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1. INTRODUCTION
Let F,!=F,F,_,..EF,
Definition: The Fibonacci coefficient [; ], is defined to be

(7] - EFy ..,
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An important property of the Fibonacci coefficients from [4] is
k]l _ k-1 k-1
[g]g—ﬂu[ . L‘*‘Ez-z—l Z—IL' 0]

From the Fibonacci coefficients we form the Fibonacci triangle in much the same way as
Pascal's triangle is formed from the binomial coefficients; namely, the Fibonacci triangle is formed
by letting the k™ element of the n row be [} ;.
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FIGURE 1. Rows 0 to S of the Fibonacci Triangle

The parity of the binomial coefficients and the iterative structure of Pascal's triangle have
been the subject of many papers (see, e.g., [2], [3], [13]). More recently, the Fibonacci coeffi-
cients and the iterative structure of the Fibonacci triangle modulo 2 and 3 has been examined in
[5], [11], and [12]. In this paper we extend the results of [11] and [12] from the Fibonacci coef-
ficients and triangle modulo 2 and 3 to modulus p for p an odd prime.

For an odd prime p other than 5 and 7 >0, define 7, N as the smallest number such that
P'|F;,. In particular, 7, =1 and 7, is what is commonly called the rank of apparition of p. We will
denote @ ={ry,n,...}. It is well known that r|r,, for all i €N, so any n €N can be written
uniquely as n=mr, +n,_p,_ +--+nn+n, for 0<n <',%‘ We call this the base g repre-
sentation of n e N.

Our main results are

Theorem 1: Let r = max;,,-2-. The number of entries in the 7" row of the Fibonacci triangle

T

not divisible by p is 21324%._r*-1 where s, is the number of i's in the base g expansion of ».

Theorem 2: Let p+#2,5 be a prime. There is the following connection between the Fibonacci
and binomial coefficients modulo p:
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THE FIBONACCI TRIANGLE MODULO p

nn n k(n—k)r
-G
In particular, the triangle Ar, formed by having [], (mod p) as the k™ entry of the n™ row is

Pascal's triangle modulo p if and only if 7, is even.

Theorem 3: For p#2,5 aprime, we have
ny + _] _[n _] nm(n—m)+i(n—m)+m(j—i)
[ 5 '”L _( )[iLFﬁl“ (mod p).

2. PRELIMINARY FACTS

Of fundamental importance in our investigation are the following two well-known facts (see
[9D): First, if (a, b) denotes the greatest common divisor of two natural numbers, then

(Ez) Fm) = F&m, n): (2)
Second,
‘F;t+m = Esz—l + F;t+1Fm‘ (3)

A sequence {4} is said to be regularly divisible by d e N if there exists 7(d) €N such that
d|4; if and only if (d)|j. A sequence is regularly divisible if it is regularly divisible for all 4 €N
(see [5]). From (2), we see that the sequence {F,}, is regularly divisible. To simplify notation,
for p our fixed prime and for i > 0, we let 7. €N be the smallest number such that p’|F;. Notice
that 7, =1 and r, is what is generally called the rank of apparition of p. Let ¢ = {ry,7...}. Since
the Fibonacci sequence is regularly divisible 7|7,;, so each n €N can be written uniquely as
n=nr+n_p_;+-+mn+n, with 0<n < r,;‘ We call this the base g representation of » and
denote it by n = (nn,_;...mn),, (see [6]).

It is well known from [7] that for i > 1 we have

1
e {or )
T p

The following theorem was first shown in [5] in a different form. The introduction of the

base g allows us to state the theorem more succinctly. The theorem was given in this form in
[10]. The proofis reproduced here with the permission of the first author of [10].

Kummer's Theorem for Generalized Binomial Coefficients: Let s ={4,}7.; be a sequence of
positive integers. If o is regularly divisible by the powers of p, then the highest power of p that
divides
[m+n] — Am+nAm+n—1 "'A'n+1
Ml 4,4, . A4

is the number of carries that occur when the integers » and m are added in base g, where @ =
{r;} 7 for r; defined by p/| 4,,, p’| 4, for 0<r<r;.

Proof: By definition of 7;, 4, is the first element in & divisible by p’. By regular divisibility
of the sequence {4,}7.;, we see that p'| 4, if and only if ;| k. This means the number of 4,
k <n that are multiples of p' is
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r; r Y

n nr, +---+nr +n, ¢ 14
o] |,
4

i
Now suppose, in base o, we have m=myr, +m,_r,_, +---+mp+my and n=nr, +n_jp,_ +-+
ny, +n,, where we allow some of the initial digits to be 0 so we may assume m and » are written

with the same number of digits in base ¢. Counting the multiples of p' in {4, 4,,..., 4,.,,},
{4, 4,..., A}, and {4, 4,, ..., 4.}, we see a carry at the i" place,

(m_ypi_y+- +mp+mg) + (i + o+ +mg) 27,

occurs if and only if the number of multiples of p’ in {4, 4,,..., 4,,,,} is one greater than the
number of multiples of p’ in {4,, 4,,..., 4,} plus the number of multiples of p’ in {4,, 4,,..., 4,}.
Therefore, the number of carries is the highest power of p that divides [","],. O

In particular, the theorem applies to the Fibonacci sequence: {,}7., = {F;}7.;.
Corollary (Knuth and Wilf) [5]: The highest power of p that divides [";"], is the number of car-

ries that occur when the integers 7 and m are added in base g, where g = {r;}7, for r; defined
by p/|F,, p/|F, for O<r <.

3. CONGRUENCES FOR FIBONACCI NUMBERS AND COEFFICIENTS

In this section we give a series of lemmas about congruences of Fibonacci numbers and
coefficients.

Lemma 1: Forizl, F, ,,=F, = F, (mod p’).
Proof: Since p'|F,,, wehave F, ., =F, +F, _;=F,_ (mod p'), so we will switch freely
between F, ., and F,,_; modulo p’ throughout the rest of the article. Since p'|F;, F,il,r1 =F +

F_ = Fl,i_’;r?mod P'), so the lemma is true for n=1. Assume F,_, = 1’7,‘_"+1 (mod p*). Using (3)
with n=Fkr,, m=r,+1 gives
Fik+l.)r,—l = Foyn =Fo B, + FpnFr = By g = Ekﬁl (mod p). O

Lemma 2: Fori>1, F, =F, (nF}) (mod p¥). ‘

Proof: This is clearly true for n=1. Now assume F,, = F, (KFES) (mod p*). Then, using
@B)withn=kr,—1, m=r, +1 gives

Fary, = FigerB5, + B By = (B, +’kFr,k+_11E,+1) (mod p*). (5)
Since Lemma 1 says Fj,_, = 1’7,,,"+l (mod p'), we get
Fypoy + KBRS, o = Y + K, = (k+ DEY, (mod p).

Since p/| F, , this congruence gives
F (Fa+ kFr:Car_llFr,ﬂ) =F (k+ I)Eﬁrl (mod p*).

This congruence together with (5) gives F,,y, = F, (k+ 1)1‘7,1"+l (mod p%). O

196 [JUNE-JULY



THE FIBONACCI TRIANGLE MODULO p

Lemma 3: For 0<j, £ and 0sm<rn -1, we have F, ,,.F; ., = Fj 4F, ,,, (mod p).

Proof: For m=0, both sides are congruent to 0 modulo p since p|F, and p|F, . For

m =1, both sidgs are ide'ntical.. Assume tha't Foy sl i1 = FpprFjy e (m0d p) for all m< k <r-1

for some k. Using our induction hypothesis, F}, ., = F; -1y + Finr-2y> and Fyp o = Fyp ey +
Erl +(k-2)> we get

FoiiFinsr = Fopae-yF i + Fopae-2yFin a1

= Fyp aiF -ty + FonrF s e—2) = Fop i Fj i (mod p). O

Note that alternate forms of Lemma 3 are

Erl +m F;rl +m
ot = I (mod p),
Erl +1 F}rl +1

which will be used below in Lemma 6 and, for m =0,

F, F,
n+m = £r+1 (mod p)

Ffrl +m Fm +l
which we will use in Theorem 2 below.
Lemma 4: For 0< j, £ we have

Eq+l PE£+ Jn+l
= (mod p).
K Fy

Proof: By (3) with n={r,, m= jr,+1, we have
F('£+j)r1+1 = Er,E]rl +F‘Zrl+l jn+l = Erl+l Jjn+l (mOd p)
Since F,, ., is invertible modulo p, we may divide to put this in the form of the statement of the
lemma. O

Lemma 5: For p#2,5,

1 (mod p) if =2 (mod 4),
=:-1 (mod p) if, =0 (mod 4),
an element of order 4 (mod p) if 7 is odd.

E

n-1

Proof: From (3) with n=a-1, m=a, we get F>+F2,=F,,_,. From (3) with n=a,
m= a+1, we get F;zz +‘F;12+1 = F‘2a+l' Ifrl = 261, then F‘2a+l = }7241 +f72a—1 = F‘2a—1 (mOdp)a S0

F2+F2y = Fyyy = Fppy = F2+ F3y = 2F2 + F2 4 2EF, ; (mod p),

where the last equality is found by expanding F; = (F, +F,_,)*. This means 0= F?+2FF, ,
(mod p). Since F, #0 (mod p), we can factor it out to get 0=F, +2F,_, (mod p) or, stated
differently, F, =-2F,_, (mod p). Then F,,,=F,+F, ,=-F,, (mod p). If F,,, =(-1)*F,_,

(mod p) forall 0<k </ <a-1, then
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Fo=F o +F, ,=(D"F_, +(-D)F,_,,

= (D (Fo_e-2) ~ Fagemry) = CDF,_, (mod p),
SO

F 1= Fpuqy= (D" Fo gy = (=D (mod p).

This means that if 7; =2 (mod 4), we have a odd, so F;_; =1 (mod p). If 7, = 0 (mod 4), we have
a even, so F,_; = -1 (mod p).

Now assume that r is odd. Since F, =0 (mod p), we get F._=F (mod p). Assume
F o =(D*"F _, (modp)forall 0<k </<r—1. Then

Elu = Fr,+(z-1) +F;'1+(£—2) =(- 1)Z_I(Frl—u—z) - Fr,-(e-l))
=(-)*"'F,_, (mod p).
Therefore, F5, _, = F; ,(, 1y = (-1)1 ‘21*';1 —¢;-n =—1 (mod p). By (3) with n=r, -1, m=r, we get
By =F+F = F2, (mod p),

n-17=

SO F2 . =—1 (mod p), i.e., has order 4 modulo p. O
Lemma 6: For 0<i< j<n,
nn+j| _|nq||J j-i
[mrl +i]g B l:m’i:lg[’] F(n—m)r' Fmr'_l (mod p).

Proof: This is clear for i=0= j. Assume true for all 0<i< j <k <r, for some k. Take
1<£<k-1. Then, by (1),

nr+k -F nn+k—1 +F nn+k—1
mr1+£%_ mn+E+1 mrl_{,z . (n—m)r +k—£-1 mr1+£—1%'

The induction hypothesis gives

nn+k nn | [k-1 k—t-1 k=11 1eq k-t
[m;i"'f] mrl+£+l|:m’1i} [ ] (n-m)n—-1 Fmrl +F2n—m)rl+k - l[m’l«:l /- l] En—m)rl—lFmr,

nr, Y] k-2 mr+e+1 [k —1 (n—m)r+k —e-1[k—1
[ it e 1) o Hemetafi ] ) o

mr -1 (n—m)r -1

Using Lemma 3, we find this is equivalent to

n+k| _[nn] e k-t | Fona [k —1] | Feopy [k 1]
[mr1 +£L—[mrl]%F(n—mm Fmrn-l( K [ l %+ K £-1 (mod p).

By (1), we conclude that

ni+k| _[nmn [k] ¢
[mrl +f]g"[mrl]g )y - i1 (mod p).

The cases £ =0 and £ = k are dealt with similarly. O
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4. MAIN RESULTS

r

Theorem 1: Let r = max,;,,~:-. The number of entries in the n" row of the Fibonacci triangle
not divisible by p is 2%13%24% .. r*-1 where s, is the number of #'s in the base g expansion of n.

Proof: First, we note that the maximum exists. It is well known that , < p+1. By (4), we
know that %1 < p fori>1,s0 r < p+1.

By Kummer's Theorem for Generalized Binomial Coefficients, p/[}], if and only if there is
no carry when k£ and n—k are added in base . Let the base g expansions of » and k be n=
(n,...mnny), and k = (k, ...kykky). Then there is no carry when adding k and n—k in base g if
and only if k; <n, for all i. For a fixed n, the number of such & is I1,(n; +1) since there are (r, +1)
possible values of %, less than or equal to . O

The iterative structure of Pascal's triangle modulo 2 has been studied extensively (see [13]).
Recently, the iterative structure of the Fibonacci triangle modulo 2 has also been studied. In par-
ticular, a map between the Fibonacci triangle modulo 2 and Pascal's triangle modulo 2 was found
in [11]. For all primes p #2,5 whose rank of apparition is even, we get an analogous result: a
map between the Fibonacci triangle modulo p and Pascal's triangle modulo p. While the result for
these primes is similar to the case p =2, our method of proof is different and, in fact, breaks
down for p=2.

Theorem 2: Let p+2,5 be a prime. There is the following connection between the Fibonacci
and binomial coefficients modulo p:

nr n—k)n
] -E) ot

In particular, the triangle Ag, formed by having [;i], (mod p) as the k™ entry of the n™ row is
Pascal's triangle modulo p if and only if 7, is even.

Proof: By definition

{nrljl _ FoEo - Fluiynat
krl % Fkrlerl_l...FéFi

Separating the factors divisible by p from those not divisible by p, we get

[nrl] _ nr]Fin—l)r, "‘Fin—k+l)r, . F;1r|—lF;1r|—2 "'En—-k)rﬁl
kr] % FkrlFik—l)rl EI Fkr‘l—leI]—2"'E

Using Lemmas 3 and 4 to simplify, we obtain

[nrl] _ FFovy - Formirys, Fant Lo Fon

ki Jg FoFoyn By B Fign Fpn

— F;lrlFén—l)r, "'En—k+1)r, F;Jr,+1
EmF(k-l)rl 8

h

k(r-1)
] (mod p).

F;crl +1
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Using Lemma 4 to simplify further, we get

F ..F
”rl] _ i (n=Dn T (n—k4Dn (E )Yk (mod

- n—k)n p) (6)
[kr, s FoFuy, - F, on+

Now there are two cases to consider. If the number of factors of p in the numerator of the

fraction

nn -

Fy . F,

F, . 'F&n—k+l)r1

is greater than the number of factors of p in the denominator, then [Z::]gs 0 (mod p). But by
Kummer's theorem applied to & = {F; ;}7.;, p|[;], if and only if there is a carry when adding &
and n—k in base o' ={p,, p;, p, ...}, Where p; is defined by p’|F, ; if and only if p;|j. By (4),
all the p, are powers of p, so there is a carry when adding £ and n—k in base g’ if and only if
there is a carry when adding k£ and n—k in base p (i.e., {1, p, p?,...}). By Kummer's Theorem for
Generalized Binomial Coefficients, there is a carry when adding £ and »— £ in base p if and only if
pl(;). In short, modulo p, the zeros of ], correspond to the zeros of (), since the base g’
for s ={F, }7., is the same, up to repeated terms, as the base corresponding to (;), namely,

{1’ P’ pz’ "'}'
Now consider the case where the number of factors of p in the numerator of the above frac-

n—1

tion is the same as the number of factors of p in the denominator. We know that F,, = F;, (nF"
(mod p?) by Lemma 2, so

Etr, En—l)ﬁ - 'Fin—k+l)r| _ (n) ‘F;ln;ll}';l"‘:lz s F;ln‘:lk (n)
FoFyy, B, \K)EERZ R K

n+l" n+l n+l

It

F*m=0) (mod p).

n+l

This means that (6) can be simplified to

nry ’1 n— n— 7
[kri] = (k)F;'lk'i('l k)Fi(nl—k;)’::l (mOd p) ( )
By Lemma 1, this simpliﬁes to
n’ ’1 n— n— n— Il n—K)n
[kri] = (k)F;lk}-l k)Fr,(HkX Ok = (‘ )F,lk,u(l o (mod P). (8)

This proves the first assertion of the theorem.
Now suppose that 7; is even. By Lemma 5, F, ., = 1 (mod p). Then (8) reduces to

)6 oo

Finally, we need to show that when 7, is odd, A, is not the same as Pascal's triangle modulo
p (p=2 being the lone exception). For this, it is enough to show a single entry that does not

match. By (8),
2 2 -1
] = (e @oan
11y
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By Lemma 5, when 7 is odd, F;,, has order 4 modulo p. In particular, an odd power of Foa
cannot be congruent to 1 modulo p, so

1)) i

In the case p=5, we find Ag, is the same as the Fibonacci triangle modulo 5. The case
p =2 was dealt with previously in [11].

We note that there are infinitely many primes p for which A, is the same as Pascal's triangle
modulo p and there are infinitely many for which Af, is not the same as Pascal's triangle modulo
p. By Theorem 2, this is equivalent to saying there are infinitely many primes p for which # is
even, since there are infinitely many F,, and for i > 2 there is always a prime factor of F,; which is
not a prime factor of F,; for any j <i [this follows from r(2)=3, F, > F,, for i > j and (4)].
Similarly, F};, i >2 may be used to show that infinitely many primes p have odd r,.

As a result of Theorem 2 and Lemma 6, we have the following connection between an arbi-
trary nonzero Fibonacci coefficient modulo p and a well-defined Fibonacci coefficient in the first
r, rows of the Fibonacci triangle.

Theorem 3: For p#2,5 aprime, we have

nn + ] _(n ] rnm(n—m)+i(n—m)+m(j—i)
[mr1 + i]% - (m)[l]%Fr] +1 (mod p). ®)

Proof: By Lemma 6,

ni+jl _(mn | [J] @ j—i
[mrl +i:|% - |:mr1:|%[i ]%F(H—M)r,—lF mr-1 (mod p).

By (8), this becomes

nn +j _(n ] rym(n—m) i f—i
[t ] = Go)lZ ] e Rl o
Applying Lemma 1, we get
nitJ (BT prmem picem g
[mil +i]% - (m)[i]%Frnl’rl Fa MR

n j rym(n—m)+i(n—m)+m(j—i
E(,,,)[{LE.L r-myH MG (mod p). O

Theorem 3 allows rapid computation of [} ], (mod p) for large n, k as shown in Examples 1
and 2 in the next section. Theorem 3 may be interpreted geometrically as a relation between
columns in rows nr; to nr, +(r; — 1) and the first r; rows of the Fibonacci triangle modulo p; each
entry in the first  rows is multiplied by the constant ()£ ™™*=™*"=) modulo p to get the
corresponding entry between rows nr; and nr; +(r;—1). This is demonstrated in Example 3 of
Section 5.
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5. EXAMPLES

Example 1: In order to calculate [5], (mod 13), we first note that for p=13, =7, and
F,_; = Fy=8 (mod 13). Then by (9) we have

5, [2955] (2] o s

Remembering that F; has order 4 modulo 13 (since 7, is odd), we have

83| _(11)|6 832X _ 11
46f; —\ 6 )|4)5 —\6

Since (1Y) =7 (mod 13) and [§], =1 (mod 13), we conclude that

2] 8 (mod 13).
F

8l —7(1)-1)=6 (mod 13).
46|

Example 2: Tn order to calculate ['%62], (mod 89), we note for p=89, =11, and F,_; =F, =
55 (mod 89). Then by (9) we have

1000] _[90(11)+107 _ (90\[10] qixeoy00-69)
[ 768 J [69(1 D+9 L = (69)[ 9 LFw (mod 89).

Since (39) =0 (mod 89) (i.e., a carry occurs when adding 21 and 69 base 89), we conclude that

[1 000
768 |,

=0 (mod 89).
Example 3: Theorem 3 can be interpreted geometrically. For p=3 we have r, =4 and F_ =
2=-1 (mod 3). The first four rows of the Fibonacci triangle taken modulo 3 are:

1
11
111
1221

FIGURE 2. Basic Triangle Modulo 3

By Theorem 3, this 4-row triangle with variations based on the parity of m and » will build
the entire Fibonacci triangle modulo 3. Specifically for the 4 cases of m, n even or odd, we have

1 1 1 1
11 12 21 22
111 121 121 111
1221 1122 2211 2112
m, n even m even neither neven

FIGURE 3. The Four Variants of the Basic Triangle Modulo 3

For example, the triangle in rows 4 to 7 (n=1) and columns 0 to 3 (m = 0) is the second tri-
angle in Figure 3 with entry multiplied by (}) =1. The triangle in rows 8 to 11 (n=2) and
columns 4 to 7 (m=1) is the fourth triangle in Figure 3 with each entry multiplied by (}) =2.
These are shown in Figure 4.
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1
11
111
1221
10001
120021
1210121
11222211
100020001
1100110011
11102220111
122112211221

FIGURE 4. Rows 0 to 11 of the Fibonacci Triangle Modulo 3

More generally, to determine the triangle in rows 4n to 4n+3 and columns 4m to 4m+3, we

pick the appropriate triangle in Figure 3, based on the parity of m, n and multiply each entry by
() (mod 3).
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