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1. INTRODUCTION

A directed graph, or digraph, is a finite set of vertices together with directed edges. A closed
trail of a digraph in which no vertices are repeated is a cycle. A tree is an acyclic connected
digraph and a forest is an acyclic graph (thus a forest is made up of trees) [1].

Starting with the elements of Z, as our set of vertices, we can create a digraph associated to
any function f modulo 7 by having an edge from vertex b, to vertex b, if f(b)=b, (mod n). This
digraph reflects properties of Z, and f.

Digraphs arising when f(x) = x* have been studied in [2] and [5]. More recently, digraphs
arising from f(x) = x* and » a prime have been studied in [4]. In this article we study digraphs
arising from f(x) = x* and arbitrary n eN.

If n=2°TI7, p® with g, 21, a >0, define

{0 ifa=0,1, {0 ifa<3,
51 = . 62 = .
1 ifa>2, 1 ifa=3
and
L=1em(2%,2%2@D pal(p -1, ..., p=(p,-1).

We use L to determine when two digraphs are equal (Theorem 1). Define G* (resp. G,',") as the
graph whose vertices are elements of Z, (resp. Z,) with an edge from &, to b, if bf = b, (mod n).

Our principal results on G " are:
(1) Determine when G,’f" = G,’f; (Theorem 1).

(2) Show that elements in a cycle have the same order, d, and determine the cycle length,
£(d), based on that order (Theorem 2).

(3) Derive a formula for the number of cycles of order d (Theorem 3).

(4) Show that the trees of all cycle vertices are isomorphic (Theorem 4) and derive a formula
for the height of these trees (Theorem 5).

We handle G* -G,',“ by showing that well-defined parts of this graph are isomorphic to cor-
responding G%'s (Theorem 6). Finally, we use these well-defined parts and a result about the
number of solutions to congruences (Theorem 7) to fill in the whole of G

2. BACKGROUND RESULTS

The following facts will be used in Sections 3 and 4. Facts 1, 2, and 3 are from [3].

Fact 1 (Chinese Remainder Theorem). If (m,m.)=1 (1<i<j<n), then the simultaneous
congruences x =a; (modm;,), 1<i <n, have a unique solution mod mym, ...m,,.
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Fact 2. A necessary and sufficient condition for m to have a primitive root is that m=2, 4, p¢, or
2p*, where p is an odd prime.

Fact 3. Let £>2. Then the order of 5 with respect to the modulus 2° is 2°72.

Fact 4. For p an odd prime either the congruence x* =4 (mod p™), p/b has 0 or (k,p" '(p - D)
solutions. The number of solutions of x* =5 (mod 2%) is 0 or (2, k)* (2°72, k)*.

Proof: Ifp is an odd prime, Fact 2 says Z,» = Z 1 p-yy- Multiplication in Z;m corresponds
to addition in Z -1 so x* corresponds to kx. The map

y such that 4, (x) = kx

p-1)>

;Lk :me‘l(p—l) - me‘l(p—l

is a (k, p™'(p—1))-to-one map, so an element in Z -l
elements or none.

For modulus 27, Fact 3 says Z;., = Zfl X Z‘;E_Q. In Zf‘ X Z‘;},‘Z , the multiplication by k£ map is
2, k)% (2*2, k)*: -to-one, giving our result. [
Fact S. In Z,, the cyclic group of order m, there exists an element of order ¢ if and only if £|m.
Further, if there exists an element of order £, then there exist exactly ¢(¢) of them.

(p-1) 18 either the image of (%, P (p-1)

Proof: If {{m, then Lagrange's Theorem says there is no element of order £ .

If £|m, then m= fu. For b an element of order m, we have £(ub) = ({u)b=mb = 0. Further,
if £’ < £ such that £'(ub) = 0, then m|(£'u), but £'u <m, a contradiction, so ub is of order £ .

Finally, we need to count the number of elements of order £ if there is at least one. For b of
order m, we know ord(vb) =m/ (v, m), so we get an element of order ¢ if and only if u = (v, m).
Since u|m, we know v must be a multiple of #, but # = (v'u, m) if and only if 1 = (v', £). There are
@(¢) such values of v'. O

Fact 6. For (m, m,) =1, we have
Z:"l”'z = Z;h X Z:"z .

Proof: The map p:Zym, —> L x Ly, defined by p(x) = (x (modm,), x (modm,)) is easily
shown to be a homomorphism. It is an isomorphism since Fact 1 allows us to define a map which
is the inverse:

p 2 x L, —> Ly, such that p'(x, y) =z,
where z=x (mod m)), z=y (modm,). O
Facts 2 and 3 tell us the structure of Z,,:

{13, forp=2¢=1,
Z,, forp=2,£0=2,

Z;‘E Zy,xlya, forp=2,023, )
Z ,t1(,yy,  for p an odd prime.

From the structure of Z'p, and Fact 6 follows the structure for Z,. If n=2°T]", p%, then

~ ~ 761 7
L, =T x L X Zya =23 X L2y X L iy gy % X Lyt . )

P = 20~

230 [JUNE-TULY



POWER DIGRAPHS MODULO n

Fact 7. In the group Z,, xZ,, x---x Z,, , there are (m,d)(m,,d)...(m,,d) elements of order
dividing d.

Proof: Since the order of (x,, x,, ..., x,) is the least common multiple of the orders of the
x;'s, it is sufficient to show there are (m,, d) elements of order dividing d in Z,,. Z,, is cyclic of
order m, so if b|m,, there are ¢(b) elements of order exactly b. If b)m;, there are no elements of
order 5. The number of elements of order dividing d is thus

2 40)= > 4(b)=(d,m)

bld,b|m; bl(d, m;)

by a famous property of the Euler-¢ function (e.g., [3], Exercise 1, Section 2.5). O

3. STRUCTURE OF G*

G¥ is, by definition, the digraph whose vertices are the elements of Z, and with an edge from
b to b, if bf =b, (mod n). Since bf (mod n) is well defined for any given b, k and n, the
outdegree of any vertex in our digraph is one. Since the outdegree from any vertex is one, we
know that each component of G* contains at most one cycle. Since there are only finitely many
vertices, it is clear that from any starting point iteration of the k™ power map eventually leads to a
cycle, so each component contains exactly one cycle. The vertices in a component outside the
unique cycle are thus acyclic and form a forest.

If p|n is a prime and pl|b, then p|b*, so p|(b* (modm)). If p|b, then p|b*, so p|(b*
(modn)). This says, if n=2%p["py> ... pim, there are at least 2" components, at least 2"”'_1 if
a#0. In particular, we will examine the components with vertices relatively prime to » separ-
ately from those with vertices not relatively prime to .

Recall that G¥* was defined to be the digraph with the elements of Z as vertices and an edge
from &, to b, if bf =b, (mod n). By the last paragraph, we can study this graph independently of
the vertices not relatively prime to n. We start our study with a lemma on y(d), the number of
elements in Z, of order d.

Lemma 1: If n=2°TI", p® and y(d) denotes the number of elements of order d in Z,,, then
pd)=2,d)" @) [d, p" (B -D) - 2 w(d).
i=1 5\d, 5#d
Proof: From Fact 7 and (2), we know the number of elements of order dividing d is
@ d" 22, ) ITL(d, p'~'(p = D), e,

2w =2 d) 2 d) [, p" (B - D).

sld i=1
Solving this for y(d) gives the result. O
The following results are analogs of results 11 through 14 of [4].

Lemma 2: The indegree of any vertex in G¥* is 0 or (2, k)® (2772, k)% [T (k, p*~'(p, - 1)).
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oo X o

z3 k - . . _
P X i (p,—1)- FOT D eZ,,x" =b (mod n) is equiva

2%

Proof: 7% =75 x7%, x Z o1,
lent to

x*=b (mod2%),

x*=b (mod pi"),

it

: 3)
x*=b (mod p%).

By Fact 4 we know that, for p odd, x* = b (mod pf) has 0 or (k, p“~'(p, —1)) solutions and, for
modulus 27, there are 0 or (2, k) (2°2, k)*? solutions. Taken together, the system (3) thus has 0
or (2,k)%(2°72, k)% T1™,(k, p*~'(p, - 1)) solutions. [

Corollary 1: Every component of G* is cyclic if and only if (2,k)°(2*2,k)* =1 and
(k, p"(p,—1)=1for all i.

Proof: If a component of G* is cyclic, then every indegree must be 1. By Lemma 2, this
says (2, k)%1(2°72, k)% T1™, (k, p7~*(p, — 1)) = 1, so each factor must be 1.

Conversely, if (2, k)*'(2°2,k)** =1 and (k, p*'(p,—1)) =1 for each i, then Lemma 2 says
the indegree of any vertex must be 0 or 1. Since each outdegree is 1 and the sum of the indegrees
and outdegrees must be equal, this forces each indegree to be 1, so every component is cyclic. O

Corollary 2: Any cycle vertex has (2, k)* (2°72, k)**(I17,(k, p*~*(p, - 1)) ) -1 noncycle parents.

Proof: If b is a cycle vertex, the indegree is at least one because it has a cycle vertex parent.
By Lemma 2, the indegree of 4 is (2, k)°'(2°7%, k)> [1"(k, p“(p,—1)). Since exactly one of
b's parents is a cycle vertex, there are

@B, 6™ (H (k. "' (p. - 1))) -1
i=1
noncycle parents.: O
Theorem 1: k, =k, (mod L) if and only if G,',‘r = G,’,‘Z. :

Proof: Since Z, = Z5 xZ‘;f_2 X ZPI""(PI—I) X oo X L pai( 1y, @l e_lerilents_have orders divid-
ing L and we know that there exists an element of this order, namely, (1, 1, ..., 1).

If k, = k, (mod L), then for any b € Z;,, b = b*+*** = b*2 (mod n).

Conversely, if G,’,"' = G,’,‘;, then % = b* (mod n) for all b €Z;,. This means ord,b|(k — k).
Since there is an element of order L, we get k, =k, (mod L). O

We now classify whether an element of a given order will be in a tree or cycle. First, we fix
notation: factor L = tw for ¢ the largest factor relatively prime to £.

Lemma 3: The vertex b is a cycle vertex if and only if (ord,b)|z.

Proof: If b is a cycle vertex, then there is some ¢ such that b =b (mod n). We assume £
is the minimal natural number with this property. Since B =1 (mod n), we know that
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(ord,b)|(k* ~1), so (ord,b, k) =1and (ord,b,w)=1. Since (ord,b)|L, we have (ord d)|tw, so
(ord,b)|z.

Conversely, if (ord,b)|¢, then ' =1 (mod n), so (¢, k) =1 implies there exists £>0 so that
k=1 (mod 7). This means =1 (mod n), so b =b (mod n), so b is a cycle vertex. O

An immediate corollary of this classification is a count of the number of cycle vertices in G¥ .

Corollary 3: There are (2,1)>(2°72, % TI™, (¢, p*~(p, - 1)) cycle vertices.

Proof: By Lemma 3, we are counting the number of elements of Z, of order dividing z. By
(2) and Fact 7, there are (2,7)°1(2*7%, 0> TT7,(¢, p*"(p, - 1)) elements of order dividing £. O

The following result gives a connection between cycle vertices in the same cycle.

Lemma 4: Vertices in the same cycle have the same order modulo #.

Proof: 1t is enough to show that consecutive vertices in a cycle have the same order. Sup-
pose b, =bf (modn). Ifordpb, = ¢ and ord,b, = £,, thenbi = ()" =@B/) =1*=1 (mod n).
This means £, |£;, so

ord, b, > ord,p, = ord,(b¢) > ord, (6*7) = --- > ord,,(5*?) = ord B,.

This forces all the inequalities to be equalities, so the orders of all elements in the same cycle are
equal. O

By Lemma 4, it makes sense to speak of the order of a cycle. The next result relates the
order and length of a cycle.

Theorem 2: The length ¢(d) of a cycle of order d is the smallest natural number ¢ such that
d|(k*-1),i.e., £(d)=ordk.

Proof: 1If £(d) denotes the cycle length and & is a cycle vertex, then b # B> (mod n) for any
(d i
i <0(d), but b=b*") (mod n). Stated differently, 5* ™" 1 (mod ) for any i <(d), but
p*““ =1 (mod n). Since ord b =d, this says d | (k' — 1) for any i < £(d) but d|(k“P™). O

We can use Theorem 2 to get the length of the longest cycle in G¥ "

Corollary 4: The longest cycle in G,’,“ has length £(¢) = ord,k .

Proof: By Lemma 3, the order modulo n of every cycle vertex divides ¢. Further, there
exists a cycle vertex of order 7. Since, for any d|¢, we have k“® =1 (mod 7) implies ¥ =1
(mod d), Theorem 2 says 4(t) =ord,k >ord,k = {(d). Therefore, the greatest cycle length is
L#)=ordk. O

The following theorem gives the number of cycles in G,’,“ of a given order.

Theorem 3: The number of cycles of order d in G,',‘* is w(d)/ 4(d).

Proof: There are, by definition, y(d) elements in Z, of order d. Each is in a cycle of length
£(d) containing only elements of order d, so
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v(d) number of vertices of order d
£(d)  number of vertices of order d per cycle of order d

= number of cycles of order d. O

Finally, we give a few results about the tree structure. These results parallel those for prime
modulus [4]. If b is a noncycle vertex in G,',‘ ‘, the height of b is defined to be the minimal natural
number /4 such that 5*" is a cycle vertex. For c a cycle vertex, define F” as all noncycle vertices b
of height 4 such that b*" = c. We define the tree above c as E=U,F"

Lemma 5: If b, c eG,’f‘, b eFlh, and c is a cycle vertex, then bc e]i’,’{, .

Proof: By Lemma 3, (ord, )|t while (ord,c)|t. Since Z, is abelian, (bc)' =b'c' =b" #1
(mod n), so the order of bc does not divide z. By Lemma 3, this says bc is not a cycle vertex, so
the product of a cycle and noncycle vertex is a noncycle vertex.

Since (bc)*" = b¥" ¢ = c¥* (mod n), we see bc is in the forest above the cycle containing the
vertex ¢. If i <h, then (bc)*' = b*'c*' (mod n), which is a cycle times a noncycle, thus a noncycle

vertex. This means that bc first meets a cycle after 4 iterations of the k™ power map, i.e.,

h
bcchkh. a

We can use Lemma 5 to show that any two trees in G,’," are isomorphic.

Theorem 4: If c is a cycle vertex, then F{ = F.

Proof: For each h, we wish to construct a map from F}" to " that is one-to-one, onto, and
preserves edges. As in [4], we define ¢, as the cycle vertex such that c,’jh =c (mod n). This
means ¢, is the cycle vertex A cycle vertices before the cycle vertex ¢ and therefore exists and is
well defined. Following [4], define £,: F" — F" such that f,(b) = bc, (mod n).

Ifb,b, €F and f£,(b) = f,(b,) (mod n), then bc, = byc, (mod n). Since ¢, €Z;, this implies
(b, —b,)c;, =0 (mod n), so b, = b, (mod n).

Ifb e ", then (bc;")t =" (c"Y " =cc™ =1 (mod n). Since (bc;")" " =5*""'(c/")™ (mod
n) is a noncycle times a cycle vertex, we get a noncycle vertex. Therefore, bc,' € F" and
£(bc;") = bey'c, = b (mod n).

Having shown f, is one-to-one and onto for vertices, we must show it preserves edges.
Specifically, if b, € F*! and b, €F" such that bf =5, (mod n), then f,,,(5)* = bfcf,, =b,c, =
£,(8,) (mod n), where we have used c},, = ¢, (mod n), since c,, is /+1 vertices before ¢ in the
cycle and ¢, is & vertices before ¢ in the cycle. Similarly, if 5 € F*' and b, € F/" such that
bF = b, (mod n), then (bc,,,)* = bfcl,, = b,c* (mod n). D

Finally, we give two results to help determine the height of the tree, i.e., the maximum height
of a noncycle element of G,’f'. Both of these are direct analogs of the prime modulus case [4].

Lemma 6: Ifb € F, and d = ord ¢, then (ord,b)|k"d if and only if b € F* for some x < h.
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Proof: 1f (ord,b)|k"d, then ord (b*")|d so ordn(b"h)lt since d|t as ¢ is a cycle vertex. This
means b*" is a cycle vertex in the same cycle as ¢, so b € F* for some x < A.

Conversely, if b € F* for some x <h, then b* =¢ (mod n) so ord"(b"x) =d. Therefore,
ord, (6*") = ord, ((6* )" ) = ord ¢*" " =d by Lemma 4. [

Theorem 5: The height of the trees in G¥ " is the minimal A such that L|k"t.
Proof: If (k, L) =1, then f = L so Lemma 3 says that all vertices are cycles; thus, the height
is 0 and L|k% since = L.

If (k, L) # 1, then h>0. Take b a vertex of maximal order, ord,d = L. By Lemma 6, b is of
height / since (ord b)|k"¢ but (ord,b) | k"'t O

4. STRUCTURE OF G* —G*’

Let g be the set of all prime divisors of # and consider a partition of this set: g =, Up,.
Let G,’f, o, e the graph whose vertices are the multiples of I1,<p, p relatively prime to all p € o,
and with an edge from b, to b, if b =b, (mod n). If a, is such that p“|n but p°**|n, define
1 =pep, p™ and ny =l pep, p®. Define G, .. to be the graph whose vertices are the mul-
tiples of 7, relatively prime to all p € g, and where there is an edge from &, to b, if b} =&, (mod
n). We give a few results to help determine the structure of G,’,f o

Theorem 6: G,’," o max = Gf; :
Proof: Let b, be the solution to mb, =1 (modn,). Define
p:GE = GE 0y such that 1u(b) = bbygy (modn).

For q € p,, qlby, qln so b eG,’f; implies bbyn, (mod n) is in G,’f, o, max- Having shown our map is
well defined on the set of vertices, we must show it is one-to-one onto, and preserves edges.

If (b)) = p(b,) (mod n), then (b, —b,)by, =0 (mod n). This means (b, —b,)h, =0 (mod n,).
Since b, is invertible modulo n,, b, —b, =0 (mod n,) so b, = b, in G,’,‘;.

IfceGt then ¢ = nyc,, so we want to show that there exists b € G,',‘; such that p(b) =c

n, §1,max>

(mod n). This is equivalent to

bb()nl =Gy (mOd n)’
which is equivalent to

bby =c, (modn,).

Since b, is invertible modulo 7, and c, is relatively prime to all primes in g,, b = 8;'c, (modn,) is
an element of G,’f2 " sent to ¢ via .

If b, b, €G) such that bf =5, (modny,), then
p(B)* = bbgnt = bibyn = bbgy = u(by) (mod ).
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Finally, we deal with those vertices divisible by I1,c,, p but not by n;.
Theorem 7: (I1 pep, pP)b with (b, p) =1 for all p € p has zero or

( I1 (k,p“"'l(p—l)))-( Il p"”‘“"l(p%)]-

PEPr, p#2 pe, pE2,by2a,, key2a,

( I1 P (k, p"""”""(p—l))]-

PEP, PE2, ap>Cpk, by=c k

@052 k)" if2 €,
207! if2ep,b 2a,ck>a
207D (2 kY5272 kYo if 2 epa> ek, by =k
parent vertices of the form (H peg pC”)c with (¢, p)=1for all p e, where
0 ifa-b <2, 0 ifa-b, <3,
3= ] and &, = )
1 ifa-522, 1 ifa-5b,23

Proof: We want to find the number of distinct solutions, (IT,e,, p%)c, to

((zg,p%)c)k = (pg}pb"jb (modn),

where (cb, p)=1forall pegp.
This is equivalent to counting the number of solutions to the system

k
T1r% |e| =| T1p" |b (mod27),

PEP, PEP,

127 || =| TP |6 (mod pi")

PEP) PEP

1]

1l

127 |c 11 P’ |b (mod pim).
PEg) PEP

]

Fact 1 allows us to work with each of these congruences separately and then multiply the number
of solutions to each congruence to get the number of solutions to the system.

If g € g,, then all p € g, are invertible, so the number of solutions to

) k
(- e
PEP) Peg
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equals the number of solutions toc* =&’ (mod ¢“) for some . By Fact 4 the number of solu-
tions is zero or (k, g% '(q—1)) if ¢ is an odd prime, and zero or (2, k)* (2°2, k)% if ¢ = 2.
If g € p,, then all p € g, —{q} are invertible, so the number of solutions to

k
(1)) e
PE@) PERP,

is equal to the number of solutions to (g“c)* = qb"b’ (mod g%) for some &'. If c,k#b, and
either b, <a, or ¢k <a,, then there are no solutions for (cd’, q) =1 since the powers of g divid-
ing the left- and right-hand sides of the congruence will be unequal for all k.
If b, c,k > a,, then we are trying to solve 0-c* =0 (mod g™). This has g% %'(g—1) solu-
tions ¢ for which (c, ) =1 and g“c are distinct modulo g%. For g =2, this reduces to 2*%™",
Finally, if a, > ¢,k =b,, then; the number of solutions g“c to (g%c)* = gbb’ (mod g™) is

*-D% times the number of solutions to ¢ =" (mod g% ~%). By Fact 4 this is zero or

q(k—l)cq (k’ qaq —bq —l(q _ 1))

q

if g is an odd prime, and zero or
2-Der (3 )P (2072 )P

ifg=2.

The product of the numbers of solutions to each of these congruences gives the number of
solutions to the system, proving the result. O
Remark: Similar results may be developed where the hypothesis (c, p) =1 is dropped. For
example, if p € g, is an odd prime and (b, p) = 1, then the number of solutions to (p°c)* = p’b
(mod p*) is zero or p®~ if c k,b,>a,. Other cases for a,,b,,c,k may be worked out as in
the proof of the last theorem.

5. AN EXAMPLE

Example 1: We will determine the structure of G2. Note that n=56, k=2, L=6, t=3, and
w=2. We start with the components with vertices that are not multiples of 2 or 7. Zss = Z; x
Zy=ZyxZ, xZ,. This means the orders of all elements divide lcm(6, 2,2) = 6. We get the num-
ber of elements of each order using Lemma 1.

y(D=(@16002)12)=1,

v(2)=(2,6)2,2)2,2)-y() =7,

v(3)=(3,00,2G,2) -y =2,

w(6)=(6,6)(6,2)(6,2)-yv(3)-yv(2)-y () =14
The one element of order 1 goes to itself since 2 =1 (mod 1); the seven elements of order 2 each
g0 to the element of order 1 when squares; the two elements of order 3 are, by Theorem 2, in a

cycle of length 2 since 2' #1 (mod 3), but 22 =1 (mod 3); and the fourteen elements of order 6
go to elements of order 3. If b is an element of order 3, we know that x*> =b (mod 56) has at
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least one solution (the other element of order 3). Solving x* =5 (mod 56) is equivalent to solving
the system
x*=b (mod7)

x*=b (mod8). @

Since Z; = Z, x Z,, the first congruence in our system has 0 or 2 solutions. Since Z3z = Z, x Z,,
the second congruence in our system has 0 or 4 solutions. This means the system (4) has 0 or 8
solutions. Since there is at least one solution, this forces each element of order 3 to have indegree
8, i.e., seven elements of order 6 and one of order 2. This completely classifies the structure of

G% (see Fig. 1).
® [ ] [ ]
O

1 = {}7G§(.3
O A
o = {7}, Gl o1 ={2,7}, G (1)
O O OO0 O 000 O O OO0
X ¥ X X ¥ X X 1 X
Z} ® [ ]

o1 = {2}, G (o)

o =odd mult. of 2 x=odd mult. of 4 e =mult. of 8

FIGURE 1. G%

Next, consider the components which are multiples of 7 but relatively prime to 2. By Theo-
rem 6 this will have a digraph structure isomorphic to G} . Zz = Z, x Z,, so there is one element
of order 1 and three elements of order 2. Each element of order 2, when squared goes to the ele-
ment or order 1.

The trickiest part is classifying the components that have vertices which are multiples of 2 but
relatively prime to 7. By Theorem 6, G526, 2}, max = Gi'. Z, = Z, so there is one element of order
1, one of order 2, two of order 3, and two of order 6. Upon squaring, the element of order 1
goes to itself, the element of order 2 goes to the element of order 1, the elements of order 3 go to
each other, by Theorem 2, since 2' # 1 (mod 3), 2> = 1 (mod 3), and the elements of order 6 go to
the elements of order 3. By Fact 4, x*> =5 (mod 7) has 0 or 2 solutions (since Z; = Z, x Z,) and
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each element of order 3 has the other element of order 3 coming to it, we know the indegree must
be 2, so each element of order 6 goes to a different element of order 3 (see Fig. 1).

We now add vertices for the multiples of 4 and of 2 that are prime to 7. Theorem 7, with
n=56,k=2,6,={2}, 0, ={7},c, =2, and b, >3, says the indegree for vertices that are multi-
ples of 8 from those that are multiples of 4, relatively prime to 7, is zero or (2, 7"}(7-1))2*> ! =
2. Using the remark after Theorem 7, considering the graph of multiples of 4 relatively prime to
7, each vertex has indegree 0 or 4. There are 56-4-5 =6 odd multiples of 4, so each of the three
cycle vertices of G526’ (23, max Das two odd multiples of 4 parents (see Fig. 1).

To add the odd multiples of 2 prime to 7, we note that these will be parents of odd multiples
of 4. Using Theorem 7, with n=56,k =2, o, = {2}, 9o, ={7},c, =1, and b, =2, says the in-
degree for vertices that are odd multiples of 4 from those that are odd multiples of 2, relatively
prime to 7, is zero or (2,77(7-1))2@'(2,2)°(2°,2)° =4. Using Theorem 7, with n =56,
k=4=2% p,={2}, 9,={7}, ¢,=1, and b, >3, says the number of odd multiples of 2 in each
tree in GZ; 5, is zero or (4,77'(7-1))2"""" =4 Since there are 56-%-% =12 odd multiples of 2
relatively prime to 7, we have three sets of four odd multiples of 2 going to one of each pair of
odd multiples of 4 over each cycle vertex in G 2, max (Fig. 1). This completes the structure of
Gszs, 2

Finally, G526, @}, max = G¥', which is a single element with edge from and to itself. To map
directly onto a multiple of 2°-7, the power on 2 must be at least 2, so the only parent of our
single cycle vertex is the odd multiple of 2*-7 (mod 56). Odd multiples of 2-7 map to the odd
multiple of 27 -7 when squared. This completes the description of GZ (see Fig. 1).
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