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1. INTRODUCTION 

Let Ln be the rfi Lucas number, that is, Lx = 1, L2 = 3, Ln+l = Ln + Ln_x for n > 2. Let p be 
prime. Consider the equation 

Ln = px2 (n,x>0). (1.1) 

In [1], Cohn solved (1.1) for p = 2. In [3], Goldman solved (1.1) for p = 3,7,47, and 2207. In 
[5], Robbins solved (1.1) for p < 1000. He proved that, for 2 < p < 1000, (1.1) holds iff 

(p, n, x) = (3,2,1), (7,4,1), (11,5,1), (19, 9,2), 
(29,7,1), (47,8,1) (199,11,1), (521,13,1). ( ' } 

Besides, he proved that, for p = 14503, (1.1) holds iff 

fox) = (28,7). (1.3) 

Following Robbins, denote z(n) = mm{m\n\Fm m>0}, where Fm is the m* Fibonacci num-
ber, that is, Fx = F2 = I, Fm+l = Fm+ Fm_x for m > 2. Ifp is odd and 21 z(p), denote y(p) = jz(p). 
Then we observe that every (n, x) in (1.2) and (1.3) satisfies n =y(p). Furthermore, if 2 \n, then 
either n-2r orn = 2rq, where q is an odd prime and / = qU\ if 2\n, then n is a prime except 
n = 9 for /? = 19. The question is: Does the above conclusion holds for arbitrary/?? Our answer 
is affirmative. In this paper, we state and prove this general conclusion in Section 3. Some pre-
liminaries are given in Section 2. In Section 4, we give an algorithm which we can use to solve 
(1.1) for given p. For example, we have given the solutions of (1.1) for 1000 < p < 60000. A 
conjecture is also given in Section 4. 

2* PRELIMINARIES 

Let {nlm) be the Jacobi symbol. (For odd prime m, (nlrri) is the Legendre symbol; see [9].) 
Denote Op(ri) = k ifpk || n. 

(1) I fw>2, then m\Fn iff z(m)\n. 
(2) If m is odd and m > 3, then m \ Ln \ffnly{m) is an odd integer. 
(3) F2„ = L„F„. 
(4) L2„ = Ll-2(-ir^5F^+2(-lf. 
(5) L_n = ( - ! ) % . 
(6) Ifp is an odd prime, then z(p)\(p-e), where e = (5/p) = 1,-1,0 for p = ±l,±2,0 

(mod 5), respectively. 
(7) Ln \Ljfa iff A is odd or n = 1. 
(8) If*is odd, then (Ln, L^IL^k. 
(9) Fn^(an - (in)l (a- fi) mA Ln = an + p\whQXQ a = (l + S)l2, (3 = {1-S)I2. 
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(10) If/? is an odd prime, p | Fm and p\a, then Op(Fp„ani I Fm) = k. 
(11) If/> is an odd prime, p \ Lm, a is an odd integer, and p\a, then Op(Lpkam I Lm) = k. 

[1 ifw = 0(mod6), 
(12) 0 2 (4 ) = J2 if n = 3 (mod6), 

[0 otherwise. 
(13) Z!2m+„ s 4 (mod 8); furthermore, 4 = 1, -1,3, - 3 (mod 8) for n = 1, - 1 or ±4, ±2 or 

5,-5 (mod 12), respectively. 
(14) Z,„ = x2iff« = l o r 3 . 
(15) L„+kH-VkLn_k=LnLk. 
(16) If m > 0, then L2mk+I = (-\)m^Lt (mod Lk). 

Remarks: (1) through (10), (12), (14), and (15) can be found in [4], [8], or [6]; (13) follows 
from the observation of the sequence {Ln (mod 8)}. We give the proofs of (11) and (16) below. 

Proof of (11): From (9), it is easy to see that 4Sam = Lma + Lm_v Then 

(V5)'a- = t f ^ 4 l 1 4 « ' . 
i=0 

For the same reason, we have 
t 

1 
i=0 

If 211, then, by using (9), we get 
S^^JL^tf^r-Uli-'F^th, (2.1) 

Let t = pka. If i >p k + \ then pk+l \E~l since p \Lm, whence pk+l \hr If 2 <i < p k + \ let 
/ = rps {p\r, s< k), then 

pk-s pka^ 
psr = ({](see[7],Th.2.1), 

whence pk~s+i~l|/*.. Since /?>3, we have i>$ + 2, so &-s + i - 1 > £ + 1. Hence, /?*+1|/22- for 
i > 2. Now fy = ^4^!- Suppose that /? | Z,^ , then /? | Lm and the recurrence Ln+l = Ln + Ln_x 

implies p\Lx-\. This is impossible. Hence p\Lm_l9 whence OpQi^ = Op(t) = k. Summarizing 
the above, we have that / 1 | %=l hf. From {Ln (mod 5)}J00 = {2,1,3,4,2,1,...}, we observe that 
5 |Z^ , thusp^5 . Then, (11) follows from (2.1). D 

Proof of (16): In (15), take n = k + t. Then we get L2k+t = (~lf~lLt (mod Lk). This means 
that (16) holds for m = 1. Assume that (16) holds for m. In (15), taking n = (2wi +l)k +1, we get 
^2(m+i)k+t - (-$kl^2mk+t (moc* h) • By the induction hypothesis, we have 

W D * " ^ ( - l ^ C - l ) ^ ^ A = (~l)(m+m-l)Lt (mod 4 ) , 
thus (16) is proved. D 

Note: (1) through (16) can also be found in [10] which was published in Chinese. 
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3. THE MAIN RESULT AND ITS PROOF 

In the following discussion, we always assume n, x > 0. 

Theorem: Let/? be an odd prime, and Ln = px2, then n =y(p). Furthermore, let 2r \\y(p). 
(a) If r = 0, then p = ±l (mod 5) and y(p) is prime except y(p) = 9 for p = 19. 
(b) lfr = l,then(p,n,x) = (3,2,l). 
(b) If r > 2, then p = 7 or 23 (mod 40) and either j/(/?) = 2r or j(/?) = 2r#, where q is an 

odd prime satisfying Lr
2 = qn. 

Clearly, the theorem is a considerable improvement of both Theorem 9 and Theorem 11 in 
[5]. To prove the theorem we need the following lemmas. 

Lemma 1: Let p be an odd prime and let Ln = px2. Then 3\n except n = 9 for p - 19, and so 
2\x for p * 19 (see [5], Th. 3 and Th. 4). 

Lemma 2: Let p be prime, t = ±1 (mod 6), and p = ±L5t (mod 8). Then p == + 4 (mod 4) and 
(2//>)(2/Z>) = - l . 

/VIWJ/: If t = ±1 (mod 12), then 5t = ±5 (mod 12), whence (13) implies Lt = ±1 (mod 8) and 
L5t = ±3 (mod 8). Hence, the lemma holds. Jft = ±5 (mod 12), the lemma is proved in the same 
way. D 

Lemma 3: Let/? be prime, n = (I2s± l)t, s>09t = ±l (mod 6), and p\Lt. Then Ln * px2. 

Proof: Suppose Ln = px2. Then, from (13) and (5), we have Ln = L±t = ±Lt (mod 8). (12) 
implies 2\Ln, 2\LP so 2 \ x . Thus, 

/? s Ln = ± 4 (mod 8). (3.1) 

Rewrite n = 2-3a -k±t, where k = ±2 (mod 6). From (16), it follows that 

P%1 = L2V-k±t s ~Z±' = +A (mod 4 ) (3.2) 
It is easy to see that k = 2ht. (16) implies Lk - 4/^+0 = 1^ = 2 (mod Lt). This and 2\Lt imply 
(Lk, Lt) = 1. Since /? | 4 , we have Lk = 2 (mod/?) and (Lk, p) = 1. (13) implies 4 = -1 (mod 4). 
From (3.1), we have 

(p(TLt) 14) = +(/? / 4 ) ( 4 / 4 ) = (=F)(±)(4 / P)(Lk 14) 
= -(Lk/P)(Lk/Lt) = -(2/P)(2/it) = -i 

This contradicts (3.2). Hence, Ln ̂  px2. D 

Lemma 4: Let/? be prime, n = (l2s±5)t, t = ±l (mod 6), and p\Lt. Then 4 ^ P*2• 

Proof: Suppose Ln = px2. For the same reason as in the proof of Lemma 3, we have 

p = Ln = ±L5t (mod*). (3.3) 

Rewrite n = 2(6s±2)t±t = 2k±t. Then (16) implies 

px2 = L2k±l s -L+, = +Lt (mod Lk). (3.4) 
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For the same reason as above, Lk = 2 (mod Lt) and Lk = 2 (mod /?), (Lk, Lt) = (Lk9p) = l, and 
Lk = -1 (mod 4). Thus, from Lemma 2, we have 

(K+4) / 4 ) = =KP / 4X4 / 4) = (+X+X4 / P X 4 / 4) = (2 / /0(2 / 4) = -1. 
This contradicts (3.4). Hence, Ln * px2. D 

Lemma 5: help be prime, n = (l2s±S)t, t-2rd, r > 2 , rf = +l (mod 6), and p\Lt. Then 
Z,w*/?x2. 

. Proof: Suppose Ln = px2. Since 2r = 4-2r~2 = 4 ( - f p 2 = ±4 (mod 12) for r > 2, we have 
n = ±5^ = +t = ±4 or +4 (mod 12). (13) implies Ln = Lt = -1 (mod 8), and so Ln = px2 implies 
p = - l (mod8) . Let 3s±l = 2am, l\m. Then n = 2m-2a+lt±t = 2mk±t. (16) implies 

px* = Ln = -L±t=-Lt (modLk). (3.5) 

Again, (16) implies Lk = £2.2af+0 = (- l ) 2 0^"1^ = ±2 (mod Lt), and so Lk = ±2 (mod p). For the 
same reason as given above, Lk = -l (mod 8) and (Lk, Lt) = (Lk, p) = l. Thus, 

OK-4) / 4 ) = -(? / 4X4 / 4) = -(-1X4 / /0HX4 ' 4) = -(±2 / P)(±2 / L,) = -1 
This contradicts (3.5). Hence, Ln & px2. D 

Lemma 6: Let/? be prime, n = (125+1)£, / = 2rrf, 5> 0, r > 2, rf = +1 (mod 6), and p\Lt. Then 
Ln*px2. 

Proof: Suppose Ln = /?x2. Let 35 = 2am, 2\m. Then w = 2• m• 2"+1r±f = 2w& + f. The 
proof is completed in the same way as the proof of Lemma 5. D 

Lemma 7: Let/? be an odd prime, and Ln - px2. Then n=y(p). 

Proof: From (1.2), we know that the lemma holds for p = 19. Now we assume that p ^ 19. 
Then Lemma 1 implies 31n and (2) implies n = mt, where t - y(p) and 2 |m. Therefore, m = ±1 
(mod 6). If WI>1, then m = 125+1 or m = 125±5. Let t = 2rd, r >0, rf = ±1 (mod 6). When 
r = 0, the conditions of Lemma 3 and Lemma 4 are fulfilled. When r > 2 , the conditions of 
Lemma 5 and Lemma 6 are fulfilled. These all lead to Ln * px2. Hence, m = l, and so n =y(p). 
When r = 1, (12) implies 31| Z,w, whence Z„ = px2 iff (/?, rc, x) = (3,2,1). Obviously, 2 = j;(3), and 
we are done. • 

Lemma 8: Let p be prime, p > 3, and / =y(p) = ±1 (mod 6). If Z, = /?x2, then p = ±1 (mod 5) 
and f is prime. 

Proof: Lt = px2, 2\t9 and (4) imply 5F2 = 4 (mod/?). This implies (5//?) = l, and so 
/? = ±1 (mod 5). Suppose that t is a composite. Then t = kq, where ^ is a prime greater than 3, 
and k>\. (14) implies Lg*n. 'Since 2JLg, there exists an odd prime r such that r\Lq and 
2 JOr(Z^). From (2), it is clear that 

y(T) = q. (3.6) 

If r = q, then z(g) = 2 >y(q) = 2-y(r) = 2q. (6) implies 2q\(q-(5/ q)). This is impossible. 
Hence, r*q. 1fr\k, then (11) implies Or(Lkq) = 0r(Z^). Therefore, 2f 0r(Z,). This means that 
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Lt = px2 implies r-p. Thus, from (3.6), we get y(p) = q <kq = y(p). This is a contradiction! 
Hence, r\k. Let k -rh? then Lqh• Lqrh ILqh = px2. Let (Lqh, LqrhILqh) = d. (8) implies d\r,(2) 
implies r\Lqh, and so (11) implies Or(Lqrh/Lqh) = 1. Thus, r\d\ hence, d-r. Then we have 
either (i) Lqh = ru2 or (ii) Lqh = rpu2. (ii) contradicts the fact that y(p) = qrh, since qh <y(p). If 
(i) holds, then, from Lemma 7, we have y(f) = qh. Comparing it with (3.6), we get h = 1 and 
t = qr. 

For the same reason, there exists an odd prime s such that s | Lr and 2\Os(Lr) • And we also 
have 

y(s) = r (3.7) 

and j ^ r . Again, for the same reason as r \k, we have s\q9 whence s = q. Thus, (3.7) becomes 

y(q) = r. (3.8) 

Equations (3.6) and (3.8) imply that z(r) = 2q and z(q) = 2r. Thus, (6) implies 2g | ( r - (5 / r ) ) 
and 2r\(q-(5/ q)). Clearly, this is impossible. Hence, t is prime. D 

Lemma 9: Let p be prime, /? > 3, 2r || ̂  =y(p), and r > 2. If Z, = /?x2, then p = 7 or 23 (mod 
40) and either t - 2r or t = 2rq, where q is a prime satisfying I r =qn. 

Proof: From the proof of Lemma 7, we know that t = 2r J , d = ±l (mod 6). From the proof 
of Lemma 5, we know that p = -l (mod 8). Zr = px2, 2\t9 and (4) imply 5F2 = -4 (modp), and 
so {-51 p) = -(Sip) = 1. This leads us to p = ±2 (mod 5). Summarizing the above, we obtain 
p = 7 or 23 (mod 40). 

From the proof of Lemma 8, we know that there exists an odd prime q such that q \ lr and 
2\Oq(I r). From (2), it is clear that y(q) - 2r. Tfd^l, then, for the same reason as in the proof 
of Lemma 8, we have q\d. Let d = qh, then lrh 4r hl lrh - px2. Now (8), (2), and (11) imply 
(hrw hr h^hri) ~ Q> s o w e §e t e^her (i) lrh = qu2 or (ii) lrh - qpu2. (ii) contradicts the fact that 
y(p) = 2rqh. If (i) holds, then Lemma 7 implies y(q) = 2rh. Comparing this with y(q) = 2r, we 
get h = 1 and / r = g^2. Thus, the lemma is proved. • 

Proof of the Theorem: The Theorem follows from Lemmas 7 through 9. • 

4. AN ALGORITHM AND EXAMPLES 

From the Theorem in Section 3 and using (1) and (6), we can give the following algorithm. 

Algorithm: Let/? be a given odd prime, p^3, 19. 
I If p # ±1 (mod 5) and p # 7,23 (mod 40), then (1.1) has no solution. 

II For /? = ±1 (mod 5), let A = {g1? ...,qk} be the set of distinct prime factors greater than 3 of 

(ifl̂  If A is empty, then (1.1) has no solution. 
(b) For / = 1,..., £, calculate Z .̂ (mod/?). 
(bj If there exists an / = j such that Lq = 0 (mod p), then calculate Z^.. If Lq. = /?w2 

(i/> 0), then (w, x) = (fy.? i/) is the solution of (1.1), otherwise (1.1) has no solution. 
(d) If, for all /' = 1,..., k9 Lq. # 0 (mod/?), then (1.1) has no solution. 
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III. For p = l or 23 (mod 40), let 2a||(/? + l) and A = {ql9...,qk} be the set of distinct prime 
factors greater than 3 of /? +1. 
(a) For s = 2,3,..., a -1, calculate lv (mod p). 
(h) If there exists an s = r such that lr = 0 (mod/?), then calculate /2r. If /2r = pu2 (u > 0), 

then (w, x) = (2r, u) is the solution of (1.1), otherwise (1.1) has no solution. 
(c) If, for all s = 2,3, . . . ,a- l , lr # 0 (mod/?), then 5 = 2,3, . . . , a - l and, for every g, in,4 

such that qi =7 or 23 (mod 40), calculate lv (mod qt). Let 5 be the set of such (s9 i)'s 
that l2s = qjD. 

(d) If B is empty, then (1.1) has no solution. 
(e) For each (s,i) in5, calculate L2*q. (mod/?). 
(J9 If there exists an (s, i) = (r, j) in 5 such that L2rq. = 0 (mod /?), then calculate Z2

r^ • If 
L2rq. = pu2 iu > 0), then («, x) = (2r#;, i/) is a solution of (1.1), otherwise (1.1) has no 
solution. 

(g) If, for all (s,i) in B, L2*q. # 0 (mod/?), then (1.1) has no solution. 

Remark: For calculating Lm (mod /?) and Lm, there is an algorithm that determines the result 
after [log2#i] recursive calculations (see [2]). 

Example 1: p = 63443 # ±1 (mod 5) and /? # 7, 23 (mod 40). Hence, (1.1) has no solution. 

Example 2: p = 19489 = -1 (mod 5), p -1 = 25 x 3 x 7 x 29, A = {7,29}. By calculating, we get 
L29 = 0 (mod /?). But L^ - 59p ^ /?x2, so (1.1) has no solution. 

Examples: /? = 4481 = 1 (mod 5), p-l = 29 x5x7, ^ = {5,7}. Since L5,Z7#0 (mod/?), (1.1) 
has no solution. 

Example 4: p = 9349 = -1 (mod 5), /? - 1 = 22 x 3 x 19 x 41, A = {19,41}. By calculating, we 
get Ll9 = 0 (mod/?) and Ll9 = /?. Hence, (w, x) = (19,1) is the solution of (1.1). 

Example 5: p = 1103 = 23 (mod 40), /? +1 = 24 x 3 x 23, 4 = {23}. Since /22, /23 # 0 (mod/?) and 
/22, /23 # 0 (mod 23), (1.1) has no solution. 

Example 6: /? = 1097 = 7 (mod 40), /? + l = 26x,17, A = {17}. Since /2s = 0 (mod /?) but 
/25 = 1087 x 4481 ^ /?x2, (1.1) has no solution. 

Example 7: p = 3607 = 7 (mod 40), /? +1 = 23 x 11 x 41, A = {11,41}. Since /22, /23 # 0 (mod /?) 
and 11 and 41 # 7,23 (mod 40), (1.1) has no solution. 

Example 8: p = 14503 = 23 (mod 40), /? +1 = 23 x 72 x 37, A = 7,37}. By the Algorithm, we 
get /22 = 7 and /22.7 = /? • 72. Hence, (n, x) = (28,7) is a solution of (1.1). 

Remark: In 11(c), 111(b), and 111(d) of the Algorithm, it is unnecessary to calculate Lt9 where 
t = qJ9 2r, or 2rqj for most of the f$. The reason is that, if pLt is a quadratic nonresidue (mod 
m\ where m is some prime, then Lt * px2. For example, by using the Algorithm and making m 
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run through the first 20 odd primes, and by means of a computer, we have verified the following 
proposition. 
Proposition: Let p be prime, 103</?<6xl04. Then (1.1) holds iff 

fo »,*) = (2207,16,1), (3571,17,1), (9349,19,1), (14503,28,7). (4.1) 

Extensive numeric results inspire the following conjecture. 

Conjecture; Letj? be an odd prime and p*3, 19. Then Ln = px2 iff one of the following con-
ditions holds: 

(a), p = ±1 (mod 5), y(p) is prime, and Ly(p) = p, so («, x) - (y(p)91); 
(b) p = 7 or 23 (mod 40), j/(p) = 2r, and Ly(p) = p, so (#i, x) = (j/(p), 1); 
(c) p = 7 or 23 (mod 40), y(p) = 2rq, where q is a prime greater than 3 satisfying lr = q 

and Ly{p) = /?g2, so (w, x) = (y (» , qr). 

We point out that the conjecture would hold if we could show p2 \Ly^ for all odd prime p. 
At this time, it remains unknown whether there exists an odd prime/? such that p2 \ Ly^p). 
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