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1. INTRODUCTION 

The elementary binomial theorem is arguably one of the oldest and perhaps most well-known 
result in mathematics. This famous theorem, which was known to Chinese mathematicians from 
as early as the thirteenth century, has been subject since that time to a number of generalizations, 
one of which is attributable to Newton. In this result, commonly referred to today as the General 
Binomial Theorem, Newton asserted that the expansion of (l + x)n for negative and fractional 
exponents consisted of the following series 

(i+xy = i+m+^^x^...+n^-l)---^-p+l)
xp+..., (i) 

where the variable x was assumed "small" This binomial series was applied to great effect by 
Newton in such diverse problems as the quadrature of the hyperbola, root extraction, and the 
approximation of n. In contrast, the second and perhaps more obvious extension to the binomial 
theorem can be found in the so-called multinomial theorem of Leibniz, where the expansion of a 
general multinomial 

(x1 + x2 + .-. + xJw (2) 

into a polynomial of m variables was considered (see [1], p. 340). This particular result, which 
has found numerous applications in the area of combinatorics, is somewhat more "algebraic" in 
character when compared with the former generalization, which is essentially a statement con-
cerning the power series representation of a function. In keeping with the "algebraic" spirit of (2), 
we present in this paper an additional extension to the binomial theorem via the development of an 
expansion theorem for the following class of polynomial functions, denoted 

7 = 1 

in which the sequence {an} of complex numbers is assumed in arithmetic progression. It should 
be noted that the construction of this expansion theorem can be viewed as a "connection con-
stant" problem of the Umbral Calculus (see [4], p. 120) in which real numbers cnk are sought so 
that a given polynomial sequence pn(x) can be expanded in terms of another, as follows: 

In this article we shall not make use of the Umbral Calculus to derive the desired expansion 
theorem; rather, we shall be content with applying more elementary methods to effect the said 
result. The outline of this paper is as follows. To facilitate the main result, it will first be neces-
sary to formulate an expression for the coefficients within the polynomial expansion of (3) in 
terms of the elements of an arbitrary sequence. This is achieved in Section 2, where the coef-
ficient of xn~p for p = 1,2,..., w, denoted $p(ri), will be shown to consist of a /?-fold summation 
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of a p-fold product. When {an} is substituted with an arithmetic progression, these summands 
then reduce, as demonstrated in Section 3, to a linear combination of binomial coefficients as 
follows: 

m=l v r 
(4) 

Moreover, the scalars &£\ which vary in accordance with the particular arithmetic progression 
chosen, will be calculated via an accompanying algorithm, thereby determining completely the 
equation for the coefficient of xn~p. This use of an algorithm in the formulation of &p(n) high-
lights one major difficulty when attempting to construct a general expansion theorem for (3), 
namely that, in most instances, no simple closed-form expression exists for Q^ in terms of the 
parameters m and p. However, all such apparent difficulties diminish when dealing with a con-
stant sequence (say an=a), as the corresponding scalars will assume the following simple form, 

\0 for m - 1,2,..., /?, 
ip form = p + l, 

which, when combined with equations (3) and (4), will yield the binomial theorem. An alternate 
expansion theorem is also derived when {an} is in geometric progression. Finally, in Section 4, 
we will explore an application of the above expansion theorem to the Pochhammer family of poly-
nomial functions that result when an - n -1. Of particular interest will be the derivation of closed-
form expressions for the Stirling numbers of first order, which shall mirror existing formulas for 
the Stirling numbers of second order (see [6], p. 233). 

2. PRELIMINARIES 

In this section we shall be concerned with the expansion of a class of polynomial functions 
which result from the n-fold binomial product (x + al)(x-¥a2)--(x-\-ari) for a given sequence 
{an}. Our aim is to derive a closed-form expression for the coefficients within these polynomial 
expansions in terms of the elements of {an}. We begin with a formal definition. 

Definition 2.1: Let {an} be an arbitrary sequence of complex numbers. Then the following n-
fold binomial product (x + ax)(x + a2) - - • (x + an) shall be denoted by (x)a„. In addition, the coeffi-
cient of xn~p for p = 1,2,..., n within the polynomial expansion of (x)a„ will be written as <l>p(n). 

Remark 2.1: The notation {x)a„ has been improvised from the Pochhammer symbol (x)„, which 
denotes the rising factorial polynomial of degree n given by x(x +1) • • • (x + w -1). 

It is clear from the definition that each coefficient <j>p(ri) in (x)a„ is an elementary symmetric 
function in %a 2 , ...,an. Although it is well known (see [2], p. 252) that these functions can be 
expressed in terms of a multiple summation of a/?-fold product, the formulation provided is some-
what incomplete for our purposes here. This is the motivation behind the following discussion, 
which will lead to a more satisfactory representation of $p(n) in Proposition 2.1. We return now 
to the expansion of {x)Qn. 

To determine how the coefficients within (x)a„ are formed by the terms of an arbitrary 
sequence, Set us examine &p(n) for p = 1,2,3 in the cases n = 2,...,5. Beginning with ^l(n)y it is 
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evident upon expanding that the coefficient of x""1 is equal to the n^ partial sum of the sequence 
{an}. Next, by grouping lower-order terms in each expansion, we observe the following for 
increasing n: 

<f>2(2) = a2aly 

<f>2(3) = a2al+a3(a1+a2l 
02(4) = a2ax + a3{ax + a2)+aA(ax + a2 + a3). 

Thus, it would appear, at least empirically, that ^2(w) consists of a summation of n-1 terms, each 
of which is the sum of a 2-fold product. Therefore, if the outer and inner terms of each product in 
the above summands were indexed by ix and i2, respectively, one may then infer that 

n-\ f h 1 n~\ k 
fa(") = Z a/1+ij Z % f = Z Z %+\% • (5) 

Zl=i [/2=i J /1=i /2=i 
Finally, for simplicity, set </>2(n) = (j>2{nJtt). Then a similar arrangement of lower-order terms 
reveals 

^3(3) = a3$2(l), 

^3(4) = o^2(l) + a4$2(2), 
03(5) = a3^2(l)+a4^2(2)+a5^2(3). 

Once again we are presented with a clear pattern in which <t>3{n) appears to consist of a sum-
mation of n-2 terms each of the form af +2̂ 2(̂ 1) • Thus, after relabeling index variables from im 

to im+1 in (5), we propose 
n-2 ^ n-2 h h 

&(«)=Z^i+2(?2(fi)} = Z Z Z V2Vi<v (6) 

/!=! /,=1 /2=1 /3=1 

Consequently, with the aid of equations (5) and (6), one may conjecture that </>p(n) is formed 
from a/?-fold summation of the product at +p.tai + 2 ••• ay in which the index of the outer sum-
mand assumes the values il = l92,...,n-p + l with all subsequent indexes im ranging over im =1, 
2, ..., i ^ for m- 2,3,...,/?. By continuing as above and using (5) and (6), one may construct 
similar expressions for the coefficients of lower-order powers in (x)^ that are in agreement with 
the previously suggested rule of formation. Hence, we now consider the following result, which 
is stated in terms of elementary symmetric functions. 

Proposition 2.1: Suppose {an} is an arbitrary sequence, then for n = 2,3,... the elementary sym-
metric function $p(ri) in al9 a2j..., an is given by 

4M = 

ft 

Z a / , for/? = 1, 
/,=! 

n-p+1 ij *p-\ 

£ Z • • • Hah+p-iai2+P-2 • • • aiP
 forp=2>3> 

(7) 

Jj=l l2 = l 1 =1 

Proof: Fix the sequence {an) in question and set n - 2 as the base for the following induc-
tive argument. Clearly, (7) holds for the case n-2 since 
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2 1 'i 

H2) = X % =ax+a2 and 02(2) = X I a / 1 + i a / 2 = aia2, 

which are in agreement with the coefficients found in the expansion 

(x+ax)(x + a2) = x2 + (ax + a 2 ) x + a ^ . 

Assume the result holds for n - k where k > 2. Thus, 

(X)ak = Xk+^(k)xk-l+^2(k)xk-2 + "•+&(*), (8) 

where the coefficients (/>p(k) are of the form as stated above. Multiplying (8) by the term 
(x + ak+l) and collecting like powers of x yields a polynomial of degree k + 1 with coefficients 
defined as follows: 

W * + l ) = ^ + 1 + ^ ( * ) , (9) 
0p(k + l) = ak+l<fip_x(k) + </>p(k) for/> = 2,3,.. . ,*, (10) 

^ + 1 ( * + 1) = **+1**(*). (11) 
From this set of equations we now generate via the inductive hypothesis corresponding expres-
sions for (j)p{k +1). Beginning with (9), it is immediately apparent that 

jfc+i 

0i(*+i) = £ v 

Now from (10) we have, for p = 2, 3,..., k, 

k-p+2 ij ip-2 

~'\+p-2ai2+p-3 '"uip-i 0(k + l) = ak+l £ Z *•• Z ah+P-2ai:^'"a> 
/1=1 ' = 1 '-1*1 (12) 

k-p+l /j '>-i 

+ Z I-Ivi^ ;,=1 / 2 =1 ^ = 1 
+p-2'"aip-

Relabeling index variables from im to im+l in the expression for (f>p_i{k), observe that ak+l#p-\(k) is 
equal to 

i, i2 h-\ 
ah+p-l ]L* 2^ " ' Lu ai2+p-2ai3+p-3 ' * * aip 

/ 2 =1 / 3 =1 / p = l 

when il = k-p + 2. Consequently, by factoring ai+ \ in the above (/?-l)-fold summation and 
adding the result to the second summand of (12) yields 

k-p+2 /'j ip-\ 

? ' J = 1 / 2 = 1 ^ = 1 

Finally, from (11), we deduce $k+l(k + 1) = ak+lak ---^ which, clearly, is in agreement with the 
hypothesized expression for the coefficient of x° in (x)ak+l • Thus, the result holds for n - k +1. 
Hence, by induction, (7) is valid for all n = 2,3,.... D 
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39 MAIN RESULTS 

With the formulation in Section 2 of a precise relationship between the coefficients of (x)a„ 
and the elements of {an}, it is now possible to determine, for suitable classes of sequences, explicit 
algebraic expressions for $p(ri) in terms of the parameters n and p. Clearly, those sequences of 
interest must possess a closed-form expression for their respective partial sums. However, in 
general, this will not guarantee the existence of explicit formulas for subsequent </>p{n), as the 
following simple example indicates. Let an = *+1), then an elementary calculation establishes 
$i(n) = -—^. This, in turn, implies that 

which cannot be expressed as a rational function in n due to the presence of the factor 1
 2 . 

Remark 3.1: We note that the function <j>2{n) in the previous example can be written as the sum 
of a rational function in n and the di-gamma function y/'{z). Indeed, by decomposing into partial 
fractions, observe that 

t,(.K+V 

where y/(z) = Tf(z)/T(z). 

Thus, in addition to the previous condition, those sequences under consideration should also 
admit for each p = 2, 3,... a closed-form expression for the /1th partial sum of 

1*2=1 '/»=! 
'h+p-l] La ' " JL* "h+p-2 ' • ' aip 

Recalling that the partial sum of an arithmetic progression can be expressed as a linear combina-
tion of at most two binomial coefficients, we observe from the following result (see [3]) that 
an=ax + {n- l)d (where a1? d e C) is one such sequence that satisfies the required properties. 

Lemma 3.1: Let r e N+, then 

j?(i + r\_(n + r + \\ 

Therefore, with the aid of Lemma 3.1, we can now state and prove the desired expansion 
theorem. 

Theorem 3.1: Suppose {an} is an arithmetic progression where <?„=#! + ( « - l)d for a given al9 

d eC. Then the equation for the coefficient of xn~p for n = 2,3,... and p = l, 2, ...,n in the 
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resulting polynomial expansion of {x)Qn consists of a linear combination of binomial coefficients as 
follows, 

w=£*f£p
+

+i--") (») 
m=l \ r s • 

in which the corresponding scalars 6$ are determined via the accompanying algorithm. 

Algorithm 3.1: Set 6^ -d and (tip = ax-d, then calculate remaining scalars 6$ iteratively as 
follows: 

for/= 2,3,..., w, 

for/= 2,3,...,?, 
^ ) = ^ ) ( ^ - / - 2 ) + aO + ^ - 1 ) ( 2 / - 7 K 

^ = ^-1>(a1-rf). 

Proof: In Proposition 2.1, let a„ = ax + (« - l)rf and set </>p{n) - <f>p(n+p-1), noting that in 
the resulting p-fold summation for <j)p(n) we no longer need require p<n. Thus, it suffices to 
demonstrate via the following inductive argument on the parameter p, that there exists 6$ e C 
such that 

m=\ v ^ s . 
Beginning with /? = 1, we have 

where 0^ = <f and 0 ^ = a1-d; consequently, (14) is valid for p = 1. Assume now that the result 
holds for p = k where £ > 1. To facilitate the inductive step, consider from (7) the expression for 
0k+i(n) a s follows: 

~ " {*l ik 1 
/!=! [/2=1 1^=1 J 

If necessary, by relabeling index variables, observe that the Mold summation within the paren-
theses of the above equation, is equal to 0kQi). Therefore, by assumption, we have 

fc-w=S^|S«s'(5;*::)}-|«'{£s-(^*::)} o»> 
Now, for each m, an application of Lemma 3.1 yields 

^ (il+2k-m\_ ^(il+2k-m\ .AY/,+2^ 
Lah+k\2k + \-mrakL\2k + \-m)+a^\2k + \ 

n Jn + 2k + l-rn\ , on Jn + 2k + 2-m\ = a(h,m)[ 2k + 2_m )+W,»\ 2k + 3-m } 
where a{k, m) = d(m-k-2) + al and /?(&, m) - d(2k-m + 2). As a result, (15) reduces to 
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?!««-S«e>/»».-<"jt2*j?i-)+g«'«(*.-s("iJ*jl-") 
w=l v ' m=l v / 

Finally, since 

we deduce that 

where 
m=l V ' 

0<J+1> = 0<J>,5(*, m) + &£Lxa{k, m -1) for m = 2,3,..., k +1, 

(16) 

(17) 

(18) 

Hence, the result holds for p = k +1. and so, by induction, (14) is valid for all p = 1,2,.... Having 
established an explicit equation for </>p(ri), we note that it may be extended to encompass the case 
p = 0 by defining 9f^ = 1. It is now a simple matter to construct the accompanying algorithm. 
We begin by arranging those scalars involved in the first n +1 coefficients into a lower-triangular 
matrix as follows: 

[0j°> 0 0 ••• 0 
ep ep o 
0p> 0f 0f K = 

0[n) ef> 0^ 

o 
o 

aw 

Suppose it is required that the n rows of A„ are to be determined. Clearly, from above, the 
entries of row two are given by 0^ = d and 0^ -ax-d. Now let us assume for argument's sake 
that the (z -1)* row has been calculated where i > 2. Then the following row of values can be 
obtained from the former by setting k = i -1 in equations (16), (17), and (18). Consequently, we 
deduce from (16) that 

0[i) = 0['-1)d(2i-l). (19) 

While (17) implies, for j = 2,3,..., /', 

0f = tf-Vfti - 1 , j) + &f:Pa(i -1 ,7-1) , (20) 

where a(i-l,j-l) = d(j-i-2) + almd P{i-\,j) = d(2i -j). Similarly, from (18), 

0& = 0?~%l-d). (21) 

Then, clearly, as the initial two rows of values are known, we may calculate all remaining n-\ 
rows by applying equations (19), (20), and (21) in succession for each / = 2, 3,...,«, thus com-
pleting 4 r The algorithm now readily follows. D 
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The binomial theorem will now follow from Theorem 3.1 by demonstrating that, for a con-
stant sequence (say an - a), the matrix A^ is rendered diagonal with 0^+1) = ap for p = 0,1,..., n. 

Corollary 3.1: Let a, b e C. Then, for all integers n > 1, 

(a + by = t(,f]arb"-r. (22) 

Proof: In what follows, assume n > 2, as (22) holds trivially for n = 1. Consider an arith-
metic progression defined by ax = a and d - 0. Then, by Theorem 3.1, the coefficient of xn~p for 
/? = 0,1,..., n in the polynomial expansion of (x + of is equal to 

We assert that 0^ = 0 for every / = l,2,...,/i and 7 = 1,2,...,/. From Algorithm 3.1, it is clear 
that 0 ^ = 0. Now, if the result is assumed to hold for the ( / - l )* row where 2<i<n, then 
#0) = ef(~l)d{2i -1) = 0, while 0̂ > = ^ a = 0 for j = 2,3,..., /. Hence, via the principle of finite 
mathematical induction the assertion is valid, and so 

for p - 0,1,..., n. Now, as 0$) - a an(j ^ - a^~l>} for / = 2,3,..., n, a similar inductive argu-
ment establishes 0^_\ = ap for p - 1,2,..., n. Consequently, by recalling that 6^0) = 1, we deduce 
that the coefficient of xn~p for p = 0,1,..., n in the above expansion is equal to 

* ( ; ) • 

Setting x = i yields the statement of the binomial theorem for the given n; however, the result 
now follows as this was arbitrarily chosen. • 

To contrast the previous result, we shall consider now an alternate expansion theorem for 
(x)an where an is a geometric progression (i.e., an - azn for a,zG C); however, unlike Theorem 
3.1, no algorithm will be required to complete the formulation of <f>p(n). It should be noted that 
setting z = 1 in this result will not produce the binomial theorem, as the expressions for (j>p{n) in 
this case reduce to an indeterminate form. 

Theorem3.2: For a given integer w = 2,3,..., set /„ = {z GC\Z = VT, r - 1,2,...,«}. If an -azn 

with a , z e C and z eln, then the coefficient of xn~p for p = l,2,...,n in the polynomial 
expansion of (x)a„ is given by 

^p(n) = aPz^^f[^^. (23) 
;=i l z 

Proof: The result clearly holds for p = 1 as ^(w) is equal to the wth partial sum of {an}. To 
demonstrate (23) for p = 2,3,...,«, consider for a fixed z £/„ the polynomial function in x, 
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p„(x) = (\+zx)(\ + z2x)-(\ + z"x) = J c / 
m=0 

Clearly, pn(x) satisfies the following functional identity: 

(1 + zn+lx)pn(x) = (1 + zx)pn{zx). (24) 

Substituting the above partial sum for p„(x) in (24) and equating coefficients of xm yields 

Cm + Cm-lZ" = (Cm + Cm-l) Z™ > 

where m = l,2,...,n. Thus, after some rearrangement of terms, we obtain the recurrence relation 

_zm(l-zn~m+l) 
m~ ] — zm m~l> 

from which one easily deduces, as c0 = 1, the formula 

C j > = r i * H - D n I z £ _ _ , (25) 
7=1 l Z 

where p = 2, 3,..., n, noting here that the expression in (25) is well-defined due to the restriction 
z<£ln. Now let x = y~l for y^O and observe that ynpn{y~l) = (y)a„, where aw = z"; hence, 
(j)p{n) = cp. Therefore, by Proposition 2.1, we find that 

n-p+l ii ip-\ 

cp = zl«r*<£ ^ . . . ^ ^ - ^ (26) 
/!=! 72=1 ip = l 

for /? = 2,3,..., w. As the coefficient of x""^ for /? = 2,3,..., n in (x)a„, where an = az" is equal 
to a ^ , we deduce from (25) the desired expression. • 

It is possible to retrieve a binomial coefficient from the expression in (23) by taking the limit 
as z —> w, where w is a root of unity. The result that follows may be obtained by an application of 
L'Hopital's rule for indeterminant forms; however, the argument used below is probably more 
direct. We will require the following technical lemma. 

Lemma 3.2: If w is a primitive m^ root of unity, where m is a positive even integer, then 

(x + w)(x+w2)--(x + wm) = xm-l. 

Proof: Let an = wn and consider the polynomial (x)^ . By making the substitution x = -y, 
observe that 

m m 
(~y)am = (-i)mU(y-wJ) = U(y-wJ)-

Since w is a primitive root of unity, the set {w, w2,..., wm) contains all the irfi1 roots of unity with-
out repetition. Hence, the product on the right of the above is equal to ym -1 = xm -1. • 

Corollary 3.2: Suppose n, m, and/? are positive integers with m even and 1 < p <mn. If w is a 
primitive mfi root of unity, then the following limit holds: 
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P i -mn-j+l 
limTT , 

i-iy 
;2 

(") for p = ms, 

[0 for p^ms. 

Proof: Set an = zn and consider for a fixed x the polynomial in z and x given by 

/(Z) = (*)„_ = (* + 2)(* + Z2) - (X + Zm"). 

As / (z) is a continuous function of the complex variable z, we have 

lim / (z) = /(if,) = (xw- l)n = t (n\-\Tr*r9 (27) 

noting here that the right-hand side follows from Lemma 3.2 and the periodicity of the sequence 
{wn}. Now when z £lmn one can expand f(z) in a polynomial in x as follows, 

WW 

/ ( * ) = £ * P ( m « ) ^ \ (28) 

where the complex coefficients <j>p(mri) are of the form as stated in Theorem 3.2. As the set Imn 

contains only finitely many complex numbers, there must exist, for 8 > 0 sufficiently small, an 
open neighborhood about w of the form Bs(w) :={z eC:\z-w\<S} such that Bs(w) n Imn = {w}. 
Hence, the expression for f(z) in (28) is valid in the deleted neighborhood Bs(w)\{w} and so, by 
(27) 

mn n / \ 

iim x^(^»)^m"-p=I ("K-irrx" 
Clearly, as the right-hand side of the above consists of a polynomial in xm\ we have 

<j> Jmri) 
lim -j——— = 0 when p *• ms, 

while, if p = ms, then by setting r = n-s one deduces again from (27) that 

l i m j e 0 g O = (-1)' ( n ) = UL(") D 
z-*wzhP{P+V w\ms{ms+l)\n~S) ^f {$)' 

Remark 3.2: In the case in which m - 4, we have for w = ±i the limit 

—-1 —z J I n 
lim F T — 
- . .- J = 1 x ~ 

where 1 < s < n. 
4. APPLICATION 

We now turn our attention to the Pochhammer class of polynomial functions which result 
from (3) by setting an - n -1. This family of polynomials was first studied by Stirling in 1730 and 
later by Appell; however, the name Pochhammer is used in recognition for the invention of the 
symbol (x)n. These polynomials feature in many areas of analysis, including the study of special 
functions, where they occur in the coefficients of hypergeometric series (see [5], p. 149). When 
expanded into a polynomial, (x)n can be written as 
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r=0 

where the integers 5r
(n) are the Stirling numbers of first order. This group of numbers are 

normally calculated by first defining Sfp = 0, Sjp = 1, and then applying the recursion formula 
S^ = S%~p-rS^ for each w = l,2,... and r = l,2,...,« in succession. However, the Stirling 
numbers Sj£}p for /? = 1,2,... also appear as the coefficients of xn~p, in the falling factorial 
polynomial of degree n which results from (3) by setting an = l-n (see [5], p. 20). Thus, by 
applying Theorem 3.1 with the parameters ax = 0 and d = -l, we can now derive algebraic 
expressions for S£)p. To illustrate, suppose three iterations of Algorithm 3.1 are performed, 
thereby producing the matrix 

[ 1 0 0 0] 
-1 1 0 0 

^ | 3 -4 1 0" 
[-15 25 -11 1J 

Then, by reading directly from this matrix we deduce, using (13), the following formulas: 

si-GMTM":2} 
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