PALINDROMIC SEQUENCES FROM IRRATIONAL NUMBERS

Clark Kimberling

University of Evansville, 1800 Lincoln Ave., Evansville, IN 47722 (Submitted July 1996)

In this paper, a *palindrome* is a finite sequence (x(1), x(2), ..., x(n)) of numbers satisfying (x(1), x(2), ..., x(n)) = (x(n), x(n-1), ..., x(1)). Of course, an infinite sequence cannot be a palindrome—however, we shall call an infinite sequence x = (x(1), x(2), ...) a *palindromic sequence* if for every N there exists n > N such that the finite sequence (x(1), x(2), ..., x(n)) is a palindrome. If α is an irrational number, then the sequence Δ defined by $\Delta(n) = \lfloor n\alpha \rfloor - \lfloor n\alpha - \alpha \rfloor$ is, we shall show, palindromic.

Lemma: Suppose $\sigma = (\sigma(0), \sigma(1), \sigma(2), ...)$ is a sequence of numbers, and $\sigma(0) = 0$. Let Δ be the sequence defined by $\Delta(n) = \sigma(n) - \sigma(n-1)$ for n = 1, 2, 3, ... Then Δ is a palindromic sequence if and only if there are infinitely many *n* for which the equations

$$F_{n,k}: \sigma(k) + \sigma(n-k) = \sigma(n) \tag{1}$$

hold for k = 1, 2, ..., n.

Proof: Equations $F_{n,k}$ and $F_{n,k-1}$ yield $\sigma(k) + \sigma(n-k) = \sigma(n) = \sigma(k-1) + \sigma(n-k+1)$, so that the equations

$$E_{n,k}: \sigma(k) - \sigma(k-1) = \sigma(n-k+1) - \sigma(n-k)$$
(2)

or

$$\Delta(k) = \Delta(n-k+1)$$

follow, for k = 1, 2, ..., n. Thus, if the *n* equations (1) hold for infinitely many *n*, then Δ is a palindromic sequence.

For the converse, suppose *n* is a positive integer for which the equations $E_{n,k}$ in (2) hold. The equations $E_{n,1}$, $E_{n,1} + E_{n,2}$, $E_{n,1} + E_{n,2} + E_{n,2}$, ..., $E_{n,1} + E_{n,2} + \cdots + E_{n,n}$ readily reduce to the equations $F_{n,k}$. Thus, if Δ is palindromic, then the equations $F_{n,k}$, for k = 1, 2, ..., n, hold for infinitely many n. \Box

To see how a positive irrational number α can be used to generate palindromic sequences, we recall certain customary notations from the theory of continued fractions. Suppose α has continued fraction $[[a_0, a_1, a_2, ...]]$, and let $p_{-2} = 0$, $p_{-1} = 1$, $p_i = a_i p_{i-1} + p_{i-2}$ and $q_{-2} = 1$, $q_{-1} = 0$, $q_i = a_i q_{i-1} + q_{i-2}$ for $i \ge 0$. The principal convergents of α are the rational numbers p_i / q_i for $i \ge 0$. Now, for all nonnegative integers *i* and *j*, define $p_{i,j} = jp_{i+1} + p_i$ and $q_{i,j} = jq_{i+1} + q_i$. The fractions

$$\frac{p_{i,j}}{q_{i,i}} = \frac{jp_{i+1} + p_i}{jq_{i+1} + q_i}, \qquad 1 \le j \le a_{i+2} - 1, \tag{3}$$

are the *i*th intermediate convergents of α . As proved in [2, p. 16],

$$\cdots < \frac{p_i}{q_i} < \cdots < \frac{p_{i,j}}{q_{i,j}} < \frac{p_{i,j+1}}{q_{i,j+1}} < \cdots < \frac{p_{i+2}}{q_{i+2}} < \cdots \text{ if } i \text{ is even,}$$
(4)

1998]

171

$$\cdots > \frac{p_i}{q_i} > \cdots > \frac{p_{i,j}}{q_{i,j}} > \frac{p_{i,j+1}}{q_{i,j+1}} > \cdots > \frac{p_{i+2}}{q_{i+2}} > \cdots \text{ if } i \text{ is odd,}$$
(5)

and $p_{i,j-1}q_{ij} - p_{ij}q_{i,j-1} = (-1)^j$ for i = 0, 1, 2, ... and $j = 1, 2, ..., a_{i+2} - 1$. If the range of j in (3) is extended to $0 \le j \le a_{i+2} - 1$, then the principal convergents are included among the intermediate convergents. We shall refer to both kinds simply as *convergents*—those in (4) as *even-indexed convergents* and those in (5) as *odd-indexed convergents*.

We shall use the notation (()) for the fractional-part function, defined by $((x)) = x - \lfloor x \rfloor$.

Theorem 1: Suppose p/q is a convergent to a positive irrational number α . Then for k = 1, 2, ..., q-1, the sum $((k\alpha)) + (((q-k)\alpha))$ is invariant of k, in fact,

$$((k\alpha)) + (((q-k)\alpha)) = \begin{cases} ((q\alpha)) + 1 & \text{if } p/q \text{ is an even-indexed convergent,} \\ ((qa)) & \text{if } p/q \text{ is an odd-indexed convergent.} \end{cases}$$

Proof: Suppose p/q is an even-indexed convergent and $1 \le k \le q-1$. Then $p/q < \alpha$, so that

$$kp/q < k\alpha. \tag{6}$$

Suppose there is an integer h such that $kp/q \le h < k\alpha$. Then

$$p/q < h/k < \alpha. \tag{7}$$

However, as an even-indexed convergent to α , the rational number p/q is the best lower approximate (as defined in [1]), which means that $k \ge q$ in (7). This contradiction to the hypothesis, together with (6), shows that

$$((kp/q)) < ((k\alpha)). \tag{8}$$

Since $1 \le q - k \le q - 1$, we also have $1 = ((kp/q)) + (((q-k)p/q)) < ((k\alpha)) + (((q-k)\alpha))$. Since $((k\alpha)) + (((q-k)\alpha))$ has the same fractional part as $q\alpha$, we conclude that

$$((k\alpha)) + (((q-k)\alpha)) = ((q\alpha)) + 1.$$

The proof for odd-indexed convergents p/q is similar and omitted. \Box

Theorem 2: Suppose $\Delta(n) = \lfloor n\alpha \rfloor - \lfloor (n-1)\alpha \rfloor$ for some positive irrational number, for n = 1, 2, 3, ... Then Δ is a palindromic sequence.

Proof: By Theorem 1, if p/q is an odd-indexed convergent to α , then

$$((k\alpha)) + (((q-k)\alpha)) = ((q\alpha))$$
 for $k = 1, 2, ..., q-1$,

and clearly this holds for k = q, also. Consequently,

$$\lfloor k\alpha \rfloor + \lfloor (q-k)\alpha \rfloor = \lfloor q\alpha \rfloor,$$

$$\sigma(k) + \sigma(q-k) = \sigma(q).$$

for k = 1, 2, ..., q. By the lemma, Δ is a palindromic sequence. \Box

Example 1: There is only one positive irrational number for which all the convergents are principal convergents, shown here along with its continued fraction:

172

[MAY

$$\alpha = (1 + \sqrt{5}) / 2 = [[1, 1, 1, \dots]].$$

$$q \in \{1, 3, 8, 21, 55, 144, 377, 987, \ldots\}$$

Moreover, $(\Delta(2), ..., \Delta(q-1))$ is a palindrome for

 $q \in \{2, 5, 13, 34, 89, 233, 610, \ldots\}$.

In both cases, Fibonacci numbers abound.

Example 2: For $\alpha = e$, approximately 2.718281746, the continued fraction is

$$[\![2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1, ...]\!]$$

and the first twenty convergents (both principal and intermediate) are:

$2/1 = p_{00}/q_{00}$	$106/39 = p_{60}/q_{60}$
$3/1 = p_{10}/q_{10}$	$193/71 = p_{70}/q_{70}$
$5/2 = p_{01}/q_{01}$	$299 / 110 = p_{61} / q_{61}$
$8/3 = p_{20}/q_{20}$	$492/181 = p_{62}/q_{62}$
$11/4 = p_{30}/q_{30}$	$685/252 = p_{63}/q_{63}$
$19/7 = p_{40}/q_{40}$	$878/323 = p_{64}/q_{64}$
$30/11 = p_{31}/q_{31}$	$1071/394 = p_{65}/q_{65}$
$49/18 = p_{32}/q_{32}$	$1264 / 465 = p_{80} / q_{80}$
$68/25 = p_{33}/q_{33}$	$1457/536 = p_{90}/q_{90}$
$87/32 = p_{50}/q_{50}$	$2721/1001 = p_{81}/q_{81}$

 $q \in \{1, 4, 11, 18, 25, 32, 71, 536, \ldots\},\$

and $(\Delta(2), \dots, \Delta(q-1))$ is a palindrome for

 $q \in \{2, 3, 7, 39, 110, 181, 252, 323, 394, 465, 1001, \dots\}$

Opportunities: The foregoing theorems and examples suggest the problem of describing *all* the palindromes within the difference sequence Δ given by $\Delta(n) = \lfloor n\alpha \rfloor - \lfloor n\alpha - \alpha \rfloor$ for irrational α . One might then investigate what happens when $n\alpha$ is replaced by $n\alpha + \beta$, where β is a real number.

REFERENCES

- 1. Clark Kimberling. "Best Lower and Upper Approximates to Irrational Numbers." *Elemente der Mathematik* 52 (1997):122-26.
- 2. Serge Lang. Introduction to Diophantine Approximations. Reading, Mass.: Addison-Wesley, 1966.

AMS Classification Numbers: 11J70, 11B39

** ** **

1998]