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0. INTRODUCTION

Let R(N) be the number of representations of the nonnegative integer N as a sum of dis-
tinct Fibonacci numbers. For N =F, -1, n>1, the Zeckendorf representation, in which no
two consecutive Fibonacci numbers appear in the sum, is the only possible representation, and
R(F,-1)=1, as proved by Carlitz [3] and Klarner [4]. The sequences {b,-1}, b,,,=5,+b,_,,
arise as a generalization, having the property that R(,—1)=R(b,,, —1) =k for all sufficiently
large n (see [1] and [4]). The generation of the specialized and related sequence 1, 3, 8, 16, 24,
..., 4,, whose n™ term is the least N such that n=R(N), spurred efforts to find recursive rela-
tionships for the values R(N) and ways to compute R(N) for large values of N. Some authors
have used T(N) and some R(N) in counting representations; we will use R(N) for the number
of ways to represent N as a sum of distinct Fibonacci numbers (without F) and 7(N) for the
number of representations if both F| and F, are used. In our notation, Carlitz and Klarner both
give R(F,)=[n/2], n>2, where [x] is the greatest integer in x. Since 7(V) =R(N)+R(N -1),
we have concentrated on formulas for R(N).

Earlier authors have used generating functions and combinatorics to develop and prove
representation theorems. In this paper we concentrate on properties of the integers whose repre-
sentations are being counted. We prove Conjectures 1, 2, and 3 from [1] as well as writing for-
mulas for R(MF,) and R(ML,), M =1, and solving R(N)=mR(N —1)—q for integers M, m,
and q.

1. THE SYMMETRIC PROPERTY AND A BASIC RECURSION

The most obvious property in a table of R(X) is the palindromic subsequences it contains,
beginning and ending with 1, for N in the interval F,-1< N <F, ,-1; i.e, when 0< M <F,_,
nx3,

R(F,y ~1- M) =R(F,~ 1+ M). )

Since these values R(N) are symmetric about the center of each palindromic segment, we only
have to compute the values of the first half of the interval. Symmetric property (1) is a variation
of Theorem 1, whose results appear in Klamer [5], as specialized for the Fibonacci sequence

{F}-

Theorem 1:
RF,,—2-M)=R(F,+M), 0SM<E, ,, n>3.
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Values for:R(N) for 0 <N <60 -

N R(N) N R(N) N R(N) N R(N)
0 1

1 1 16 4 31 3 46 2
2 1 17 2 32 4 47 5
3 2 18 3 33 1 48 5
4 1 19 3 34 4 49 3
5 2 20 1 35 4 50 6
6 2 21 4 36 3 51 3
7 1 22 3 37 6 52 4
8 3 23 3 38 3 53 4
9 2 24 5 39 5 54 1
10 2 25 2 40 5 55 5
11 3 26 4 41 2 56 4
12 1 27 4 42 6 57 4
13 3 28 2 43 4 58 7
14 3 29 5 44 4 59 3
15 2 30 3 45 6 60 6

It is a simple matter to compute a table for R(N) from generating functions for small &, but as N
gets larger, the computer's memory will eventually be exceeded. We have calculated R(N) for
1< N <257,115 and have capabilities of calculating individual values for R(N) for very large N,
for example, R(3,000,000,000)=6165. We have listed {4,} for 1<n<330. But to study the
mysteries of {4,} or to compute R(N) for large N by hand, we need some recursive relationships.
Klarner [5] proved Theorem 2 for generalized Fibonacci numbers.

Theorem 2 (Basic Recursion Formula): If F, <M < F,, -2, then
R(M)=R(Fyy ~2~ M)+R(M~F,), n>4. ¥)

Lemma l: It F, <M < F,,, -2, then R(M — F,) is the number of representations of M using E”
while the number of representations of M using F,_, is R(F,, - M).

Proof: The largest Fibonacci number in M is F,. R(Z\/[) is the sum of the number of repre-
sentations of M that use F, and the number of those that use F,_;. Since M < F,,;—2, no repre-
sentations of M use both F, and F,_;; else M > F,,;. There are no representations of A/ that
use neither F, nor F,_,, since F,—2=F, ,+F, ;+--+F+F, <M. Note that M =F, + M,
where the largest possible Fibonacci number in M, is F,_,; else M could contain F,,;. The num-
ber of representations of M that use F, is R(M,) = R(M — F,) since F; is added to each possible
representation of M, to make a representation of M using F,. To list representations of M using
E,_,, if we write M = F,_;+ F,_, + M, and then list representations of A/, there can be a repeti-
tion of terms, such as F,_, appearing twice, so we need sums using disjoint sets of Fibonacci
numbers. Representations of (F,,,—2-M)=(F_+F,_,+ - +F+F)-M wil use a set of
Fibonacci numbers disjoint from those selected to represent M. Thus, R(f,,; —2— M) must give
the number of representations of M that use F,_; by examining Theorem 2. [J

In counting by hand, R(M)=R(M -F))+R(M-F,_)) if M~F, ,<F,,. For example,
23=21+2=13+10, and R(23)=R(2)+R(10). If M - F,_; > F,_,, an adjustment must be made;
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30=21+9=13+17=13+(13+4), and R(30) =R(9)+R(17)—R(4). Lemma 2 makes this count-
ing correction. We take R(0)=1 and R(K)=0 when K <0 in Lemmas 2 through 6, and [x]
denotes the greatest integer in x.

Lemma 2: F,<M<EF,,—2,then

R(M)=R(M~ F)+ R(M ~ Fy ) ~R(M ~2F, .);
R(Fyy ~2~ M) = R(M — Fy) ~R(M - 2F,..). ®)

Proof: R(M) is the number of representations of M using £, plus the number of represen-
tations of M using F,_, corrected for the number of representations of (M —F,_)) using F,_,, is
any exist. A second way to write the representations of M that use F,_; is to write M =F,_ |+
(M — F,_)) and observe that the number of representations that use F,_; is R(M - F,_) if F,_, is
not used in representing (M —F,_,). If M >2F,_,, R(M —2F,_}) is the number of representations
of (M—F,_,)) using F,_,, since M-F, ,=F, ,+((M-F,_))-F,_;). Thus, the representations
of M using F,_; are counted by [R(M — F,_,)— R(M - 2F,_,)], which count appeared in Lemma 1
as R(F,,,—-2-M). O
Lemma 3:

R(F,+K)=R(F,_,-2-K)+R(K), 0<K<F,_,-2. “

Lemma 2 is another form of Theorem 2, while Lemma 3 results when M = K + F, in (2), and
is useful in computation. For example, let K =24, R(K)=5;since 0< K <F, -2, take n>10.

n=12:. R(Q24+144)=R(87-24)+R(24)=8+5  R(168) =13,

n=13: R(24+233)=R(142-24)+R(24)=10+5, R(257) =15,

n=14. R(24+377)=R(231-24)+R(24) =13 +5, R(401) =18,

n=16. R(24+987)=R(608-24)+R(24)=18+5, R(1011) = 23,
where we recognize 24, 168, 257, 401, and 1011 as members of our specialized sequence {4,}.
Lemma 4: ‘
R(M)=R(M-FE)+RM-F,_,), F,<M<FE+F_;-1.

Proof: Because 2F, = F,+F,_5, R(M-2F,,)=0 in Lemma 2 throughout the interval
chosen. O

Lemma 5: R(N) for the interval F, < N < F,;—11is given by:
R(E,+K)=R(F,, + K)*R(K), 0<K<F 4~

R(F, +K)=2R(K), Fy<K<F,-1, ®)
R(F,+K)=R(Fy~2-K),  F,<K<F,-1

Proof: Let M = F, + K in Lemma 4 and use Theorem 1 to write the first and last F;_; values
of R(N). Let F,_,+p=K in Lemma 3, followed by application of Theorem 1 since 0< p < F,_;:

R(F,+F, 3+p)= R(F,_ -2-(F 4 +Pp)+R(F, 5+ p)
=R(F,_,—2-p)+R(F,_3+p)
=R(F, 3+ p)+R(E,_3+D).

Thus, R(F,+K)=2R(K) when F, ;< K<F, ,-1. U
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Lemma 6:
R(F,+K)=R(F,_, +K)+R(K)-R(K-F,3), 0sK<F,, (6)

Proof: For 0SK<F, -2, take M =F,+K in Lemma 2, so that M -2F,_,=(M-F))+
(F,-2F, )=K-F, ;. Thenlet K=F, ;-1 in the expression above, using R(F,-1)=1. Fin-
ally, take K = F,_,, using R(F, ;) =[(n+2)/2]=R(F,)+1 from [3] and [4]. O

2. SPECIAL VALUES FOR R(b, —1) AND R(b,)

Recursive sequences {b, -1}, b,,, =8, +b,_,, have R(b, - 1) = R(b,,, — 1) = k for n sufficiently
large (see [1] and [4]). We can write sequences for which R(N —-1)=k, a given constant, as
indicated in the following example. Say k =5 is given. Find a particular value, i.e., R(24)=5.
Write 24 +1=25=21+3+1 in Zeckendorf form, or

R =R(FK+F,+F-D)=R(K{+F,+F-1)=5.
These are the first terms, when F, =1, in sequences we seek. Thus,
R(F 7+ B+ F, =) =5=R(F; +F i+ Foyy —1), n21.
The symmetric property gives R(F, ,—1+M)= R(Fn+8 ~1-M)=5 for M=F, ;+F,, so that
we can write
R(F g~ 1-(Fy +F)) =R(E, 7+ Fps+ Fpyy - =5, n21.
Since R(F,,) = R(Fj,+1~1)=5, again using the symmetric property,

R(F o +F,-)=R(F s+ F,-D=5 nx]
R(F o F,~D)=R(Fyo—Fry -1 =5 n21

Since R(F,;) = R(F;;,,) = k, we can derive in a similar way, for n>1:

R(Fyrin + By =D =k = R(Bype_yn + Fra — 1);

n >

RQFyan—F, ~1) =k = R(Fypp~ Fy ~ ), forn>1 O
For a given value of , there are many infinite sequences such that R(p,—1) = k. All ways of
writing infinite sequences such that R(d,—1) =k, for k = 1,2, 3, were given by Klarner [4] as
R(F,-1) =R(F, -1 =1
R(F 3+ F, -1 =R(F 3+ F,-1) =2
R(E, s+ F,-1) =R(Fps+F,-D =3
R(F, - F,—1) =R(F,s—F,, -1 =3
Some useful equivalent statements are
RQ2E,.,-1) =R(L,,-1) =2
RQGE,;-1 =R(4F,;-1) =3
R(Lyy+F,-) =R(L,+F,,,-1) =3

Lemma 7: Let {b,} be a sequence of natural numbers such that b,,, =5,, +5,. Then {4,} has
the following properties:
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(i) Rb,-1)=R(b, -1 for all n>k if F, is the smaliest Fibonacci number used in the
Zeckendorf representation of &, k >2, orif {b,} has b, >2b, and F,_, <b,— b <F,.
(i) R(®,-1)=R(b,~1)R(F,)—q, q a constant, 0< g <R(b,—1), where F,, is the smallest
Fibonacci number used in the Zeckendorf representation of b,, m> 2,
(iii) R(b,,,)=R(b,)+R(b,-1)=T(b,), n>k, as in (i), where T(N) is the number of repre-
sentations of N as sums of Fibonacci numbers, where both F; and F, can be used,
() R(by2,) = R(B,)+cR(b,~ 1) = R(byyz,2) +R(b, 1), n2 k.

Proof: Klarner [4] used the Zeckendorf representation of b, to prove (i) for n sufficiently
large; n>k as in the second statement appears in [1]. The proof of (ii) relies on Lemma 5 and
mathematical induction. Take F,<b,<F,, -1. Leth,=F,+K, 0<K<F,  —1. Assume part
(i1) holds for all integers K =F, ;. f 0<K <F, -1, Lemma 5 and the inductive hypothesis give

R@,) = R(K)+ R(F, , + K)

=[R(K -DR(F,) - q]+[R(F,-, + K -DR(F,) - ¢,]

=[RE-D+R(F,, +K-1R(F,) - (4 +4,)

=R(F,+K-DR(F,) - ¢,

:R(bn - 1)IQ(F‘m) _q3’ 0< q3 <R(bn - 1):
since 0< g, +q, <R(K-1)+R(F,_,+K-1)=R(F,+K-1)=R(b,—1), again using the inductive
hypothesis. A proof by induction can be made from each of the other two parts of Lemma 5,
extending K to the intervals F, ;<K <F, ,-1,and F,_ , <K <F, -1, but is omitted here in the
interest of brevity.

To prove (iii), using (i) and (ii),
R(By12) = R(bpiz = DR(Fpi2) -9 = R, - DRE,) +1) - ¢q

=(R(®, - DR(F,)—q) +R(b, - 1) =R(B,) +R(b, - D).
Next, take N =b, and use 7(N)=R(N)+R(N 1) as in [4]. Note: The notation is not stan-
dardized; the meanings of R(N) and T(N) are reversed in [4] from those used in this paper. Part
(iv) follows from R(F,,,.) = R(F,)+c, using (ii) to write

R(bn+2c) = R(bn+2c - I)R(Fm+2c') —-q9= R(bn - 1)(‘R(Fm) + C) -9
= (R(b, -~ DR(F,)~ q)+cR(b, ~ 1) = R(b,) +cR(b, - 1),

where, also from (iii) and (i),
R(bn+2c) = R(bn+2c—2) +R(bn+2t:—2 - l) = R(bn+20—2) +R(bn - 1) 0

3. FORMULAS FOR R(N) BASED ON
ZECKENDORF REPRESENTATION

A formula for R(N) for whole sequences {b,}, b,,, =b,,, +b,, can be written, or R(N) for
large integers N based on the Zeckendorf representation of N, by repeatedly using Theorem 2,
Lemmas 2 and 6, and formulas for R(F,,,+N) as developed next. Let the largest Fibonacci
number contained in N be F,; equivalently, F, is the largest term in the Zeckendorf representation
of N, and F,<N <F,,,—2. To count the number of ways to represent N as sums of distinct
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Fibonacci numbers, first find the largest two Fibonacci numbers in N and then apply formulas of
the form R(F,, ,+ N).

+p
—2. Then
R(F,,1+N)=R(N)+R(N - F),
R(Fyyy + N) = RON) + R(Fyyy 2~ N);
R(F,,5+N)=2R(N).

Lemma 8: Let F, <N <F,

n+l

Proof: Let M =N +F,,, in Lemma 2, where F,,, <M <F, ;—2. Then
R(Fpy+N)=R(F+N-F ) +R(F,+N-F,)-R(F,,+N-2F,)
=R(N - F)+R(N)=R(N - F,,,) = R(N - F,) + R(N),

where R(N - F,,;) =0 because N <F, ;.
Let M =N+F,, ,inLemma2, where F, ;<M <F,, ,-2;

R(F, 3+ N) = Ry + N = Fyy) + R(Fyyy + N = Fo) = R(Fy 3 + N = 2F, )
= R(N)+R(N +F,,,)~ RN - F,)

= R(N)+[R(N - F,) + R(N)]- R(N - F,) = 2R(N).
Let M =N +F,,, in Theorem 2, where F, , <M <F, ;-2;

R(Fyy + N) = Ry =2~ (Fyy + N)) + R((Fpyy + N) = )
= R(F,,y 2~ N) +R(V). D

Theorem 3: Let F, <N <F,,,—2. Then
R(Epqpn + N) = (K +DR(N), k21, ©)
R(Fpp + N)=kR(N)+R(F,,;,—2—-N), k=1 (10)

Proof: Assume that R(F,;; +N)=(j+1D)R(N) holds for j <k; the case k¥ =1 was estab-
lished in Lemma 8. Consider

R(Fypismyn + N) = R(Fuopinye2 + N), n<Fyy, < F(n+2k+3)—3-
By the first part of Lemma 5,
R(F,spp43+ N) = R(Fp 5001 + N) + R(N)
=(k+DR(N)+R(N) = [(k+1)+1]JR(N),
establishing the formula for R(F,,,,,, + N) by induction.

The proof of the even case is similar, again taking the case £ =1 from Lemma 8, and using
Lemma 5; therefore, it is omitted here. O

Theorem 3 can be used as a reduction formula to write R(N) for large N. For example,
R(1694) = R(F,, +97) = 3R(97) + R(144 —2 - 97) = 3(9) + 6 = 33,

so R(1694) =33 since R(97) =9 and R(45) = 6 are known from data. However, Theorem 3 can
be written in another form that is even more useful for computation, as given in Corollary 3.1.
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Corollary 3.1: Let F,<N <F,,,—2. Then
R(E,+N)=R(F,_, . )R(N)+r, m-n>2, (11)
where r = 0 if m—n is odd, and r = R(F,,, -2 - N) if m—n is even.

Proof: The result follows from R(F,) =[n/2] for [x] the greatest integer in x from [3] and
[4]. Let m—n=2k+1, then m=n+2k+1 and [(m—n+1)/2]=k+1; therefore, R(F,,+N)=
[(m—n+1)/2]1R(N) by (9). Similarly, let m—n =2k in (10). O

4. SPECIAL VALUES FOR R(F, £ K)

We write some special formulas useful in breaking down expressions for R(N) by putting
special values into equation (1) and Corollary 3.1. Expressions for £ =0,1, and 2 in Lemma 9
appear in [4]. We also find integers m and ¢ such that R(M)=mR(M -1)—q.

Lemma 9-Special values for R(F,—1tk): Let [x] be the greatest integer contained in x, and
let 0<k<F,_,. Then R(F,—1+k)= R(F,,, —1-k) has the following values, 0< k <8.

k=0 R(F,-1) =R(F,, -1 =1, nx2;
k=L R(E) =R(E,-2) =RE) =[/2,  nz3
k=2 R(E,+1) =R(E,,-3) =R(E,) =[n-1/2), n>4
k=3 R(F,+2) =R(F,,~4) =R(E,) =[(n-2)/2], n=5
k=4 R(F,+3) =R, -5 =n-3 nx6
k=5 R(E,+4) =R(Fy~6) =R(F) =[(1-3)/2], n26;
k=6. R(F,+5) =R(F,,-7) =n-4, nx7,
k=7 R(F,+6) =R(F,, -8 =n-4, nxT,
k=8

D R(F,+7) =R(F,.,-9) =R(F,y) =[(r-4/2], n27.

Lemma 10-Special values for R(F,,+ K) and R(F,,,,* K): Considering n even and n odd,
R(F, £ K) has the following values:

R(Fy,) =R(Fyer) = R(Fpep) +1;
R(F+1)  =R(F) = R(Fe,),
R(Fyen+1) =R(E) = R(Fyn);
R(Fécﬂ + 2) = R(Ec~l) = R(Ec + 2)7
R(Fyen =) =R(F-1) =1

Lemma 11: Let K be an integer whose Zeckendorf representation has F,, +F, for its smallest

two terms.
If k =2 so that X ends with F, +1, m>4, then

R(K)=R(K-1), modd; R(K)=R(K-1)-R(K -2), m even, (12)
If k =3 so that K ends in F,, +2, m>5, then

R(K)=R(K-1)-R(K -3), m odd; R(K)=R(K~1), m even, (13)
IfK ends in F,,+ F,,, 2c 24, then R(K) = R(K -1+ R(K +1); (14)
IfKendsin F,+ F,,,, 2c24, then R(K) = R(K - 1)+ R(K +2). (15)
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Proof: A proof can be written by induction following this outline. Calculate (12) for K =
E,,+1and K =F,_,+1. Equation (12) can also be calculated for K =F, +F,,+1 and K =F, +
E, .1 +1. Then assume that (12) holds for all X such that X < F,_; —1 and use (5) from Lemma 5,
R(F,+K)=R(F,_,+K)+ R(K), 0<K<F, ,—1, calculating each part of (12). Repeat for the
other two parts of Lemma 5. (14) and (15) can be proved by substitution into (12) and (13).
When K ends in F,, +F,,, K+1 ends in F, + F,,+1, so replacing K by K +1 in (12) in the even
case yields (14). When K ends in F,, + F,_,,, then K+1 ends in F,, + F, ., +1, which means that
R(K +1) = R(K) for the odd case of (12). Also, K+2 ends in F,,+ F,_,, +2, which means that
R(K +2)=R(K +1)-R(K —1) from the odd case of (13). Putting these together gives (15). O

Theorem 4: Let F, +F, be the smallest Fibonacci numbers in the Zeckendorf representation of
M. Then
R(M)=R(M-1)R(F,)—q, 0<qg<R(M-1). (16)

If the Zeckendorf representation of M ends in F,,, +1 or F,, +2, where 2c >4, then ¢=0. If M
endsin Fp ,+2, g=R(M-3); F,,+1, q=R(M-2). If m-k is odd, g=0. If M ends in
F,,+F,, 2c>24, then g=(c-1)R(M -1)-R(M +1); if M ends in F,,+F,_,,, 2c>4, then
q=(-DRM-1)-R(M+2).

Proof: Apply Lemma 7(ii) and Lemma 11. When m—k is odd, ¢ = 0 by Theorem 3. O

Corollary 4.1: Let K be an integer whose Zeckendorf representation has smallest two terms
E,+F,. Then R(K)=cR(K -1) when k =2c and m is odd, and when k£ =2c+1 and m is even.

5. R(MF,) AND R(ML,)

Below, R(MF;) can be obtained by putting MF, into Zeckendorf form and then applying
Theorem 3 repeatedly. We list Zeckendorf representations of MF, for M <18, taking smallest
entry F,_,. > F, and write R(MF,) for M <29=1,.

2 =F,+F,,

LF = 3F=F,+F_,

LF,= 4R, =F,+F,+F_, =Fs—Fs
SF,=Fs+F  +F_, =Fust+F -F_
6F, =Fu+h,+F_,

LF,= TF =F ,+F_,

8, =R+ F +F_, =h o tFh+F,
IF, =F +F,+F,+F =R t2h +F_,
W0F =F +F,+F ,+F_, =F 3R +F,
LF, = NF =F +Fo+R+F,+F_  =F ,+4F +F_,=F - F
2F =F s+ F  +F_+F =F . s+F -F_;

BE =Fs+F,+F_ +F

WUE =F s+ F,+tF_ 3+ F Frs+3F, - F s

ISF, =F s+ F ,+F +F 3+ F ¢ =F +4F -F

16F, = FostFatE_ +F g =Fst+5F - F s

VF =F s+F,+F,+F =F.s+6F - F_;
LF, = 18F, = F, s+ F

Fips+2F, = F_;

Lemma 12: For MF, such that L,,_; <M < L,,;, k >2c+2, the smallest Fibonacci number in
the Zeckendorf representation of MF, is F,_,., and the largest is F;,,,_; or F;,,., depending
upon the interval, where
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Frinet SMF, <Frige,  Lyey <M <Ly;
Frne < MF, < Fiigen, Ly sM< Ly,

Proof: Lemma 12 is illustrated for A <18. Assume it holds for all integers 0< Q< L, ;
i.e., the largest term in QF, is Fy,,._, and the smallest is F,_,,, when L,, ,<(Q<L,. ,. Since
LyoFy = Frago + Fyge (see [0]), MF, = OF, + Ly, = Fiype + OF, + Fy_y, has largest term Fj .,
and smallest term F,_,, for L,, <M =L, +0< L,,,,. The subscript difference between F,_,._,
and the next smallest Fibonacci number used in the Zeckendorf representation of MF, is even.
For Ipo s <M < Iy, since Ly, 1Fy = Fiipoy— Fiogon (see [6]), MF, = Ly \Fi +QF, = Fiypeoy —
Frenon1 +OF, 0<0 <Ly y.

Assume the largest possible term in the Zeckendorf representation of OF; is Fj,,._ and the
smallest term is F,_,, for 1,,_; < < L,.,. There is no modification of terms for the Zeckendorf
representation in adding ¥, ,,._;, but the smallest term in the Zeckendorf representation of MF,
becomes F,_,, for 1,,_;, < M < L, since

Figi = Fy_genr = (Fecgi = Fzoera) + Frae
= (Fregici t Py + o + B _geis) + B

Thus, the largest term is F,,,,._; and the smallest is F,_,, for MF,, when L,._, <M < L,,.
Note that the subscript difference between F,_,. and the next smallest Fibonacci number used in
the Zeckendorf representation is odd. O

R(MF,), 1<M <29=L,, k >2c+?2 for Smallest Term F_,,

R(E)  =R(F)
RQF) =2R(F,,)
RGF)  =3R(F,)-1
R4F) =3R(F,)-2 =3R(F_)+1 4=1,
RGF) =5R(F_,)
R(6K) =5R(F,,)
R(IE) =5R(F,_)-1 7=1,
R@®F) =8R(F,_)-3
ROOF) =8R(F, )4
R(0F) =8R(F, )5
R(1F) =3R(F_)-4 =5R(F o)+l =1L,
R(2F) =10R(F, )
RU3F,) =13R(F, )
R(4F) =12R(F, )
R(5F) =12R(F,_,)
RU6F) =13R(F, )
RQTR) =10R(F, o)

RU8FE) =1R(F,_g-1 18= I,
R(9EF) =15R(F_¢)-4
R(20F,) =18R(F,_¢)~6
RQIF) =21R(F,_ )-8
RQ2ZF) =16R(F _¢)-7
R(23F) =20R(F,_)-10
R(24F,) =20R(F,_)-10
R(25F) =16R(F_¢)~9
RQ6F,) =21R(F,_o-13
RQTE) =18R(F,_)-12
R(28F,) =15R(F, )-11
RQ9F,) =TR(F_ -6 =TR(F, 5+ 29=1,
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Theorem 5: When L,,_, <M <L, ., k>22c+2,

R(MF;) = R(ME;, = D)R(Fi2.) — 9, (17)
where R(MF, —1)= R(MF,_,,—1). Further, g=0 for ,,_, <M < L, while g =R(MF,,,,-2)
for ,,<M<IL,.,.

Proof: The assertions follow from Theorem 4 by taking £ =2c+2 in (17), since we have
F,_,. as the smallest term of the Zeckendorf representation of MF;, by Lemma 12. When L,._, <
M < L,,, the last two terms in the Zeckendorf representation are F,, + F,_,., where (m—k +2c) is
odd; thus, in using Theorem 3 repeatedly to evaluate R(MF;) from its Zeckendorf representation,
we will have ¢ =0 by Corollary 3.1. When I, < M < L,_,,, the subscripts of the last two terms
will have an even difference, so a remainder term will be involved. Taking £ =2c+2 to give the
smallest F,, = F, gives ¢ = R(MF,,,, —2) by Theorem 4 in the interval where g #0. O

Next, we note that the values R(MF;,, —1) form palindromic subsequences such that:
R((Lyer + BF - D) =R((Lp, - K)F - 1), 1<K <[L,. ,/2];
R(L + K)F, =) =R(Lyoy ~-K)F, - 1),  0<K<[L, /2],
Also of interest, we have
R(Ly oy =1) = R(Lpen 5 = 1);
R(Lye1Fy, =) +2 = R(L, F, - D).
Corollary 5.1: R(L,L,-1)=4(p-1),n>p+3, p>2.
Proof: Vajda [6] gives equation (17a), equivalent to
{Lnﬂ, +L, ,=L,L, peven,
L.,-L_,=LL, podd

Since L., +L, ,=F,u+Fup+F_,n+F,_,,, the smallest Fibonacci number used in the

Zeckendorf representation is F;._, ;. Theorem 4 gives
R(Ly,p,+ L, )= R(Ly, , + L, ,—DR(F,_, 1) -9
=R(L,L, -DR(F,_,-)—q.
Since we only want R(L,L,-1), we calculate R(L,,,+L,_,—1) when F,
n—p=3,n=p+3,sothat R(L,,, + L, ,—1) has a constant value for n> p+3.
Rl + Ly =0 = Ry + Iy = 1)
= R(Fypog + Fypin +3)
= R(Fypuz +3) + R,y =)
=@2p-D)+@2p-3)=4(p-1),

where we have applied earlier formulas from Theorem 3 and special values for R(F,,; —1-K).
Thus, R(L,L,—1)=4(p~-1) for p even.

—p-1 =1, or, for
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Similarly, for p odd, L,., - L,_, has F,_,_, as the smallest Fibonacci number in its Zecken-
dorf representation. Again calculate R(L,,~ L,_,~1) for the smallest value for F; —p2 =1,
which occurs for n—p=4, n=p+4. Then

R(Lypys— Ly =) = R(Fy 5+ Fy iy — 8)
=2R(Fypi3—8) =2(2p~2)=4(p-1).
Thus, R(L,L,-1)=4(p-1) for p odd, establishing Corollary 5.1 and proving Conjecture 2 of
[1]. O
Corollary 5.2: R(F,F,-1)=F,, n>p, p>3.

Proof: F,..F, and F, ,,F, both have F;_,. as the smallest term in the Zeckendorf represen-

tation. Thus,
R(FpeniFy) = R(Fyeri By = DR(F20) — 4
R(]:2c+2Ec) = R(I:2(:+2‘F;c - I)R(Ec—2c) —q.

When k >2c+2, R(MF, —1) has a constant value. When &k =2c+2,
R(EC+1E€ - 1) = R(Ec+lFic+2 - 1) = Féc+l
while
R(EC+ZEC =)= R(FpeioFpcir — 1) =2¢+2,

applying two identities from Carlitz [3]. Thus, R(F,F,—1) = F,, establishing Corollary 5.2 and
making a second proof of Theorem 3 in [1]. O .

The Lucas case R(ML,) is very similar, relying on [6] for F,I, = F.,+F,_,, p odd, and
F,I, = Fy,,— Fp_p,, p even. When F,._, <M < F,_, the smallest term in the Zeckendorf repre-

sentation of ML, is F;_,.,;, while the largest is Fy ;. 5, Foeog <M <Fy._, OF Fppe i, Foe 1 <
M<EFE,, k22c+1.

Zeckendorf Representations for ML,, 1< M <13

KL= L =Fk,+tF, =Fn—Fa

KL = 2L, =F.;+F_;

Fl,= 3L, =Fa+bg+E_+F_ =Fa—Fey
AL, =By + Fen+ By + B

KL = SL =Fs+F_;

6L, = Ec+5 +Fen +Ec-1 +Fs
1L, = Fpys + B+ B3+ Fes
KL = 8L, =F s+F +E +F_ +F_3+F_s =F.s—F_
L, =Fs+t by +F,+F 4+ F
10L, = F g+ B+ By + B4
UL, =F ¢+ b+ FatF  +F_ 4+ F_,
12, =B+ FytFon+F, +F
KL = BF=F,+F_,
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R(ML,), 1<M <21=F;, k>2c+1 for Smallest Term F,_,__,

R(L,) =2R(F,_)-1 R(12L,)=18R(F, - 7)
RQ2L,) =4R(F,_3)-1 R(3L,) =8R(F;_7) -1
RGBL)=4R(F,_))-3 R(4L,)=24R(F,_,) -1
R(4L,) =8R(F;_s) R(15L,) = 30R(F,_,)-11
R(GL,) =6R(F,_5)-1 R(16L,) = 20R(F,_,) -9
R(6L,) =12R(F;,_5) -5 R(7L,)=32R(F,_,)-16
R(1L) =12R(F,_) -7 R(18L,) = 20R(F,_,)—11
R(BL,)=6R(F,_5)-5 R(19L,) = 30R(F},_;) - 19
R(9L,)=18R(F,_,) R(20L,) = 24R(F,_,) -17

R(10L,) = 16R(F,_,) R(Q1L,)=8R(F,_,) -7

R(11L,) = 16R(F, )

Theorem 6: When F,,_, <M <F, , k>2c+1,

R(ML,) = R(ML, -DR(F,_011) 9, (18)
where R(ML, —1) = R(ML,,,, - 1); further, g =0 for F,,_, <M < F,__,, and ¢ = R(ML,_,, —2)
when F,, S M<F,.

The proof of Theorem 6 depends on Theorem 4, and being similar to the proof of Theorem 5
is omitted here. We note that the values R(ML,_,, — 1) form palindromic subsequences such that
R((Ec—l +K)Lk - l) = R((}Th‘ - K)Lk - 1)a 0<K< [F‘ZC—Z /2];
R((EC+K)Lk _l)=R((Ec_K)Lk —1), 13K£[Ec—l/2]-

6. R(F,+F,)

Theorem 7: R(F, +F,) and R(F,, + F, —1) have the following values:
R(F,+F) =R(E, ,.)RE,), (m— k) odd,
R(F, +F)  =R(F, 1n)R(F) -1, (m-k) even;
R(F,-F) =R(F, . )R(EF,_)+]1, (m-k) even;
R(F,~F) =R(F, p)R(F.), (m-k)odd
R(F, +F. 1) = R(F,_..»);
R(F, = F =1 = R(F ).
Proof: By Corollary 3.1,
R(E, + Fp) = R(E, ) R(F) + 1.
If m—k is odd, r=0, and R(F,_,,)=R(F,_;,,), making R(F, +F,)=R(F, . )RE,). If
m—k is even, r = R(F,,,-2-F,)=R(F,_,) = R(F,)-1, and R(F,,_,,,)+1=R(F,_,.,), making
R(E, + F) = R(E,_12)R(F,) - 1.
Equations (7) give R(F,, £ F, —1) by examining the difference of the subscripts; note that the

results for R(F,, + F,) agree with Theorem 4. Using Theorem 1, followed by Corollary 3.1, while
noting that the greatest Fibonacci number in F, -2 is F;_;,

R(F, = F) = R(F,, + (£, = 2)) = R(F,,_ )R, ~2) +7.
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Note that R(F, —2) = R(F;_,). If m—k is odd, r =0, while if m—k is even,

r=R(F,-2-(F,-2))=R(0)=1 O
Corollary 7.1: R(F,L,—1) can be written as
() R(FL,-D)=2R(F)+1, n2p+2, p>]
() R(L)F,-1)=2R(F,,),n>p+1, p>2.

Proof: Vajda [6] gives equation (15a), equivalent to

Fup+F_,=FL, peven,
El+p _El—p - F;ILp’ p odd >

By Theorem 7, R(F,,,+F,_,—1)=R(F,,,,)=p+1, while R(F,, ,—F,_,-1)=R(F,,)=p. So
R(F,L,-1)=p+1, p even, and R(F,L,-1)=p, p odd, which makes R(F,L,-1)= 2[p/2]+1,
proving part (i) as well as Conjecture 3 of [1]. Since [6] also gives

F.,+F,_,=LF, podd,
F.,-F,_,=LF, peven

n-p n” p>

in the same way, we can show that R(L,F,—-1)=p+1, p odd, and R(L,F,—1)=p, p even,
which can be rewritten in the form of (ii). Thus, we have proved part (ii) as well as Conjecture 1
of [1]. O

Corollary 7.2: Let F, <N <F,

n+l
() R(L,)=2R(Fy)-1= R( )+2, p24;
() R(L,,,+N)=R(F, n+p_1+N)+R( mip3+t N) = R(L, )R(N) +2r,
where r =0 if p is odd, and r = R(F,,; —2— N) if p is even;
(i) R(L,,,—K)=2R(F,,, ,+(K=2)), 2<K<F, ;.
Proof: Since L,,,=F,,,+F,, let m=p+2 and k = p in Theorem 7 to write (). Apply
equation (10) to R(F,, 4 +F,,,+N) followed by Theorem 1 to write the first part of (ii).
Then use Corollary 3.1 and (i) to simplify, finally obtaining (ii).

When 2<K<F,, 5, the largest term in the Zeckendorf representation of F,,, ,—K is
F,.p—p- Then

( n+p K) R( n+p+1 n+p— K))
_ZR( n+p—1 K) 2R( n+p-2 2+K) a
Corollary 7.3:

R(L,,,+ 1L, ) =2p-2)R(L, ) -1=4p-DR(F,_,))-Cp-1);
R(Ln+p - n—p) = 4(P_ l)R(F—p—Z)’ n—p23

Proof: Let N=1L, ,=F, ,,,+F,_,inCorollary 7.2. Then

( n+p—l+N)+R( p—3+N)
=(P-DR(L,. ) +(P-2)R(L,_,) +2R(Fy_piy —2 - F,

n-p+l n—p—l)
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= 2P~ )R(L, ) +2R(E,_p ) = 2P - IR(Ly ) + R, ) -1
= (2p - 2)1Q(I‘r1—p) -1= (2p - 2)[2R(F —p—l) - 1] -1
=4(p-DR(F,_,-)-2p-D).
Now let K= L,_, in Corollary 7.2. Then
R(Ln+p - Ln—p) = 2R(F;l+p—2 +F—p+l +F—p—l - 2)
= 2(p~DR(Ey s+ Fypy~2)
=2(p-DQR(F,- 1 =2)) =Hp-DR(F,_,»),
finishing Corollary 7.3. O
Corollary 7.4: R(L,L,-1)=4(p-1),n2p+3, p=2.
Proof: Vajda[6] gives L,,,+L, ,=L,L, whenpiseven, and L, ,— L,

n-p =
odd. The smallest Fibonacci numbers in the Zeckendorf representations are F,_, ; and F;

L,L, whenp is
—p—2>
respectively. Since also R(L,,,*L,_ ,-1)=R(L,L,—1), apply Theorem 4 to Corollary 7.3.
This also proves Conjecture 2 in [1]. O

Corollary 7.5: RGSFF,-1)=4(p-1),n2p+3, p=2.

Proof: L,,,
an easy identity as in Corollary 7.4. O

+L, ,=5EF, podd; L,,—L, ,=5FF,, p even, also appear in [6], giving
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