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0. INTRODUCTION 

Let R{N) be the number of representations of the nonnegative integer A^asa sum of dis-
tinct Fibonacci numbers. For N = Fn-l9 n>\, the Zeckendorf representation, in which no 
two consecutive Fibonacci numbers appear in the sum, is the only possible representation, and 
R{Fn -1) = 1, as proved by Carlitz [3] and Klarner [4]. The sequences {bn -1}, bn+l = bn +bn_l9 

arise as a generalization, having the property that R(bn-l) = R(bn+l-l) = k for all sufficiently 
large n (see [1] and [4]). The generation of the specialized and related sequence 1, 3, 8, 16, 24, 
..., 4i» whose 71th term is the least N such that n = R(N), spurred efforts to find recursive rela-
tionships for the values R(N) and ways to compute R(N) for large values of N. Some authors 
have used T(N) and some R(N) in counting representations; we will use R(N) for the number 
of ways to represent N as a sum of distinct Fibonacci numbers (without i*j) and T(N) for the 
number of representations if both Fx and F2 are used. In our notation, Carlitz and Klarner both 
givei?(F„) = [«/2], « > 2 , where [x] is the greatest integer inx. Since T(N)=R(N)+R(N-l), 
we have concentrated on formulas for R(N). 

Earlier authors have used generating functions and combinatorics to develop and prove 
representation theorems. In this paper we concentrate on properties of the integers whose repre-
sentations are being counted. We prove Conjectures 1, 2, and 3 from [1] as well as writing for-
mulas for R(MFk) and R(MLk), M>1, and solving R(N)=mR(N-l)-q for integers M9 m, 
mdq. 

1. THE SYMMETRIC PROPERTY AND A BASIC RECURSION 

The most obvious property in a table of R(N) is the palindromic subsequences it contains, 
beginning and ending with 1, for N in the interval F„ -1 < N < Fn+l - 1 ; i.e., when 0 < M <Fn_x, 
n>3, 

R(Fn+l-l-AJ)=R(Fn-l + M). (1) 

Since these values R(N) are symmetric about the center of each palindromic segment, we only 
have to compute the values of the first half of the interval. Symmetric property (1) is a variation 
of Theorem 1, whose results appear in Klarner [5], as specialized for the Fibonacci sequence 

Theorem 1: 
R(Fn+l~2-M)=R(Fn^M)y0<M<Fn__un>3. 
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Values for R(N) for 0 < N < 60 
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It is a simple matter to compute a table for R(N) from generating functions for small N, but as JV 
gets larger, the computer's memory will eventually be exceeded. We have calculated R(N) for 
1 < N < 257,115 and have capabilities of calculating individual values for R(N) for very large TV; 
for example, R (3,000,000,000) = 6165. We have listed {An} for 1 </?<330. But to "study the 
mysteries of {An} or to compute R{N) for large Nby hand, we need some recursive relationships. 
Klarner [5] proved Theorem 2 for generalized Fibonacci numbers. 

Theorem 2 (Basic Recursion Formula): If Fn < M < Fn+l - 2, then 

R(M)=R(Fn+l-2-M)+R(M-FnX n>4. (2) 

Lemma 1: If Fn < M < Fn+l-2, then R{M-Fn) is the number of representations of Musing Fm 

while the number of representations of M using Fn_x is R(Fn+l - 2 - M). 

Proof: The largest Fibonacci number in Mis Fn. R(M) is the sum of the number of repre-
sentations of M that use Fn and the number of those that use Fn_x. Since M < Fn+l - 2, no repre-
sentations of Muse both F„ and Fn_Y\ else M>Fn+l, There are no representations of M that 
use neither Fn nor Fn_u since F„-2 = Fn_2 + Fn_3 + • • - + F3 + F2 <M. Note that M = Fn+Mx, 
where the largest possible Fibonacci number in Mx is Fn_2; else M could contain i^+1. The num-
ber of representations of M that use F„ is RiM^ =R(M-F„) since Fn is added to each possible 
representation of Mx to make a representation of Musing Fw. To list representations of Musing 
F„_i, if we write M = F„_x+Fn_2 +Mj and then list representations of Mu there can be a repeti-
tion of terms, such as Fn_2 appearing twice, so we need sums using disjoint sets of Fibonacci 
numbers. Representations of (Fn+l-2-M) = (Fn_{ + Fn_2 + • • • + F3 + F2)-M will use a set of 
Fibonacci numbers disjoint from those selected to represent M. Thus, R(Fn+l - 2 - M) must give 
the number of representations of M that use F„_x by examining Theorem 2. • 

In counting by hand, R(M)=R(M-F„)+R(M-F„_l) if M-Fnr.l<Fn_v For example, 
23 = 21 + 2 = 13 +10, and i?(23) = R(2) +i?(10). If M-F n ^ > F„_1? an adjustment must be made; 
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30 = 21 + 9 = 13 + 17 = 13+ (13 + 4), and R(30) = R(?)+R(17) -R(4). Lemma 2 makes this count-
ing correction. We take R(0)='l and R(K) = 0 when K<0 in Lemmas 2 through 6, and [x] 
denotes the greatest integer in x. 

Lemma 2: If F„<M<F„+1-2, then 

R(M)=R(M-F„)+R(M-Fn_x)-R(M-2F„_X); 
R(Fn+l-2-Ad) = R(M-Fn_x)-R(M~2Fn_x). l } 

Proof: R(M) is the number of representations of Musing Fn plus the number of represen-
tations of Musing Fn_x corrected for the number of representations of (M-Fn_x) using F„_u is 
any exist. A second way to write the representations of M that use Fn_x is to write M = Fn_x + 
(M-Fn_i) and observe that the number of representations that use Fn_x is R(M - Fn_x) if F„_x is 
not used in representing (M - Fn_x). If M > 2Fn_x, R(M - 2F„_l) is the number of representations 
of ( M - F ^ ) using Fn_h since M-Fn_x = Fn_x + {{M-Fn_x)-Fn_x). Thus, the representations 
ofM using Fn_i are counted by [R(M - Fn_x) — R(M — 2Fn_x)\, which count appeared in Lemma 1 
asi?(Fw + 1-2-M). D 

Lemma 3: 
R(F„ + K) = R(F„_l-2-K)+R(K),0<K<F„_l-2. (4) 

Lemma 2 is another form of Theorem 2, while Lemma 3 results when M = K + Fn in (2), and 
is useful in computation. For example, let K = 24, R(K) = 5; since 0< K<Fn_x -2, take »> 10. 

» = 12 
H = 13 
« = 14 
« = 16 

fl(24 + 144)=.R(87-24)+/?(24) = 8 + 5; 7?(168) = 13, 
tf(24 + 233) =./?(142-24)+i?(24) = 10 + 5; R(257) = 15, 
R(24 + 377).= R(231 - 24) +R(24) = 1.3 + 5; /?(401) = 18, 
rt(24 + 987) = /?(608-24)+/?(24) = 18 + 5; #(1011) = 23, 

where we recognize 24, 168, 257, 401, and 1011 as members of our specialized sequence {A„}. 

J eiftifta 4* 
R(M) = R(M- Fn)+R(M - FB_,), F„ < M < F„ + F„_3 - 1 . 

Proof: Because 2Fn_x = F„ + F„_3, R(M- 2F„_l) = 0 in Lemma 2 throughout the interval 
chosen. • 

Lemma 5: R(N) for the interval F„<N< Fn+X - 1 is given by: 
R(F„ + K) = R(Fn_2 + K) +R{K), 0<K<F„_3-1; 
R(F„ + K) = 2R(K), F„_3<K<Fn_2-\; (5) 
i?(F„ + ̂ ) = /?(F„+1-2-X), Fn_2<K<F„_,-\. 

Proof: Let M = Fn + K in Lemma 4 and use Theorem 1 to write the first and last Fn_3 values 
of R(N). Let F„_3+p = K\n Lemma 3, followed by application of Theorem 1 since 0 < p < F„_4: 

R(Fn + /v_3 + p) = R(F^ - 2 - (F„_3 + p)) +R(F„_3 + p) 
= R(Fn_2-2-p) + R(Fn_3 + p) 
= R(F„_3 + p)+R(Fr,_3+p). 

Thus, R(Fn + K) = 2R(K) when F„_3 <K<Fn_2-\. D 
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Lemma 6: 
R(F„ + K) = R(Fn_2+K)+R(K)-R(K-F„_3), 0<K<F„_v (6) 

Proof: For 0 < K < F„_t - 2, take M = F„ + K in Lemma 2, so that M - 2F„_l = (M- F„)+ 
(Fn -2Fn_1) = K-Fn_3. Then let K = Fn_x - 1 in the expression above, using R(F„ -1) = 1. Fin-
ally, take K = F„_x, using R(Fn+2) = [(n + 2)/2] = R(F„) +1 from [3] and [4]. • 

2. SPECIAL VALUES FOR R(b„ - 1 ) AND R(bn) 

Recursive sequences {bn -1}, bn+l = bn +bn_1, have R(bn - l)=R(bn+l -1) = k for n sufficiently 
large (see [1] and [4]). We can write sequences for which R(N-l) = k, a given constant, as 
indicated in the following example. Say k = 5 is given. Find a particular value, i.e., i?(24) = 5. 
Write 24 +1 = 25 = 21 + 3 +1 in Zeckendorf form, or 

R(24) = R(FS + F4+Fl-1) = R(F8+F4+F2-1) = 5. 

These are the first terms, when Fn = 1, in sequences we seek. Thus, 

R(F„+7+Fn+3+F„-l) = 5 = R(Fn+7+Fn+3+Fn+l-lX n>\. 

The symmetric property gives R(Fn+1-l + M)=R(Fn+%-\-M) = 5 for M = Fn+3+Fn, so that 
we can write 

R(F„+s-l-(F„+3+F„))=R(F„+7+Fn+s + F„+l-l) = 5, » > 1 . 

Since R(Fl0) = R(Fl0 +1 -1) = 5, again using the symmetric property, 

R(F„+9 +Fn-\)= R(F„+9 + Fn+l -1) = 5, n > 1, 
*(4+io ~F„-l) = R(F„+l0 - F„+l -1) = 5, n > 1. 

Since R(F2k) = R(F2k+l) = k,we can derive in a similar way, for n > 1: 

R(F2k-l+„+Fn -d = k =R(F2k_l+„ +F„+l -1); 
R(F2k+„-F„-\) = k= R(F2k+n-Fn+1 -1), forn> 1. 

For a given value of k, there are many infinite sequences such that R(b„ -1) = k. All ways of 
writing infinite sequences such that R(b„ -1) = k, for k = 1,2,3, were given by Klarner [4] as 

R(F„-l) =R(F„+l-l) =1; 
*(^ + 3 + F„ -1) = R(Fn+3 + F„+l -1) = 2; 
R(F„+5 + F„-l)= R(F„+5 + F„+l -1) - 3; 
*(^+6 - ^ -1) = *(^„+6 - F„+1 -1) - 3. 

Some useful equivalent statements are 
R(2Fn+2-l) = R(Ln+2-l) =2; 
i?(3F„+3-l) =/?(4F„+3-l) =3; 
i?(4+ 1 + JF„-l)=JR(X„+F„+ 1-l)=3. 

Lemma 7: Let {£„} be a sequence of natural numbers such that bn+2 = bn+l +bn. Then {bn} has 
the following properties: 
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(i) R(bn-l)=R(bk-l) for all n>k if Fk is the smallest Fibonacci number used in the 
Zeckendorf representation ofbk,k>2, or if {bn} has b2 > 2bx and Fk_x < b2 - ^ < Fk. 

(ii) R(bn -1) = R(bn - l)R(Fm) -q,qn constant, 0 < q < R{bn -1), where Fm is the smallest 
Fibonacci number used in the Zeckendorf representation ofbn,m>2; 

(iii) R(bn+2) = R(bn) +R(bn -1) = T(bn\ n>k,ns in (i), where T(N) is the number of repre-
sentations of JVas sums of Fibonacci numbers, where both Fx and F2 can be used; 

(iv) R(bn+2c) = R(bJ+cR(bn-l)=R(bn+2c_2)+R(bn-l\ n>k. 

Proof: Klarner [4] used the Zeckendorf representation of bn to prove (i) for n sufficiently 
large; n > k as in the second statement appears in [1]. The proof of (ii) relies on Lemma 5 and 
mathematical induction. Take Fn<bn<Fn+l-1. Let bn = Fn+K, 0<K<Fn_x-1. Assume part 
(ii) holds for all integers K = Fn_x. lfO<K< Fn_3 -1, Lemma 5 and the inductive hypothesis give 

R(h„)=R(K) + R(Fn_2+K) 
= [R(K-l)R(FJ-gi]HR(Fn_2+K-l)R(Fm)-q2] 
= [R(K-T)+R(F„_2+K-l]R(Fm)-(qi+q2) 
= R(Fn+K-l)R(Fm)-q3 

= R(bn~l)R(Fm)-q3, 0<q3<R(bn-l\ 

since 0 < qx + q2 < R(K-1) +i?(F„_2 + K -1) = R(Fn + K -1) = R(bn -1), again using the inductive 
hypothesis. A proof by induction can be made from each of the other two parts of Lemma 5, 
extendingKto the intervals Fn__3 <K< F„_2 - 1 , and Fn_2 <K< Fn_x - 1 , but is omitted here in the 
interest of brevity. 

To prove (iii), using (i) and (ii), 
R(bn+2) = R(bn+2 - l)R(Fm+2) -q = R(bn - l)(R(Fm) +1) - q 

= (R(bn-l)R(Fm)-q)+R(bn-l)=R(hri)+R(hn-l). 

Next, take N = bn and use T(N)=R(N)+R(N-l) as in [4]. Note: The notation is not stan-
dardized; the meanings of R(N) and T(N) are reversed in [4] from those used in this paper. Part 
(iv) follows from R(Fn+2c) = R(Fn) + c, using (ii) to write 

= (R(bn - l)R(Fm) - q) +cR(b„ -l)=R(h„) +cR(b„ -1), 

where, also from (iii) and (i), 

R(K+2c) = R(K+2c-2) +R(bn+2c-2 - 1) = R{K+2c-2) +R(K ~ 1). • 

3. FORMULAS FOR R(N) BASED ON 
ZECKENDORF REPRESENTATION 

A formula for R(N) for whole sequences {bj, bn+2 =bn+l +bn, can be written, or R(N) for 
large integers N based on the Zeckendorf representation of N, by repeatedly using Theorem 2, 
Lemmas 2 and 6, and formulas for R(Fn+p + N) as developed next. Let the largest Fibonacci 
number contained in Nhe Fn; equivalently, Fn is the largest term in the Zeckendorf representation 
of N9 and Fn<N < Fn+l - 2. To count the number of ways to represent N as sums of distinct 
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Fibonacci numbers, first find the largest two Fibonacci numbers in AT and then apply formulas of 
the form R(F„+p + N). 

Lemma 8: Let F„ < N < F„+l - 2. Then 
R(F„+1 + N) = R(N) + R(N-F„); 
R(Fn+2+N)==R(N) + R(F„+l-2-Ny, 
R(Fn+3 + N) = 2R(N). 

Proof: Let M = N + Fn+lin Lemm&2,where F„+2<M <F„+3-2. Then 

R(F„+l +N) = R(F„+l + N - Fn+2) + R(Fn+l + N- Fn+l) - R(F„+1 + N- 2F„+1) 
= R(N-F„) + R(N)-R(N-Fn+l) = R(N-F„) + R(N), 

where R(N - Fn+l) = 0 because N < Fn+l. 
Let M - N + Fn+3 in Lemma 2, where Fn+3 < M < Fn+4 - 2; 

m+3 +N) = R(Fn+3 + N- F„+3) + R(Fn+3 + N- F„+2) - R(F„+3 + N- 2F„+2) 
= R(N) + R(N + F„+i)-R(N-Fn) 
= R(N) + [R(N - F„) + R(N)] - R(N - F„) = 2R(N). 

Let M - N + Fn+2 in Theorem 2, where Fn+2 < M < F„+3 - 2; 

R(Fn+2 + N) = R{Fn+3 - 2 - (Fn+2 + N)) + R((Fn+2 + N) - Fn+2)) 
= R(Fn+l-2-N) + R(N).V 

Theorem3: Let Fn<N<Fn+l-2. Then 

R(F„+2k+l + N) = (k + l)R(NXk>l, (9) 

R(Fn+2k+N) = kR(N) + R(Fn+1-2-N), k>l (10) 

Proof: Assume that R(Fn+2j+l + N) = (j + l)R(N) holds for j < k; the case k - 1 was estab-
lished in Lemma 8. Consider 

R(Fn+2(k+l)+l + # ) = R(F{n+21c+\)+2 •+ N \ n < Fn+\ < F(n+2k+3)-3 • 

By the first part of Lemma 5, 

m+2k+3 + # ) = *tf»2*+l + * ) + WW 
= (k + l)R(N) + R(N) = [(k + l) + l]R(N), 

establishing the formula for R(Fn+2k+l + N) by induction. 
The proof of the even case is similar, again taking the case k = 1 from Lemma 8, and using 

Lemma 5; therefore, it is omitted here. • 

Theorem 3 can be used as a reduction formula to write R(N) for large N. For example, 
R(1694) =R(F17+ 97) = 3R(97) + R(144-2-97)= 3(9)+ 6 = 33, 

so i?(1694) = 33 since R(97) = 9 and R(45) - 6 are known from data. However, Theorem 3 can 
be written in another form that is even more useful for computation, as given in Corollary 3.1. 
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Corollary 3.1: Let Fn<N<Fn+l-2. Then 

R(Fm + N) = R(Fm_n+l)R(N) + r, m-n>2y 

where r = 0 if m-n is odd, and r = R(Fn+l -2 - N) if m-n is even. 
( i i ) 

Proof: The result follows from R(Fn) = [w/2] for [x] the greatest integer in x from [3] and 
[4]. Let /w-w = 2* + l, then m = n + 2k + l and [(/w-« + l)/2] = ifc + 1; therefore, R(Fm + N) = 
[(m-n + l)/2]R(N)by(9). Similarly, let m-n = 2k in (10). D 

4 SPECIAL VALUES FOR R(Fn±K) 

We write some special formulas useful in breaking down expressions for R(N) by putting 
special values into equation (1) and Corollary 3.1. Expressions for k = 0,1, and 2 in Lemma 9 
appear in [4]. We also find integers m and q such that R{M) = mR(M-l)-q. 

Lemma 9Special values for R(Fn-t±k): Let [x] be the greatest integer contained in x, and 
let 0 < * < F„_t. Then R(Fn -l + k) = R(Fn+l -l-k) has the following values, 0 < k < 8. 1 n-\' 

* = 0: *(F„-1) = R(F„_ 
* = 1: R(Fn) = R(F„. 
k = 2: R(F„ + \) =i?(Fn+ 
k = 3: R(Fn + 2) =R(Fn+. 
k = 4: R(F„ + 3) =R(Fn+: 
k = 5: R(F„+4) =R(Fn+ 
k = 6: R(Fn + S) =R(Fn 
k = T. R(Fn + 6) =R(Fn+ 
k = 8: R(Fn + T) =R(F„+ 

-1) =1, n>2 
-2 ) = R(F„) =[n/2], n>3 
-3) =R(Fn_l) =[ (n- l ) /2] , « > 4 
-4) = R(Fn_2) =[(/i-2)/2], »>5; 
-5) = « - 3 , «>6: 
-6) = fl(F„_3) =[(»-3)/2], n>6. 
-7) = « -4 , «>7; 
-8) =w-4, n > 7 
-9 ) =i?(F„_4) =[(»-4)/2] , n>l 

Lemma 10-Special values for R(Flc±K) and R(F2c+1±K): Considering n even and n odd, 
R{Fn±K) has the following values: 

R(F2c) =R(F2c+l) =R(F2c_2) + \; 
R(F2c + l) =R(F2c_l) = R(F2c_2); 
R(F2c+l + l) =R(F2c) =i?(F2c+1); 
R(F2c+l+2) =/?(F2c_I) = ̂  + 2); 
R(F2c+l-l) =R(F2c-l) =1-

Lemma 11: Let A" be an integer whose Zeckendorf representation has Fm + Fk for its smallest 
two terms. 

If k -2 so thatKends with Fm + l, m>A, then 
R(K) = R(K-l),m odd; i?(£) = R(K-\)-R(K-2),m even; (12) 

If k = 3 so that .£ ends in Fm +2, w > 5, then 
R(K) = R(K-\)-R(K-3),m odd; R(K) = R(K-l),m even; (13) 

If K ends in Fm + F2c, 2c > 4, then i?(r) = /?(£-1) + R(K +1); (14) 

IfKends in Fm + F2cH,2c>4, then i?(£) = R(K-1) + i?(^ + 2). (15) 
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Proof: A proof can be written by induction following this outline. Calculate (12) for K = 
F2c + lmdK 

- ^ic+i+1- Equation (12) can also be calculated for K - Fm + F2c +1 and K — Fm + 
F2c+1 +1. Then assume that (12) holds for all K such that K < Fn_l -1 and use (5) from Lemma 5, 
R(Fn + K) = R{Fn_2 + K) + R(K), 0<K<F„_3-l, calculating each part of (12). Repeat for the 
other two parts of Lemma 5. (14) and (15) can be proved by substitution into (12) and (13). 
When K ends in Fm+F2c, K+l ends in Fm+F2c + l, so replacing K by K +1 in (12) in the even 
case yields (14). When K ends in Fm + F2c+l, then K + l ends in Fm +F2c+l +1, which means that 
R(K +1) = R(K) for the odd case of (12). Also, K + 2 ends in Fm + F2c+l + 2, which means that 
R(K + 2) = R(K + l)-R(K-l) from the odd case of (13). Puttingthese together gives (15). D 

Theorem 4: Let Fm +Fk be the smallest Fibonacci numbers in the Zeckendorf representation of 
M. Then 

R(Ad) = R(M-l)R(Fk)-q, 0<q<R(M~l). (16) 

If the Zeckendorf representation of Mends in F2c+l + 1 or F2c +2, where 2c > 4, then q - 0. If M 
ends in F2c+l+2, q = R(M-3); F2c + l, q = R(M-2). If m-k is odd, q = 0. If Mends in 
F2w+F2c, 2c>4, then q = (c-l)R(M-l)-R(M + l); if Mends in F2w+1+F2c+l, 2c>4, then 
q = (c-l)R(M-l)-R(M+2). 

Proof: Apply Lemma 7(ii) and Lemma 11. When m-k is odd, q = 0 by Theorem 3. • 

Corollary 4.1: Let K be an integer whose Zeckendorf representation has smallest two terms 
Fm+Fk. Then R(K) = cR(K -1) when k = 2c and m is odd, and when k = 2c +1 and w is even. 

5. M(MFk) AND R(MLk) 

Below, R(MFk) can be obtained by putting MFk into Zeckendorf form and then applying 
Theorem 3 repeatedly. We list Zeckendorf representations of MFk for M < 18, taking smallest 
entry Fk_2c > F2 and write R(MFk) for M<29 = Lj. 

hFk = 
V* = 
L4Ft = 

L*Fk = 

L6Fk = 

2Fk 
lFk 
*Fk 
5Ft 
6Fk 
1Fk 
&Fk 
9Fk 

lOFk 

UFt 
12Ft 

l3Fk 

m \5Fk 

\6Fk 

HFk 
UFk 

-Fk+I+Fk_2 

= Fk+2+Fk_2 
= Fk+2+Fk+Fk_2 

= FM+Fk_,+Fk_4 

-Fk+i+Fk+i+Fk_4 
= FM+Fk_A 
= Fk+4+Fk+Fk_4 

= FM+FM+Fk_2+Fk_4 

= Fk+4+FM+Fk_2+Fk,4 

= FM+Fk+1+Fk+Fk^+Fk_4 
= FM +Fk_l+ Fk_, + Fk_6 
= Fk+5 + Fk+l + Fk_3 + Fk^ 
= Fk+5+Fk+2 +Fk_3 +Fk_6 

= Fk+5+Fk+2+Fk+Fk_3 + Fk_6 

- FM + FM + Fk_t + Fk_6 
= Fki.5 + FM+Fk+l+Fk_6 

= Fk+6+Fk_6 

= Fk+J - Fk_3 
= FM+Fk-Fk_i 

= FM+Fk+Fk_4 

= FM+lFk+F„_A 

= FM+3Ft+Fk_4 
= Fk+4+4Fk+Fk_4 

~ ^k+5 +^k~ ^k-5 
= Fk+s+2Fk-Ft^ 
= FM+3F„-Fk_i 
= Fk+5+4Fk-F^s 

= Fk+s+5Fk-Fk_5 

= Fk+5+6Fk-Fk_s 

Lemma 12: For MFk such that L^^i <M<Llc+h k>2c + 2, the smallest Fibonacci number in 
the Zeckendorf representation of MFk is Fk_2c, and the largest is Fk+2c_x or Fk+2c, depending 
upon the interval, where 
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<MFk <Fk+2c, 4c_j <M<Llc, 
Fk+2c < MFk < Fk+2cH, Lic<M< L2C+h 

Proof: Lemma 12 Is illustrated for M < 18. Assume it holds for all integers 0 < Q < L ^ ; 
i.e., the largest term in QFk is Fk+2c_2 and the smallest is Fk_2c_2 when Z^_2 < Q < L ^ . Since 
L2cFk=Fk+2c + Fk_2c (see [6]), MFk = QFk + L^k = Fk+2e + QFk + Fk__2c has largest term Fk+2c 

and smallest term Fk_2c for L^ < M = Z^ + Q < L^c+l. The subscript difference between Fk_2c_2 

and the next smallest Fibonacci number used in the Zeckendorf representation of MFk is even. 
For L2e_l <M<L2C, since L ^ F * = Fk+2c_t-Fk_2c+l (see [6]), MFk = L ^ F * + QFk = Fk+2c_t-

+ QFk,0<Q<L2c_2. 
Assume the largest possible term in the Zeckendorf representation of QFk is Fk+2c_3 and the 

smallest term is Fk_2j for L^^T, <Q< LIC-2 • There is no modification of terms for the Zeckendorf 
representation in adding Fk+2c-\, but the smallest term in the Zeckendorf representation of MFk 

becomes Fk_2c for l^,^ <M < Z^ since 
Fk-n ~ Fk-2c+i = {Fk_2i - Fk_2c+2) + Fk_2c 

= (Fk-y-i + Fk-2i-3 + •••+ Fk_2c+3) + Fk_2c. 

Thus, the largest term is i^i+2e-i and t n e smallest is Fk_2c for MFk, when L^^ < M < Z^. 
Note that the subscript difference between Fk_2c and the next smallest Fibonacci number used in 
the Zeckendorf representation is odd. • 

R(MFk), 1 < M < 29 = L,, k > 1c + 2 for Smallest Term FA_2c 

R(Fk) = R(Fk_0) 
R(2Fk) = 2R(Fk,2) 
R(3Fk) = 3R{Fkl)-l 
R(4Fk) = 3R(Fk_2)-2 = 3R(Fk_4) + l 4=L, 
R(SFk) = 5R(Fk_4) 
R(6Fk) =5R(Fk_4) 
R(lFk) = 5R(.Fk_4)-l 7 = L4 
R(ZFk) = 8fl(Ft_4)-3 
R(9Ft) = 8/?(Ft_4)-4 
R(lOFt) = 8K(F4_4)-5 
R(llFk) = 5R(Fk_4)-4 =5R(Fk_6) + l 11= Z, 
R(l2Fk) =10R(Fk_6) 
R(l3Fk) = l3R(Fk_6) 
R(UFk) =l2R(Fk_6) 
R(lSFt) =12R(F^6) 
R(l6Fk) = l3R(Fk_6) 
R(\lFk) =WR(Fk_6) 
R(\*Fk) =7R(Fk_6)-l 1 8 = 4 
R(\9Fk) =15R(Fk_6)-4 
R(20Fk) = 18fl(F*_6)-6 
R(2lFk) =2LR(Ft_6)-8 
R(22Fk) =l6R(Fk_6)-l 
R(23Fk) = 20/?(Ft_6)-10 
R(24Fk) =20R(Fk6)-W 
R(25Fk) = l6R(Fk.6)-9 
R(26Fk) =2LR(FM)-13 
R(UFk) = 18R(F4_«)-12 
R(2SFk) =15R(Fk_6)-U 
R(29Fk) =7R(Fk_6)-6 =!R(Fk_s) + l 29 = L, 
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Theorem 5: When L2c_l <M<4C+1, k >2c + 2, 
R(MFk) = R(MFk -l)R(Fk_2c)-q, (17) 

where R(MFk -l) = R(MF2c+2 -1). Further, q = 0 for L2c_l KMKI^, while q = R(MF2c+2 -2) 

Proof: The assertions follow from Theorem 4 by taking k = 2c + 2 in (17), since we have 
Fk_2c as the smallest term of the Zeckendorf representation of MFk by Lemma 12. When L2c_1 < 
M <Llc, the last two terms in the Zeckendorf representation are Fm+Fk_2c, where (m- k + 2c) is 
odd; thus, in using Theorem 3 repeatedly to evaluate R(MFk) from its Zeckendorf representation, 
we will have q = 0 by Corollary 3.1. When L2C<M< L2c+l, the subscripts of the last two terms 
will have an even difference, so a remainder term will be involved. Taking k - 2c + 2 to give the 
smallest Fm-F2 gives q = R(MF2c+2 - 2) by Theorem 4 in the interval where q ̂  0. • 

Next, we note that the values R(MF2c+2 -1) form palindromic subsequences such that: 

R((l2c-i + K)Fk -1) = R((Llc-K)Fk -1), 1<K<[L2e_212\; 
R((L2c+K)Fk-l)) = R((L2c+l-K)Fk-i), 0<K<[L2c_l/2]. 

Also of interest, we have 
R(L2cFk-l) = R(L2c+lFk-l); 

R(L2c_lFk-l) + 2 = R(L2cFk-l). 

Corollary 5.1: R(L„Lp-l) = 4(p-l), n>p + 3, p>2. 

Proof: Vajda [6] gives equation (17a), equivalent to 

J 4 + , + Ln-P = LnL
P> P even, 

Since Ln+p + L„_p = Fn+p+l + F„+p_l+Fn_p+l+F„_p_l, the smallest Fibonacci number used in the 
Zeckendorf representation is F„_p_i. Theorem 4 gives 

R(Ln+p + L„.p) = R(Ln+p + L„_p - WiF^) - q 

= R(I^Lp-l)R(F^-9. 
Since we only want R(L„Lp-l), we calculate R(L„+p + L„_p -1) when Fn_p_x =F2 or, for 

n-p = 3, n = p + 3, so that R(L„+p + L„_p -1) has a constant value for n>p + 3. 

R(L„+p + 4 _ p -1) = U(Z^ 3 + 4 - 1 ) 
= i?(F2/?+4+F2/?+2+3) 
= i?(F2p+2+3) + i?(F2/?+1-5) 
= (2/>-l) + (2/>-3) = 4(p- l ) , 

where we have applied earlier formulas from Theorem 3 and special values for R(Fn+l-l-K). 
Thus, R(L„Lp -1) = 4(p -1) for/? even. 
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Similarly, for p odd, 4+/?-4-p has Fn_p_2 as the smallest Fibonacci number in its Zecken-
dorf representation. Again calculate R(Ln+p - L^p -1) for the smallest value for Fn_p_2=F2, 
which occurs for n-p = 4, n = p + 4. Then 

RiL,^ - L4 -1) = R(F2p+5 + F2p+3 - 8) 
= 2R(F2p+3 - 8) = 2(2/7 - 2) = 4(/> -1). 

Thus, R(LnLp-T) = 4(p-l) for p odd, establishing Corollary 5.1 and proving Conjecture 2 of 
[i]. a 
Corollary 5.2: R(FpF„-l) = Fp, n>p, p>3. 

Proof: F2c+iFk and F2c+2Fk both have 4-2c a s ^ e smallest term in the Zeckendorf represen-
tation. Thus, 

Wienie) = W2c+iFk ~ l)R(Fk.2c) - q; 
W2MFk) = R(F2c+2Fk - l)R(Fk_2c) - q. 

When k > 2c + 2, R(MFk -1) has a constant value. When k = 2c + 2, 

R(F2c+iFk -1) = R(F2c+iF2c+2 -1) = F2c+1 

while 

i?(4c+24 -1) = Wic+2F2c+2 -1) = 2c + 2, 
applying two identities from Carlitz [3]. Thus, R(FpFn-l) = Fp, establishing Corollary 5.2 and 
making a second proof of Theorem 3 in [1]. • 

The Lucas case R{MLk) is very similar, relying on [6] for 4 4 =Fk+p+Fk_p, p odd, and 
4 4 = Fk+p-Fk_p, p even. When F2c_2 <M<F2c, the smallest term in the Zeckendorf repre-
sentation of MLk is Fk_2c+i, w h i l e t h e largest is 4+2c-2> F2c_2 <M<F2c_u or 4+2c_i, 4c-i ̂  
M<F2c,fc>2c + l. 

Zeckendorf Representations for MLk9 1 < M < 13 

4 4 ~ 
F3Lk = 
F4Lk = 

F5Lk = 

4 = 4+1+4-1 
2 4 = 4+3+4-3 
3 4 = 4+3 + Fk+l + Fk-l + Fk-3 
4 4 = 4+4 + 4+1 + 4-2 + 4-5 
5 4 =4+5+4-5 

= 4+2 - 4-2 

= 4+4 ~ 4-4 

6 4 = 4 + 5 + 4 + i + 4 - i + 4 - 5 
7 4 = 4+5 + 4+3+4-3+4-5 

4 4 = 8 4 = 4 + 5 + 4 + 3 + 4 + i + 4 - i + 4 - 3 + 4 - 5 = 4+6 - 4-6 
9 4 = 4 + 6 + 4 + 1 + 4-2 + 4 - 4 + 4 - 7 

104 = 4+6+4+3+4-4 +4-7 
114 = 4 + 6 + 4 + 3 + F k + l + 4 - 1 + 4 - 4 + 4 - 7 
124 = 4 + 6 4- 4 + 4 + 4 + 1 + 4 _ 2 + 4_ 7 

4 4 = 1 34 = 4+7+4-7 
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R(MLk), 1 < M < 21 = F8, k > 2c + 1 for Smallest Term FA_2c_j 

R(Lk)-
R(2Lk)--
R(3Lk): 
i?(44): 
^(54) = 
R(6Lk)--
ROh)-
R(SLk). 
R(9Lk). 

R(\0Lk) •• 
R(ULk): 

2 i ? ( 4 _ , ) - l 
4 i ? ( 4 _ 3 ) - l 
4R(Fk_3)-3 

6 t f ( 4 _ 5 ) - l 
• UR(Fk_5)-5 
l2R(Fk_5)-7 
6i?(4_5)-5 
18i?(4-7) 
l6R(Fk_7) 
l6R(Fk_7) 

i?(124): 
i?(134) = 
R(ULk)--
R(\5Lk)-. 
i?(164): 
R{\lLk) •-
R(\SLk)--
R(19Lk) •• 
R(20Lk)-. 
R{2\Lk). 

lSR(Fk-7) 
8 i ? ( 4 - 7 ) - l 
24R(Fk_7)-7 
30R(Fk_7)-U 

• 20R(Fk_7)-9 
• 32R(Fk_7)-\6 
20i?(4_7)-l l 
30i?(4_7)-19 
24R(Fk_7)-l7 
SR(Fk_7)-7 

Theorem 6: When F2c_2 < M < Flc, k > 2c +1, 

R(MLk) = RiML, - l)R(Fk_2c+1) - q, (18) 

where R{MLk - 1 ) = ^(A/Lje+i-1); further, q = 0 for 4 C _ 2 < M < 4 C _ 1 ; and ? = R(ML2c+l~2) 
when 4 c - i <M<F2c. 

The proof of Theorem 6 depends on Theorem 4, and being similar to the proof of Theorem 5 
is omitted here. We note that the values R(ML2c+l -1 ) form palindromic subsequences such that 

R((F2c_1+K)Lk-l) = R((F2c-K)Lk-l\ 0 < K <[F2c_21'2]; 
R((F2c+K)Lk-l)^R((F2c-K)Lk-i), 1 < X <[F2c_, 12]. 

6. /?(Fm±FA) 

Theorem 7: R(Fm ±Fk) and R(Fm ±Fk-l) have the following values: 

R(Fm+Fk) =R(Fm_k+2)R(Fk), (m-k) odd; 
R(Fm+Fk) = R(Fm_k+2)R(Fk)-l, (m-k) even; 
R(Fm - 4 ) = R(Fm_k+l)R(Fk_1) +1, (w - *) even; 
i ? ( 4 , - 4 ) = R(Fm_M)R(Fk_l), ( « - *) odd; 
i?(4,H-4-l)=i?(4,.,+2); 
i?(4,-4-i)=i?(41_ft+1). 

Proof: By Corollary 3.1, 

R(Fm+Fk) = R(Fm_M)R(Fk)+r. 

If m-k is odd, r = 0, and R(Fm_k+1) = R(Fm_k+2), making R(Fm+Fk) = R(Fm_k+2)R(Fk). If 
M - * is even, r = / ? ( F t + 1 - 2 - F t ) = /?(Ft_2) = / ? ( / £ ) - 1 , and i?(4,_fc+1) + l = i?(4,_*+2), making 
i ? (4 , + 4 ) = i?(4,_,+2)JR(4)-i. 

Equations (7) give R(Fm ±Fk-l) by examining the difference of the subscripts; note that the 
results for R(Fm + Fk) agree with Theorem 4. Using Theorem 1, followed by Corollary 3.1, while 
noting that the greatest Fibonacci number in Fk - 2 is Fk_u 

R(Fm-Fk) = R(Fm__l + (Fk-2)) = R(Fm_k+l)R(Fk - 2 ) + r. 
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Note that R(Fk - 2) = RiF^). If m - k is odd, r = 0, while if m - k is even, 

r=R(Fk-2-(Fk-2)) = R(0) = l D 

Corollary 7.1: R{FrLt -1) can be written as 
(i) R(F„Lp-i) = 2R(Fp) + l,n>p + 2,p>l; 
(ii) R(LnFp-1) = 2R(Fp+l), n>p + \,p>2. 

Proof: Vajda [6] gives equation (15a), equivalent to 

\Fn+P + K-p = FnLp> P e v e n > 

[F„+p ~ Fn-P = FnLp, P odd, 

By Theorem 7, R(F„+p+F„„p-l) = R(F2p+2) = p + l, while R(Fn+p-F„_p-l) = R(F2p) = p. So 
R(FnLp -\) = p + \,p even, and R(F„Lp -\) = p,p odd, which makes R(F„Lp -1) = 2[p 12] +1, 
proving part (i) as well as Conjecture 3 of [1]. Since [6] also gives 

[Fn+P+Fn-p = LnFp, podd, 
[F„+p-Fn_p = LnFp, pevm. 

in the same way, we can show that R(LnFp-l) = p + l, p odd, and R(LnFp-\) = p, p even, 
which can be rewritten in the form of (ii). Thus, we have proved part (ii) as well as Conjecture 1 
of[l]. • 

Corollary 7.2: Let F„<N<F„+l-2. 
(i) RiL^) = 2R{Fp)-1 = R{V.) + 2, p > 4; 

(ii) R(Ln+p + N) = R{Fn+p_x + N) + R(Fn+p_3 + N) = R(Lp+l)R(N) + 2r, 
where r = 0 ifp is odd, and r = R(Fn+l-2-N) if/? is even; 

(iii) R(Ln+p-K) = 2R(F„+p_2 + (K-2)\2<K<F„+p_3. 

Proof: Since Lp+l=Fp+2 + Fp, let m = p + 2 and k - p in Theorem 7 to write (i). Apply 
equation (10) to R(Fn+p+l + i^+p_i + N) followed by Theorem 1 to write the first part of (ii). 
Then use Corollary 3.1 and (i) to simplify, finally obtaining (ii). 

When 2<K<Fn+p_3, the largest term in the Zeckendorf representation of Fn+p_x-K is 
Fn+P-2- Then 

R(Ln+p -K)= RiF^ + (F„+p_, - Kj) 
= 2R(Fn+p_i -K) = 2R(Fn+p_2 -2 + K).U 

Corollary 7.3: 
R(L„+p + L„_p) = (2p - 2)R(Ln_p) -l = 4(p-1)/?^^,) - (2p -1); 

R(Ln+p -Ln_p) = 4(p-l)R(F„_p_2), n-p>3. 

Proof: Let N = L„_p = F„_p+l +Fn_p_x in Corollary 7.2. Then 
R(Fn+p_l + N) + R(F„+p.3 + N) 
= {p- l)R(L„_p) + (p- 2)R(L„_p) + 2R(F„_p+2 - 2 - F„_p+l - Fn_p_x) 
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= (2p - 3)R(L„_p) + 2R(F„_p_3) = (lp - 3)R(L„_p) + R(L„_p) -1 
= (2/7 - 2)R{Ln_p) -l = (2p- 2)[2R(F„,p_l) -1] - 1 
^4(p-l)R(Fn_p_1)-(2p-l). 

Now let K = Ln_p in Corollary 7.2. Then 
R(Ln+p - L„_p) - 2R(F„+p_2 +F„_p+l +F„_p_l-2) 

= 2(p-l)R(F„„p+l + Fn_p_1-2) 
= 2(p-l)(2R(F„_p_l-2)) = 4{p-\)R(Fn_p_2), 

finishing Corollary 7.3. • 

Corollary 74: R(LnLp-1) = 4(p-1), n>p + 3, p>2. 

Proof: Vajda [6] gives Ln+p + Ln_p - LnLp when/? is even, and Ln+p - Ln_p = LnLp when/? is 
odd. The smallest Fibonacci numbers in the Zeckendorf representations are Fn_p_x and Fn_p_2, 
respectively. Since also R(Ln+p±Ln_p-l) = R(LnLp-l), apply Theorem 4 to Corollary 7.3. 
This also proves Conjecture 2 in [1]. • 

Corollary 75: R(5FnFp-l) = 4(p-l), n>p + 3, p>2. 

Proof: Ln+p + Ln_p = 5FnFp, p odd; Ln+p - Ln_p = 5FnFp, p even, also appear in [6], giving 
an easy identity as in Corollary 7.4. • 
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