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1. INTRODUCTION 

Pythagorean triples have long provided a source of great interest and amusement to mathe-
maticians since antiquity. Not surprisingly,-many important properties have and continue to be 
deduced about these solutions of the diophantine equation 

x2+y2=z2. (1) 

The most general solutions of (1) that satisfy the conditions (see [2], p. 190) x > 0, y > 0, z > 0, 
(x,y) = l, 2|x, are 

x = 2ab, y = b2-a2, z = a2 + b2, (2) 

where the integers a, b are of opposite parity and (a,b) = l,b>a>0. 
One important class of Pythagorean triples (x, y, z) that we shall be concerned with are those 

in which x and y are consecutive integers. These triples, which we shall call almost-isosceles 
right-angled (AIRA) triangles, can be constructed from (2) in the following manner (see [4], 
p. 13). Take an a and b that generate a triangle whose two shortest sides differ by one, then the 
next such triangle is constructed by b and a + 2b. Thus, as (3,4,5) is generated by (2) using a-I 
and b = 2, so the next AIRA triangle will be determined via a = 2 and b = 5, thereby producing 
the triple .(20,21,29). Clearly, with repeated applications of the rule (a, b) \->(b,a + 2b), one can 
generate an infinite number of these triples. A similar recurrence scheme generating AIRA tri-
angles was also developed in [1] using Pelfs equation. 

Our aim in this short note is to re-establish the existence of infinitely AIRA triangles via an 
alternate argument which, unlike the above, does not require the use of (2) or Pelfs equation. We 
shall, as a result of this approach, reveal a surprising connection that exists between these 
Pythagorean triples and the set of square triangular numbers [see (3)]. This will be employed later 
to calculate the first six such triples. An additional number fact concerning the primes is also 
deduced. 

2, MAIN CONSTRUCTION 

Let us begin by noting the following key observation, a proof is included for completeness. 

Lemma 2.1: There are infinitely many perfect squares of the form n(n + l)/2. 

Proof: If n e Z+ is such that T(n) = n{n +1) / 2 is a perfect square, then so is T(4n(n +1)); 
however, the statement now readily follows because T(T) = 1 is clearly a perfect square. D 

To find all AIRA triangles, we first reduce the problem (as in [1]) to a question of the solubil-
ity of a diophantine equation obtained by exploiting an obvious fact, namely, if the sum of two 
consecutive squares is a perfect square, it must be the square of an odd number. Then, using a 
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series of elementary arguments, one can further reduce this equation to another diophantine equa-
tion which is known to be solvable from Lemma 2.1. This approach is contained in the proof of 
the following theorem. 

Theorem 2.1: There are infinitely many nontrivial pairs of consecutive squares whose sum is a 
perfect square; moreover, all such AULA triangles are given by 

'sd±MRt^hMRt2^^n (3) 

where Tn denotes the positive square root of the n^ square triangular number. 

Proof: Suppose meZ+ is such that the sum of m2 and (m +l)2 is a square, then there must 
exist an s e Z+ such that m2 +(m +I)2 = (2s+1)2. Upon expanding and simplifying, we obtain 

m(m + l) = 2s(s + l). (4) 

Our argument is therefore reduced to demonstrating the infinitude of solutions (m, s) to the above 
diophantine equation. To solve (4), first observe that if m<s then m(m + l)<2s(s + l), while if 
m>2s then m(m + l)>2s(s + l). Thus, for an arbitrary s GZ+, the only integer values m can 
assume in order that (4) may possibly be satisfied are those in which 2s > m > s. Hence, if (m, s) 
is a solution, then there must exist a fixed r e Z+ such that rn = s + r with 

(s + r)(s + r + l) = 25(5 + 1). (5) 

Expanding and simplifying (5) yields the quadratic, s2 +s(\-2r)-(r2 +r) - 0, in the variable s, 
from which it is deduced that 

2 r - l + V8r2+l ,,N 
* = j • ( 6 ) 

Note that the positive radical has been taken as s > 0. Since s is an integer 8r2 +1 must be an odd 
perfect square. Consequently, we require that 8r2 +1 = (2n +1)2 for some n e Z+, and so r and n 
are solutions of the diophantine equation 2r2 = n(n +1). 

However, by Lemma 2.1, there are infinitely many integer solutions of this equation; hence, 
we conclude that there are an infinite number of integers s of the form in (6) such that (5) is 
satisfied. Thus, equation (4) must have infinitely many solutions (m, s) since m = s + r. 

It is now a simple matter to determine the required expression of the AIRA triples 

(w,w +1,25+1). (7) 

Let Tn denote the positive square root of the «* square triangular number, then by the above, 
r = Tn and so, from (6), we have 

^2r„-i+V8?;2 + i 
2 

Finally, substituting the corresponding expressions for m = s + r and /w + 1 into (7) produces 
(3). • 
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We now prove an interesting fact concerning the prime numbers, which can be deduced by 
showing that the odd base length in the above AIRA triangles is always a composite number, with 
the exception of (3,4,5). 

Corollary 2.1: Ifp is a prime number greater than 3, then neither (p -1)2 + p2 nor p2 + (p +1)2 

is a perfect square. 

Proof: Let m, s eZ+ be such that (m, m +1, 2s +1) is an AIRA triangle, and assume m is a 
prime greater than 3. Clearly, the integers satisfy equation (4) of the previous theorem and so 
2s>m>s. But, in view of this inequality and by assumption, we must have (m, s) = (m, 2) = 1; 
this, in turn, implies (m, 2s) = 1. Further, note that m > s +1, for if m = s +1 = s + Tl9 then 

4 ^ - 1 + ^ + 1 
m-— -— = 3, 

2 
which is contrary to the assumption. Thus, (m,s + l) = l because m is prime; consequently, 
(m, 2s(s+l)) - 1 and so m is not a divisor of 2s(s + X). This is a contradiction, since m\2s(s +1) 
by equation (4). Hence, m cannot be a prime greater than 3. Assume now that m + l is a prime 
greater than 3. Clearly, from the above inequality, m + l>$+l>s, which, via the assumption, 
implies that (m + l, s + l)-(m + l,s) = (m + l,2) = 1. Thus, (m + l,2s(s + l)) = l, and so m + l is 
not a divisor of 2s(s +1), again a contradiction because m + l\2s($ +1). Consequently, since both 
m and m + l are greater than 3 in all Pythagorean triples of the form (m,m + l,2s+l), with the 
exception of (3,4,5), we deduce that m and m + l must be composite. The result now readily 
follows. • 

In view of the previous result, one may question whether the hypotenuses in the above AIRA 
triples are similarly composite for large n. This is the motivation behind the following conjecture. 

Conjecture 2.1: There are only finitely many primes/?, such that p2 is representable as a sum of 
two consecutive squares. 

At present the author, via an application of Corollary 5.14 in [3], has found that primes of the 
form Ak + 3 will fail the condition of the conjecture. Whether there exists an infinite subset of 
primes of the form 4k +1 satisfying the above, is still an open question. 

3, NUMERICAL COMPUTATION 

To conclude this note, we shall apply equation (2.1) to calculate the first six triples. Clearly, 
all that is required is a means of determining Tn, however, we are fortunate in this respect, as one 
may either make use of the formula (see [4], p. 16) 

T"=32(-(l7 + l 2 ^ T + ( 1 7 " X l 4 i y ' 2 ) ' ( 8 ) 

or the recurrence relation where, for all integers n > 2, 
r„+1 = 6rn-r„_1; (9) 

with ^ = 1, T2 = 6. Curiously, equation (8) coupled with (3) will produce an explicit formula in n 
for the «* AIRA triangle. However, from a computational viewpoint, it is more efficient to use 
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(9) because this provides a recurrence scheme for calculating all AIRA triangles entailing fewer 
arithmetic operations. The results of the first six iterations are tabulated as follows: 

TABLE 1. The First Six AIRA Triangles 

n 

1 
2 
3 
4 
5 
6 

T 

1 
6 
35 

204 
1189 
6930 

(47;-i+(8j;2+i)1/2)/2 

3 
20 
119 
696 

4059 
23660 

(42; + l + (82;2 + l)1/2)/2 

4 
21 
120 
697 

4060 
23661 

2r„+(87;2 + l)1/2 

5 
29 
169 
985 
5741 

33461 
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