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1. INTRODUCTION

Let F, denote the n member of the Fibonacci sequence. Fix a positive integer m. We
reduce {F,}, , modulo m, taking least positive residues. If x = g satisfies the congruence

f(x)=x?-x-1=0 (mod m),

then, by setting u,=1, , =g, and u, =u, ,+u, ,, we have that u, = g" (mod m). We have
given particular attention to those cases having the longest possible cycles, i.e., the number g
being a primitive root modulo m. We call g a Fibonacci primitive root modulo m if g is a root of
x*~x-1=0 (mod m) and g is a primitive root modulo m. For a fixed prime p, Fibonacci
primitive roots modulo p have an extensive literature (see, e.g., [1], [3], [4], [5], [6], and [7]).

Consider the Fibonacci sequence {F,}, , modulo m. The positive integer z(m) is called the
rank of apparition of m in the Fibonacci sequence if it is the smallest positive integer such that
Ey =0 (mod m); furthermore, k(m) is called the period of the Fibonacci sequence modulo m if
it is the smallest positive integer for which Fy,) =0 (mod m) and Fj,,,, =1 (mod m). For a
fixed prime p, Wall [10] has proved that, if k(p) = k(p®) = k(p°*'), then k(p') = p'k(p) for
I>e. Wall asked whether k(p) = k(p?) is always impossible; up to now, this is still an open
question. According to Williams [2], £(p) # k(p?) for every odd prime p less than 10°. Sun and
Sun [8] proved that the affirmative answer to Wall's question implies the first case of Fermat's last
theorem.

In this paper we reproduce and improve upon some results for the Fibonacci primitive roots
mentioned above. Especially, we give connections among the existence of the Fibonacci primitive
roots modulo p” and Wall's question. Our main theorem says that the affirmative answer to
Wall's question [i.e., k(p)# k(p?)] and the existence of Fibonacci primitive roots modulo p
implies the existence of Fibonacci primitive roots modulo p" for all positive integers n. This
theorem overlaps in part with theorems proved by Phong [5], but our point of view and our
methods are different from those of Phong, so that we obtain an effective method to decide

whether k(p) = k(p?) or not.

2. PRELIMINARY RESULTS

In this section we briefly review some elementary results concerning primitive roots and some
well-known results concerning the rank of apparition and the period of the Fibonacci sequence.

By Euler's theorem, if m is a positive integer and if a is an integer relatively prime to m, then
a*™ =1 (mod m), where @(m) is defined to be the number of positive integers not exceeding m
which are relatively prime to m. Denote by ord, (@) the least positive integer x such that a* =1
(mod m). If ord,,(a) = ¢(m), then a is called a primitive root modulo m.

First, we observe that, if f(x) is a polynomial in x with integer coefficients and x;, is a solu-
tionto f(x)=0 (mod p*), then x, + p*y is a solution to f(x) =0 (mod p**') exactly when
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f(x)+f'(x)p"y =0 (mod p**).
This congruence is equivalent to

%.}.f’(xk)y =0 (mod p).

In particular, if pJ £'(x,), then (f'(x,))™ exists modulo p. Therefore,
y ==L () mod p)

is the unique solution modulo p. On the other hand, if p| f’(x,), then y has p solutions modulo p
or no solution depends on f(x,) =0 (mod p**!) or not. We now have the following lemma.

Lemma 2.1: Suppose that x, is a solution to f(x)=0 (mod p*) and pJf’(x,). Then there
exists a unique x,,, modulo p**! such that x,,, = x, (mod p*) and f(x,,;)=0 (mod p**'). On
the other hand, suppose that p| f’(x,) and f(x,)#0 (mod p**'). Then there exists no solution
to f(x)=0 (mod p**!).
A simple application of Lemma 2.1 is the following: suppose that
d|p-1 and a?=1 (mod p).
Since a is a solution to f(x)=x%-1=0 (mod p) and f'(a)=da®"'+0 (mod p) [note that

(d, p) = (a, p) = 1], we have that there exists exactly one solution » modulo p? such that b=a
(mod p) and 5 =1 (mod p?).

Lemma 2.2: Suppose that g is a primitive root modulo p. Then there exists a unique g’ modulo
p? such that g’ = g (mod p) but g’ is not a primitive root modulo p?.

Proof: Suppose that g’ = g (mod p) and ord.(g") =m. We have that

p-1im and m|p(p-1),
so m= p(p—1) if and only if (g’)*"! #1 (mod p?). By the remark above, our claim follows. O

Let p be an odd prime. Suppose that g is a primitive root modulo p?. Then we have that
g7 #1 (mod p?). Thus, g7 =1+ Ap for some A such that p| 1. Hence,

g7 D = 1+ Ap)? =1+ p? (mod p°).
By induction, we have that
gpk(p—l) = 1+Apk+l (mod pk+2).

Lemma 2.3: Let p be an odd prime and let g be a primitive root modulo p*. Then g is also a
primitive root modulo p” for all positive integers 7.

Proof: Suppose that ord ) =m. Since g is a primitive root modulo p*, we have that
p(p—1)|m| p*(p—1). By the argument above, we have that g7(»D # 1 (mod p3). This implies
that m= p*(p-1), i.e, g is a primitive root modulo p3. Again, by the argument above and by
induction, our claim follows. O
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Let o and 8 be two distinct solutions to x> ~x—1=0 (mod m). Then we have the Binet
form

_ an_ﬂn

E
n a_ﬂ

Since @" = @"™ + "% (mod m) and B" = B!+ "2 (mod m), we also have that

(mod m).

a"=aF,_,+a*F,

n-1

(modm) and B"=fF, ,+B*F, , (mod m).

This tells us that, if £(m) is the period of the Fibonacci sequence modulo m, then ord,, () | k(m)
and ord,,(f) | k(m).

Lemma 2.4: Let a and B be two distinct solutions to x> —x —1=0 (mod m) and let %(m) be the
period of the Fibonacci sequence modulo m. Then k(m)=][ord, (), ord,(f)], where [a,b]
denotes the least common multiple of a and 5.

Proof: Let I =[ord, (), ord,(f)]. By the argument above, we have that /|k(m). On the
other hand, &' - #' = 0 (mod m) and a™*! -~ "*' = @~ f (mod m). This implies that F; =0 (mod
m) and F,, =1 (mod m). Thus, k(m)|l =[ord,(«), ord,(f)], and our proof is complete. [

Let ord,(@) =n, and ord,(f) =n,. Suppose that n, >n,. Since aff=—1 (mod m), we have
that (@) = (af)” = (-1)" (mod m). If n, is even, then a™ =1 (mod m). Thus, n |n,; hence,
n = n, by assumption. If n, is odd, then we have that ™ =—1 (mod m) and so »,|2n,. This
implies that n, =n, if n, is also odd and n, =2n, if n, is even. However, it is impossible that
n =n, =1 (mod 2); otherwise, we will have that 1= (af)" =(-1)" =-1 (mod m). Hence, we
have that n, is always even. Moreover, suppose that n, is odd. Then n =2n,. Therefore, if
n =0 (mod 4), then n, =n,. On the other hand, suppose that m is an odd prime power and
suppose that n =2r =2 (mod 4), where r is odd. Then a"=-1 (mod m) and, hence, —1=
(af)” = —p" (mod m). This implies that f” =1 (mod m). Thus, n, =r, and we have the follow-
ing lemma.

Lemma 2.5: Let m be an odd prime power and let & and S be distinct roots of x* —x-1=0
(mod m). Suppose that ord,, (@) = ord,,(8). Then we have either ord,,(@) = ord,,(f) =0 (mod 4)
or ord, (&) = 2ord,(f) =2 (mod 4).

Let z(m) be the rank of apparition of m and let k(m) be the period modulo 7 in the Fibonacci
sequence. Wall [10] has shown that z(m)|k(m). Vinson [9] gave criteria for the evaluation of

k(m)/ z(m).
Lemma 2.6: Let p be an odd prime and let e be any positive integer. Then:
(1) k(p°)=4z(p°®) if z(p®) £ 0 (mod2);
(2) k(p°)=2z(p°) if 2(p°) =2 (mod4);
(3) k(p®)=2z(p?) if z(p®) =0 (mod4).
Proof: Please see Vinson [9, Theorem 2]. O
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3. FIBONACCI PRIMITIVE ROOTS MODULO p

We begin with an easy observation that x> —x —1=0 (mod p) is solvable if and only if y* =5
(mod p) has solutions. If p=5, then x> ~x—1=0 (mod 5) has a double root x=3 (mod 5).
Therefore, 3 is the unique Fibonacci primitive root modulo 5. x*—x—1=0 (mod p) has two
distinct solutions modulo p if p is an odd prime with (5/ p) =1, where (5/ p) is the Legendre
symbol.

For the remainder of this section, we assume that p is an odd prime with (5/ p) =1.

The relation of the rank of apparition to the period modulo p in the Fibonacci sequence has
been studied extensively by Wall [10] and Vinson [9]. We state their results in the next lemma
without proof.

Lemma 3.1: Let z(p) and k(p) be the rank of apparition of p and the period modulo p in the

Fibonacci sequence, respectively.

(1) Suppose that p=11 and p=19 (mod 20) [i.e., (5/p)=1 and (-1/p)=-1]. Then we have
z(p)| p—1, but z(p) [%71. Furthermore, k(p) = z(p).

(2) Suppose that p=1 and p=9 (mod 20) [i.e, (5/p)=1 and (-1/p)=1]. Then we have
z(p)]pT’l. Furthermore, k(p) = z(p), 2z(p), or 4z(p) depending on whether z(p) =2, 0, or
+1 (mod 4), respectively.

The conditions for the existence of Fibonacci primitive roots modulo p and their properties
were studied by several authors. Our next theorem overlaps in part with theorems proved by
Phong [5].

Theorem 3.2: Let z(p) be the rank of apparition of p in the Fibonacci sequence.

(1) There is exactly one Fibonacci primitive root modulo p if and only if p=11 or 19 (mod 20)
and z(p)=p-1.

(2) There are two Fibonacci primitive roots modulo p if and only if p=1 or 9 (mod 40) and
z(p) = %1‘ or p =21 or 29 (mod 40) and z(p) =L;1.

Proof: We know that (5/ p) =1 if and only if p = +1 (mod 10). Let a and S be two distinct
roots of x* —x —1= 0 (mod p) with ord,() > ord,(5).

(1) Suppose that p=11 or 19 (mod 20) and z(p) = p—1. Then, since p—1=2 (mod 4), by
Lemma 2.4, Lemma 2.5, and Lemma 3.1, z(p) = k(p) = ord () = 20rd ,(f) = p—1. Conversely,
suppose that there exists exactly one Fibonacci primitive root modulo p. Then, by Lemma 2.5,
ord,(a)=2ord,(f#)=2 (mod 4). Therefore, by Lemma 2.4, k(p)=ord,(a)=p—1. Hence,
p=11or 19 (mod 20) and z(p) = k(p) = p—1 by Lemma 3.1.

(2) Suppose that p=1 or 9 (mod 40) and z(p) = 1’;—1. Then, since 32_—1 =0 (mod 4), by the
lemmas mentioned in (1), 2z(p) = k(p) = ord,(@) = ord,(B) = p—1. Suppose that p =21 or 29
(mod 40) and z(p) = ”—Tl Then, since ”T—l =1 (mod 2), again by the lemmas mentioned in (1),
4z(p) = k(p) = ord,(a) =ord,(f) = p—1. Conversely, suppose that there exist two Fibonacci
primitive roots modulo p. Then, by Lemma 2.5, ord,(a) = ord,(f) =0 (mod 4). Therefore, by
Lemma 2.4, k(p) = p—1=0 (mod 4). Hence, by Lemma 3.1, our claim follows. O

80 [FEB.



FIBONACCI PRIMITIVE ROOTS AND WALL'S QUESTION

Theorem 3.2 reproduces results for Fibonacci primitive roots modulo p in [1], [3], [4], [6],
and [7]. For example, Mays [4] showed that, if both p = 60k —1 and q =30k —1 are primes, then
there is exactly one Fibonacci primitive root modulo p. In fact, since p=19 (mod 20) and
2q = p—1, by Lemma 3.1, we have either z(p) = p—1 or z(p) = pT_l =2 ( by the assumption that
q is a prime). We obtain z(p) # 2, because F, =1. Therefore, z(p)= p—1. By the theorem
above, we conclude that there exists exactly one Fibonacci primitive root modulo p. By a similar
method, we have the following proposition.

Proposition 3.3: Let p be a prime such that p=11 or 19 (mod 20) and p—1=2q, where g is a
prime. Then there exists exactly one Fibonacci primitive root modulo p.

Example 1: Inthe case, p—1=2-5. There is exactly one Fibonacci primitive root modulo 11,
whichis 8. When p =59, p—1=2-.29. There is exactly one Fibonacci primitive root modulo 59,
which is 34.

When p=1 or 9 (mod 20), the situation is more complicated, because it is possible that
4z(p)| p—1. There are many articles discussed for which p, 4z(p)| p—1 (see, e.g., [2], [8], and
[11]). Here, we quote the result in [8].

Lemma 3.4: Let p be a prime such that p=1 or 9 (mod 20) and, hence, p = x?+5y? for some
integers x and y. Then 4z(p)|p—1if and only if 4|xy.

Suppose that p=1 or 9 (mod 40) [resp. p=21 or 29 (mod 40)]. By Theorem 3.2, there
exist Fibonacci primitive roots modulo p only if 4z(p) | p—1 [resp. 4z(p) | p—1].

Proposition 3.5: Let p be a prime such that p=1 or 9 (mod 20) and, hence, p = x*+5y? for

some integers x and y.

(1) Suppose that p=1 or 9 (mod 40). Then there is no Fibonacci primitive root modulo p if
4|xy. Suppose that 4]/xy and p—1=8q, where g is a prime. Then there exist two Fibonacci
primitive roots modulo p.

(2) Suppose that p =21 or 29 (mod 40). Then there is no Fibonacci primitive root modulo p if
4)xy. Suppose that 4|xy and p—1=4q, where g is a prime. Then there exist two Fibonacci
primitive roots modulo p.

Proof:
(1) Suppose that 4|xy. By Lemma 3.4, 4z(p)|p—1. We have that k(p) < —’-’5_—1, by Lemma

2.6. Hence, there is no Fibonacci primitive root modulo p. Suppose that 4 [xy and p—1=28q,

where g is a prime. Then we have either z(p) :1’2_—1 or z(p) =’;—;1=4. However, z(p) =4,

because F, =3. By Theorem 3.2, our claim follows.

(2) Suppose that 4 |xy. By Lemma 3.4, 4z(p) /p—1. Since 2z(p)|p -1, this implies that
k(p)=2z(p) < pT_l, by Lemma 2.6. Hence, there is no Fibonacci primitive root modulo p. Sup-
pose that 4|xy and p—1=4q, where g is a prime. Then we have either z(p) = —p}l or z(p) =

% = 1. However, z(p) # 1, because F; =1. By Theorem 3.2, our claim follows.

Example 2: Since 29 =3%+5(2%) and 4/3-2, there is no Fibonacci primitive root modulo 29.
Since 41=6%+5, 4/6, and 41-1=8-5, there are two Fibonacci primitive roots modulo 41
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(namely, 35 and 7). There are two Fibonacci primitive roots modulo 149 (namely, 41 and 109),
because 149 =122 +5, 4|12, and 149-1=4-37.

Remark 1: Since F;=3-7, Fi¢=3-7-47, and F;, =3-7-47-2207, we have that, for p=1or 9
(mod 40), z(p) =8, 16, or 32. Therefore, part (1) of Proposition 3.5 is also true, if p—1=16q,
32q, or 644 for some odd prime g.

4. FIBONACCI PRIMITIVE ROOTS MODULG p~

It is well known that the positive integer m possesses a primitive root if and only if
m=2,4, p" or 2p", where p is an odd prime. Since there is no solution to x* —x —1=0 (mod 2),
we only have to consider the case m= p”.

First, we consider the case p=5. Let f(x)=x?-x~1. We have that £(3)=5=0 (mod 5).
However, since f’(3)=5=0 (mod 5), by Lemma 2.1, there is no solution to f(x) =x*-x~-1=0
(mod 5%). Hence, there is no Fibonacci primitive root modulo 5" for n>2. On the other hand,
suppose that p=5 and (5/p)=1. There exist two distinct roots, & and S such that f(a)=
f(B)=0 (mod p). We have that f'(a)=2a—1#0 (mod p), otherwise, 0=4a* —4a -4 =
1-2-4=-5 (mod p) contradicts our assumption. Using the same reasoning, we have that
f'(B) #0 (mod p). Therefore, by Lemma 2.1, we conclude that there exist two distinct roots to

x? —x—1=0 (mod p?). By induction, we have the following lemma.

Lemma 4.1: Let p be an odd prime such that p=+1 (mod 20). Then there exist two distinct
roots to x> —x—1=0 (mod p™) for every positive integer #n. Furthermore, suppose that & is a
root to x> —x—1=0 (mod p). Then there exists a unique a, modulo p" such that o —a, —1=0
(mod p") and «,, = @ (mod p).

Suppose that & is a Fibonacci primitive root modulo p. By the argument above, there exists
exactly one a, modulo p? such that a3 —a, —1=0 (mod p?) and @, = a (mod p). Suppose that
@, is a primitive root modulo p*. Then a, is a Fibonacci primitive root modulo p*. In this case,
by Lemma 2.4, k(p*), the period of the Fibonacci sequence modulo p?, is equal to ord 2 (a,) =
p(p—1) = pk(p), and since p is odd, by Lemma 2.6, this is equivalent to z(p*) = pz(p), i.e.,
P*|F,,,. Onthe other hand, suppose that p* | F, ). Then k(p®) = pk(p) = p(p—1). By Lemma -
2.4 and Lemma 2.5, this implies that ord »(a,) = £ (‘Z_D or ord»(a;) = p(p—1). By assumption,
@, is a primitive root modulo p and, hence, ord 2(,) is either (p—1) or p(p—1). This implies
that a, is a primitive root modulo p?.

Theorem 4.2: Let p be an odd prime such that p = +1 (mod 20). Suppose that there is a Fibo-
nacci primitive root modulo p. Then there is a Fibonacci primitive root modulo p” for every
positive integer n if and only if p* 1 F (), where z(p) is the least positive integer such that p|F, .

Proof: We only have to claim that the existence of a Fibonacci primitive root modulo p?
implies the existence of a Fibonacci primitive root modulo p”. Suppose that «, is a Fibonacci
primitive root modulo p?. By a similar argument as in Lemma 4.1, there exists e, such that a% —
a,-1=0 (mod p") and a, = a, (mod p*). However, Lemma 2.3 says that a, is a primitive
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root modulo p" for every positive integer 7. @, = , (mod p?) implies that a,, is also a primitive
root modulo p". Hence, a,, is a Fibonacci primitive root modulo p”.

Remark 2: According to Williams [12], p*} F,_s/py [this is equivalent to P I F ] for every
odd prime p less than 10°. Therefore, for p <10°, suppose that there exists a Fibonacci primitive
root modulo p. Then there exists a Fibonacci primitive root modulo p". Furthermore, since p is

odd, by Lemma 2.5, the number of distinct Fibonacci primitive roots modulo p” is the same as the
number of distinct Fibonacci primitive roots modulo p.

Suppose that & is a root to x* —x ~1=0 (mod p). Then there exists a unique &, modulo p?
such that @, = @ (mod p) and a3 —a,—1=0 (mod p*). On the other hand, suppose that ¢ is a
primitive root modulo p. By Lemma 2.2, there exists a unique &’ modulo p* such that a’' =«
(mod p) and @’ is not a primitive root modulo p*. Therefore, o’ = @, (mod p?) if and only if

P*| F,, [or, equivalently, k(p) = k(p*)].

Theorem 4.3: Let p be an odd prime such that (5/ p) =1 and let o be a Fibonacci primitive root
modulo p. Then there exists a Fibonacci primitive root modulo p” for every positive integer # if
and only if 2a7" -~ a” —a?~ 1% 0 (mod p?).

Proof: By Theorem 4.2, the existence of a Fibonacci primitive root modulo p? implies the
existence of a Fibonacci primitive root modulo p” for every positive integer n. By the argument
above, there is no Fibonacci primitive root modulo p? if and only if there exists A such that
(a+Ap)? — (@ +Ap)—1=0 (mod p?) and (a+ Ap)”" —1=0 (mod p*). Expand both congruence
equations and eliminate 1. This implies that @ must satisfy 2a”*' - af —a®-1=0 (mod p?).
Conversely, suppose that @, = @ +Ap (mod p?) is a solution to x*> ~x —1=0 (mod p*) and sup-
pose that 2a7*! — a? —a? —1= 0 (mod p*). We have that

208 ~af —~ak-1=2af" -2af -2af ' +af +2a) " -, -2
= (ay +2)(@f ' - 1) (mod p?).
Since 207 —a? —a?~1=2af*' - af — a% -1 (mod p?), this implies that (a, +2) (@' -1)=0
(mod p?). Suppose that @, +2=0 (mod p). Then, since a%-a,—1=0 (mod p), this implies
that 5=0 (mod p), which contradicts our assumption that p=5. Hence, af™ =1 (mod p?).
This implies that ¢, is not a primitive root modulo p?, and our proof is complete. O

Remark 3: From our proof, we have a more general result concerning Wall's question. We have
the following result: suppose that a is a solution to x> —x—1=0 (mod p) (we do not need the
assumption that o is a primitive root modulo p). Then k(p) = k( p?) if and only if

2ap+l_ap_a2—1‘50 (mOdpz)

For the case (5/p)=-1, we have a similar result. We should consider everything in the ring
Z[25 ] modulo p. We have the following result: suppose o €Z [45] is a solution to x? —x -
1=0 (mod p). Then k(p) = k(p?) if and only if
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NEW PROBLEM WEB SITE

Readers of The Fibonacci Quarterly will be pleased to know that many of its problems can now be
searched electronically (at no charge) on the World Wide Web at

http://problems.math.umr.edu

Over 23,000 problems from 42 journals and 22 contests are references by the site, which was developed by
St: nley Rabinowitz's MathPro Press. Ample hosting space for the site was generously provided by the
Depatment of Mathematics and Statistics at the University of Missouri-Rolla, through Leon M. Hall, Chair.

Problem statements are included in most cases, along with proposers, solvers (whose solutions were
published), and other relevant bibliographic information. Difficulty and subject matter vary widely; almost
any mathematical topic can be found.

The site is being operated on a volunteer basis. Anyone who can donate journal issues or their time is
encouraged to do so. For further information, write to

Mr. Mark Brown

Director of Operations, MathPro Press
1220 East West Highway #1010A
Silver Spring, MD 20910

(301) 587-0618 (Voice mail)
bowron@compuserve.com (e-mail)
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