn 
\tw„ Z„ 

B„ 

Then the above diagonalization enables us to compute 

\z+wjt 0 
Bn = V2 V2 V2 vit 

0 z-w4t\ 
Since Bn+l - BnB, we have the following recurrence relations: 

z„+l = zzn + twwn9 wn+l = zwn + wzn, 

with zn - z and wn=w. From (2) we derive the following Binet forms for zn and wn\ 

Ww = 2 ^ [ ( Z + w V 7 r " ( Z " w V 7 r L 

and zn ± 4twn = (z ± 4tw)n. Note that if we set z = 1 / 2 = w and t = 5 then /? = - 1 ; then 2wn = Fn 

is the Fibonacci sequence, while 2zn = Ln is the Lucas sequence, where w > 0. 
Let % = z + w4i,rt = z-w4t,%n=zn+wn4i, rtn = zn-wn4i and fin= z2

n-tw2
n, with ?„ = 7, 

t;n - £, and /?„ = /?. Then we have %n = gn, r\n = rf, and fin = /?". To prove the last equality, 
consider/?» = (z2-fti/2)» = ^ V = ^ I I = ( ^ - ^ 2 ) = A-

We also have the following property: 

(2) 

(3) 

(4) 

(5) 

oB - . et + ei -jr(e4-e'}) 
•Jtf^-e") 

V?' 
e* + e* 

deteB=e2z. 

To prove these results, set lzk = %k + if, 2*Jtwk = %k-rjk. Since 

Bk 
and Bk 1 

i=0 ' k\ k\ 
wt 

tWu 

we express zk and wt in terms of £ and 77 to obtain the desired results. 
Recurrence relations (3) also imply that z„ and w„ satisfy the difference equations: 

*„+i = 2*z„ - Pz„_x, wn+1 = 2zwn - pwn_v (6) 
Conversely, if z0 = 1, zx = z, and w0 = 0, and wx=w, then the solutions of the difference equa-
tions (6) are given by the Binet forms (4) and (5). 

The expressions zn and wn can be extended to negative integers by defining z_n = zn/3~n and 
w_n = ~wnp~n. Then we have 

B~n = 

where we have used the property 

z w 
tw z 

Z-r, 
tw 

w = B_ 
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z w 
tw z 

~HY 1 z -w 
-tw z 

-M> 

-tw„ 

All of the recurrence relations extend to the negative integers also. Notice that B° = / , where / is 
the identity matrix. For negative integers, zn and wn are rational functions of z and w. 

3. THE BRAHMAGUPTA POLYNOMIALS 

Using the Binet forms (4) and (5), we deduce some results: Write zn and wn as polynomials in 
z and w using the binomial expansion: 

+ • 

The first few polynomials are z0 = 1, ^ = z, z2 = z2 + Tw2, z3 = z3 + 3fzw2, z4 = z4 + 6rz2w2 + t2w4, 
..., w0 = 0, w ^ w , w2 = 2zw, w3 = 3z2w + fw3, w4 =4z3w + 4tzw3,.... Notice that zn and w„ are 
homogeneous in z and w; therefore, they are analytic (in the classical one-variable sense) in each 
variable separately. Also, zn and wn satisfy the Cauchy-Riemann equations in each variable separ-
ately: If zn = xn + iyn, then 

dx dy" dy dx 
and 

^ L = ^ L fan = fyn 
du dv ' #V ^ ' 

Similar relations are satisfied by the polynomials wn = un +ivn. 
If t > 0, then zn and w„ satisfy: 

lim 
w-»oo | V 

+VF if 

-V? if 

Z-yftW 
Z+yjtW < i 

lim lim w„ 
n-±co Zn-\ «-»co ^n-\ 

z + >Jtw if 

z - V7w if 

>l; 

-VFw 
Z+y[tW 

z+V^w 

<1, 

6?Z £?W nz, n-l> 

a w ~ t
 dz~ntWn-y 

From the above relations, we infer that z„ and wn are the polynomial solutions of the "wave equa 
tion": 

d1 I a1 \ 
dz1 t dw2) u = o. (7) 
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Since the partial differential equation (7) is linear, by the principle of superposition its general 
solution is 

00 

U(z,w) = ^(Arlz„+B„wn), 
0 

where 4 , and Bn are constants. 

4. RECURRENCE RELATIONS 

From the Binet forms (4) and (5), we record the following obvious recurrence relations: 

( 0 Zm+n=Z
m

Zn+tWmWn, 0 " ) ™m+„ + P "w m_n = 2z„Wm, 

09 Wm+n=zmW
n

+w
m

z^ (VU) Zm+n + BnZm_„ = 2tWmWn, 
(iii) finzm.n = z^n-twmvHt- (viii) wm+„ + Bnwm_„ = 2zmw„, (8) 
(iv) P"wm_„ = znwm-zmwn, (ix) 2(z2

m-zm+nzm_„) = p^^(P"-z2n), 

(V) Z^+Z'V^V. 00 Z2m~^m^m-n= P^^ln-

Putting m = n in (i) and (ii) above, we see that z2„ = z% + tw% and w2„ = 2znw„; these relations 
imply that: (a) z2n is divisible by zn±ijiwn if 7>0; (b) z2„ is divisible by zn±Jiwn if *<0; 
(c) w2„ is divisible by z„ and w„ and, if r divides s, then zm and wrn are divisors of wsn. 

Let Ei=i = 2 . Then, using the Binet forms, it is not difficult to see the following facts: 

(i\ y . -Pzn-Z
n+1+Z-P 

(m) 2 ^ - 2 ( ^ _ 2 Z 2 + 1) + 2 0 5 - 1 ) ' 

(iv) Zwjt= ^ / < ? 2 2f(/?2-2z2 + l) 2*09-1)' 

(v) 2Z1zkz„+l_k=nz„+l+i 
w 
Bw 

(vi) 27 Z WfcW^i-it = "2n+i - z - * 
W 

(vii) 2 2 ^ww_^+1 = 2 Z iv* v*+i = rm] n+V 

Mow we generalize a result satisfied by the generating functions of Fibonacci (Fn) and Lucas 
(Ln) sequences; namely, 

i n i 

Then L(f) = e2F^ [3]. A similar result holds between zn and wn. Let Z and JF be generating 
functions of zn and wn, respectively; that is, 

1998] 37 



THE BRAHMAGUPTA POLYNOMIALS IN TWO COMPLEX VARIABLES 

Z=STS" ' ^=2>x- (9) 

Then W(s) = swe2Z^. Since the proof is similar to the real case (see [6])? we omit it here. 

5. SERIES SUMMATION INVOLVING RECIPROCALS OF zn AND wn 

All the properties of infinite series summation involving xn and yn can be extended to the 
complex variables case also. Since the arithmetic goes through without any changes, we shall just 
list them here. For details, see [6]. 

1. 
k=l 

1 ( 2z jg + l | = 1 
zk J z' 

k=r+l 

2z I±L\ -_L 
Zv,Zi \^k-l^k+l ^k+l^k Zh±\Zh zrz> r^r+1 

2z P±L\- l 

ktr+\\Wk-lWk+\ Wk+lWkJ WrWr+l 

1 ^ 7 = 1 k=r+l Zk-lZk+l k=r+l \zk-l Zk+l) 
±+J- f 2zwk = j J_+^+l 

CO -j 

°° ri. 

2zr 

k = 2
 Z ( t + l ) r ^Z(fc- l ) r Z ' 

o2*- ' -2 

£±I V_i_ 
Jfcr J ZrZ2r 

oo 1 

i - l W,. kll W(k+\)r 

2zr 

yW(k-l)r 

J3r + l \ 

w, kr 

1 
WrW. rnlr 

1 
fc=2 J2* (x+yjt)2' 

6. 
™i ZnZn+k I 

«=1 

= 7r-fi5l:=L-*(^±^)\ 
where the plus sign should be taken if \%lrj\< 1 and the minus sign should be taken if \%lrj\> 1. 
To show item 6, w e consider 

Zn-lZn+k ~~ Zn+k-lZn ~ Zn-\ 
{zz„+k_x + twwn+k_x) - ^ . , ( : v i + h w j 

Thus, 
y l" _ 1 z„_,z, •n-rn+k ^n+k-Fn 

—[ znzn+k twWk ZnZn+k 

/WW. " r fWW. *-* \ Z 

( k 

twwh 

N+k 

ILT-l^z 
N o w fixi>l and let Ntend to infinity. Using the property w e derived in Section 3, w e obtain 
the required result. Similarly, w e show that 

where the plus sign should be taken if | £ / rj \ < 1 and the minus sign should be taken if | £ / 771 > 1. 
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6* CONVOLUTIONS FOR zn AND wn 

Suppose that an(z, w) and bn(z, w) are two homogeneous polynomial sequences In two vari-
ables z and w, where n is an integer > 1. Their first convolution sequence is defined by 

n n 

(fln * bJl) = S ajbn+l-j = S han+l-j ' 

In the above definition, we have written an = an(z, w) and bn = b„(z, w). To determine the convo-
lutions zn *zn, zn * wn, and wn*wn, we use the matrix properties ofB, namely, 

z w 
tw z 

-1/f+l 
zn+l Wn+i :Bn+l=BJBn+l-J' = Zj Wj 

tWj Zj 

zn+l-j Wn+l-j 

tWn+l-j Zn+\-j 

Let 

1=1 J=l 

n+l zd) wa) 

tw® 2(1) 

. « n 
Note that B" - Bn. We prefer using the subscript notation. Since H"J=1Bn+1 =nBn+l, the above 
result can be written as 

nB„+i = 
zn*zr,+iWn*Wn 

2tz„*wn 
B?\ 

where we have written Z"=i = 2 . Therefore, we have zjp = nzn+l and wjp = nwn+h or 

2z„*z„=m„+l+^ and 2twn*wn=mn+l-*~^, 

from (8) parts (v) and (vi). The above result can be extended to the k^ convolution by defining 

We can show that 
7=1 

tf^f'tV 
We shall prove the result by induction on fc. Since Z?(1) = nBn+l, the result is true for k = 1. 

Now consider 

^ + , ) = Z 5 y ^ w = Z ^ w ( ^ ) ) 

= 2 $ '«+i- ^y'+fc ~ ^i+Jfc+1 Z 
y + Ar-lV f« + * i t k+irn+k+l 

which completes the induction. We have used the property Zf7"^-1) = (£+*), to derive the above 
result. 

From the above results, we can write the following k^ convolutions, namely, 

(k) (n + k-l) i a) (n + k-l) 
z« I k p+* and w» { k Jw»+k- (10) 
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Result (10) enables us to write the convolutions zn*z^k\ wn^w^\ zn^w^h\ and wn* z^k\ First, 
we shall show that 

We consider 

2z„*z«=2Zz*z„_,+1 

\Zj+kZn-j+l 

-2z f c S 

7+1 

0 + * - ^ «(j + k-l 
zyz„_J+1 + 2 ^ X , 

y=i V * 
w A- /+ i 

-2j+l + ^ 2 ^ + £ 1 l(H'B r t-^f_2 J + 1) 

= ?,[j + k
k~ ^ ( V ^ i + tw^Xfi* {j+l~ iyzkz„_2j+l -twkw„_2j+l) 

= \jfc + l J Z "+*+l + ^ k )PJ+ Zn+l-2j-k-

We have used (10) and (8) part (i) to derive the above result. Similarly, we can show that 

n+l-2j-k> 

n+\-2j-k' 

7. THE IMPLICATIONS OF zn AND wn IN R4 

Let z = x+iy and w = u + iv. Then z„ = x„+i>„, w„ = W„+JVW, and J3 = z2 -tw2 = a + iy, 
where a = x2 - y2 - t(u2 - v2) and y = 2(xy - tav). Note that det B * 0 implies that either a * 0 
or y * 0 • Recurrence relations (3) now become: 

**+l = 2**„ " 2m - « V l + ?%-!, 0 1) 
^+1 = 2 ^ + 2 3 % - ^ . ! - ^ . ! , (12) 

ww+i = 2xun - 2yvn - aun_x + yvn_h (13) 

V i = 2*vw + 2j/w„ - yun_x ~ a Vi> (14) 
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with x0 = 1, yQ = 0, u0 = 0, v0 = 0 and xx = x, yx=y, ux=u, vx = v. By (11)-(14), the first few 
polynomials are given by 

x2 = x2 - y2 + t(u2 - v2), 
y2 = 2(xy + tuv\ 
u2=2(xu-yv\ 
v2 = 2{xv+yu). 

x3 = x3 - 3xy2 + 3txu2 - 3txv2 - 6tyuv, 
y3 = 3x2y-y3+ 6txuv+3tyu2-3tyv2, 
1% = 3x2u - 3y2u - 6xyv - 3tuv2 + tu3, 
v3 = 6xyu + 3x2v- 3y2v + 3tu2v-tv3,.... 

By expressing equations (8) parts (i) and (ii) in terms of the real and imaginary components, we 
find that the recurrence relations transform to 

X«Hrn = XnXn ~ yJn +<*m V » " UnVm\ (15) 

(16) 

(17) 

(18) 

ym+n = XrJn + ^ m + KWn "Wml 

Um+n = XmUn + XnUm ~ J V * " 3W»> 

To transform the partial differential equation (7) in z and w to the one in variables x, y, u, and 
v, we use the partial differential operators: 

d d_ 
dz 

Then equation (7) becomes 

2{dx ldy) 
and ' jL = l(A+j 

dz 2\dx dy 

d2 d2 \(d2 d2 

dx2 dy2 t\du2 du2 

r a2 id2 

fn=<>, 

dxdy t duch gn = o. 

(19) 

(20) 

where fn = xn or un and gn - yn or vn. By the principle of superposition, the solution of differen-
tial equations (19) and (20) are, respectively, 

OO OO 

f(x,y,u,v) = ]T(anxn+hnun) and g(x,y,u,v)=Y*(cnyn+d„vn), 
0 0 

where an9 bn, cn9 and dn are constants. 
Now we express relation (9) in Section 4, i.e., W(s) = swe2Z^s\ in terms of real and imaginary 

parts. Let Z(s) = X(s) + iY(s) and W(s) = U(s)+iV(s). Then (9) transforms to 

U(s) = useX{s\u cosY(s) - v sin Y(s)) 
and 

V(s) = vseX(s)(v cosY(s) + u sin Y(s)). 
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Now, let us turn our attention to the convolutions in Section 6. Result (11), expressed in 
terms of real and imaginary components, becomes 

x(k)_(n + k-l] ik)_(n + k--l\ 

u(k)-(n + k-l) (k)_(n + k-i) 

We have seen here some of the properties of the matrix B with complex entries; we are sure 
there are many more of them. 

REFERENCES 

1. R. C. Entringer & P. J. Slater. "Gossips and Telegraphs." J. Franklin Institute 307.6 (1979): 
353. 

2. A. F. Horadam & J. M. Mahon. "Convolutions for Pell Polynomials." In Fibonacci Numbers 
and Their Applications 1:55-80. Dordrecht: D. Reidel, 1986. 

3. R. Honsberger. Mathematical Gems, pp. 102-38. New York: The Mathematical Association 
of America, 1985. 

4. J. Lahr. "Fibonacci and Lucas Numbers and the Morgan-Voyce Polynomials in Ladder Net-
works and in Electric Line Theory." In Fibonacci Numbers and Their Applications 1. Dor-
drecht: D. Reidel, 1986. 

5. J. M. Mahon & A. F. Horadam. "Infinite Series Summation Involving Reciprocals of Pell 
Polynomials." In Fibonacci Numbers and Their Applications 1. Dordrecht: D. Reidel, 1986. 

6. E. R. Suryanarayan. "The Brahmagupta Polynomials." The Fibonacci Quarterly 34.1 (1996): 
30-39. 

7. M. N. S. Swamy. "Further Properties of the Morgan-Voyce Polynomials." The Fibonacci 
Quarterly 6.2 (1968): 167-75. 

AMS Classification Numbers: 01A32, 11B37, 11B39 

42 [FEB. 


