A GENERAL CONCLUSION ON LUCAS NUMBERS OF THE FORM $p x^{2}$ WHERE p IS PRIME

Chizhong Zhou

Yueyang University, Yueyang, Hunan 414000, P. R. China
(Submitted April 1997-Final Revision October 1997)

1. INTRODUCTION

Let L_{n} be the $n^{\text {th }}$ Lucas number, that is, $L_{1}=1, L_{2}=3, L_{n+1}=L_{n}+L_{n-1}$ for $n \geq 2$. Let p be prime. Consider the equation

$$
\begin{equation*}
L_{n}=p x^{2} \quad(n, x>0) . \tag{1.1}
\end{equation*}
$$

In [1], Cohn solved (1.1) for $p=2$. In [3], Goldman solved (1.1) for $p=3,7,47$, and 2207. In [5], Robbins solved (1.1) for $p<1000$. He proved that, for $2<p<1000$, (1.1) holds iff

$$
\begin{align*}
(p, n, x)= & (3,2,1),(7,4,1),(11,5,1),(19,9,2), \\
& (29,7,1),(47,8,1)(199,11,1),(521,13,1) . \tag{1.2}
\end{align*}
$$

Besides, he proved that, for $p=14503$, (1.1) holds iff

$$
\begin{equation*}
(n, x)=(28,7) \tag{1.3}
\end{equation*}
$$

Following Robbins, denote $z(n)=\min \left\{m: n \mid F_{m}, m>0\right\}$, where F_{m} is the $m^{\text {th }}$ Fibonacci number, that is, $F_{1}=F_{2}=1, F_{m+1}=F_{m}+F_{m-1}$ for $m \geq 2$. If p is odd and $2 \mid z(p)$, denote $y(p)=\frac{1}{2} z(p)$. Then we observe that every (n, x) in (1.2) and (1.3) satisfies $n=y(p)$. Furthermore, if $2 \mid n$, then either $n=2^{r}$ or $n=2^{r} q$, where q is an odd prime and $l_{2^{r}}=q \square$; if $2 \nmid n$, then n is a prime except $n=9$ for $p=19$. The question is: Does the above conclusion holds for arbitrary p ? Our answer is affirmative. In this paper, we state and prove this general conclusion in Section 3. Some preliminaries are given in Section 2. In Section 4, we give an algorithm which we can use to solve (1.1) for given p. For example, we have given the solutions of (1.1) for $1000<p<60000$. A conjecture is also given in Section 4.

2. PRELIMINARIES

Let (n / m) be the Jacobi symbol. (For odd prime $m,(n / m)$ is the Legendre symbol; see [9].) Denote $O_{p}(n)=k$ if $p^{k} \| n$.
(1) If $m \geq 2$, then $m \mid F_{n}$ iff $z(m) \mid n$.
(2) If m is odd and $m \geq 3$, then $m \mid L_{n}$ iff $n / y(m)$ is an odd integer.
(3) $F_{2 n}=L_{n} F_{n}$.
(4) $L_{2 n}=L_{n}^{2}-2(-1)^{n}=5 F_{n}^{2}+2(-1)^{n}$.
(5) $L_{-n}=(-1)^{n} L_{n}$.
(6) If p is an odd prime, then $z(p) \mid(p-e)$, where $e=(5 / p)=1,-1,0$ for $p= \pm 1, \pm 2,0$ $(\bmod 5)$, respectively.
(7) $L_{n} \mid L_{k n}$ iff k is odd or $n=1$.
(8) If k is odd, then $\left(L_{n}, L_{k n} / L_{n}\right) \mid k$.
(9) $F_{n}=\left(\alpha^{n}-\beta^{n}\right) /(\alpha-\beta)$ and $L_{n}=\alpha^{n}+\beta^{n}$, where $\alpha=(1+\sqrt{5}) / 2, \beta=(1-\sqrt{5}) / 2$.
(10) If p is an odd prime, $p \mid F_{m}$ and $p \nmid a$, then $O_{p}\left(F_{p^{k} a m} / F_{m}\right)=k$.
(11) If p is an odd prime, $p \mid L_{m}, a$ is an odd integer, and $p \nmid a$, then $O_{p}\left(L_{p^{k} a m} / L_{m}\right)=k$.
(12) $O_{2}\left(L_{n}\right)= \begin{cases}1 & \text { if } n=0(\bmod 6), \\ 2 & \text { if } n=3(\bmod 6), \\ 0 & \text { otherwise. }\end{cases}$
(13) $L_{12 m+n} \equiv L_{n}(\bmod 8)$; furthermore, $L_{n} \equiv 1,-1,3,-3(\bmod 8)$ for $n=1,-1$ or $\pm 4, \pm 2$ or $5,-5(\bmod 12)$, respectively.
(14) $L_{n}=x^{2}$ iff $n=1$ or 3 .
(15) $L_{n+k}+(-1)^{k} L_{n-k}=L_{n} L_{k}$.
(16) If $m>0$, then $L_{2 m k+t} \equiv(-1)^{m(k-1)} L_{l}\left(\bmod L_{k}\right)$.

Remarks: (1) through (10), (12), (14), and (15) can be found in [4], [8], or [6]; (13) follows from the observation of the sequence $\left\{L_{n}(\bmod 8)\right\}$. We give the proofs of (11) and (16) below.

Proof of (11): From (9), it is easy to see that $\sqrt{5} \alpha^{m}=L_{m} \alpha+L_{m-1}$. Then

$$
(\sqrt{5})^{t} \alpha^{t m}=\sum_{i=0}^{t}\binom{t}{i} L_{m-1}^{t_{m}^{-i}} L_{m}^{i} \alpha^{i}
$$

For the same reason, we have

$$
(-\sqrt{5})^{t} \beta^{t m}=\sum_{i=0}^{t}\binom{t}{i} L_{m-1}^{t-i} L_{m}^{i} \beta^{i} .
$$

If $2 \nmid t$, then, by using (9), we get

$$
\begin{equation*}
5^{(t-1) / 2} L_{t m} / L_{m}=\sum_{i=1}^{t}\binom{t}{i} L_{m-1}^{t-i} L_{m}^{i-1} F_{i}=\sum_{i=1}^{t} h_{i} \tag{2.1}
\end{equation*}
$$

Let $t=p^{k} a$. If $i \geq p^{k+1}$, then $p^{k+1} \mid L_{m}^{i-1}$ since $p \mid L_{m}$, whence $p^{k+1} \mid h_{i}$. If $2 \leq i \leq p^{k+1}$, let $i=r p^{s}(p \nmid r, s \leq k)$, then

$$
p^{k-s} \left\lvert\,\binom{ p^{k} a}{p^{s} r}=\binom{t}{i}(\text { see [7], Th. 2.1), }\right.
$$

whence $p^{k-s+i-1} \mid h_{i}$. Since $p \geq 3$, we have $i \geq s+2$, so $k-s+i-1 \geq k+1$. Hence, $p^{k+1} \mid h_{i}$ for $i \geq 2$. Now $h_{1}=t L_{m-1}^{t-1}$. Suppose that $p \mid L_{m-1}$, then $p \mid L_{m}$ and the recurrence $L_{n+1}=L_{n}+L_{n-1}$ implies $p \mid L_{1}=1$. This is impossible. Hence $p \nmid L_{m-1}$, whence $O_{p}\left(h_{1}\right)=O_{p}(t)=k$. Summarizing the above, we have that $p^{k} \| \sum_{i=1}^{t} h_{i}$. From $\left\{L_{n}(\bmod 5)\right\}_{0}^{+\infty}=\{2,1,3,4,2,1, \ldots\}$, we observe that $5 \backslash L_{m}$, thus $p \neq 5$. Then, (11) follows from (2.1).

Proof of (16): In (15), take $n=k+t$. Then we get $L_{2 k+t} \equiv(-1)^{k-1} L_{t}\left(\bmod L_{k}\right)$. This means that (16) holds for $m=1$. Assume that (16) holds for m. In (15), taking $n=(2 m+1) k+t$, we get $L_{2(m+1) k+t} \equiv(-1)^{k-1} L_{2 m k+t}\left(\bmod L_{k}\right)$. By the induction hypothesis, we have

$$
L_{(2 m+1) k+t} \equiv(-1)^{k-1}(-1)^{m(k-1)} L_{t}=(-1)^{(m+1)(k-1)} L_{t}\left(\bmod L_{k}\right),
$$

thus (16) is proved.
Note: (1) through (16) can also be found in [10] which was published in Chinese.

3. THE MAIN RESULT AND ITS PROOF

In the following discussion, we always assume $n, x>0$.
Theorem: Let p be an odd prime, and $L_{n}=p x^{2}$, then $n=y(p)$. Furthermore, let $2^{r} \| y(p)$.
(a) If $r=0$, then $p= \pm 1(\bmod 5)$ and $y(p)$ is prime except $y(p)=9$ for $p=19$.
(b) If $r=1$, then $(p, n, x)=(3,2,1)$.
(c) If $r \geq 2$, then $p \equiv 7$ or $23(\bmod 40)$ and either $y(p)=2^{r}$ or $y(p)=2^{r} q$, where q is an odd prime satisfying $L_{2}^{r}=q \square$.

Clearly, the theorem is a considerable improvement of both Theorem 9 and Theorem 11 in [5]. To prove the theorem we need the following lemmas.

Lemma 1: Let p be an odd prime and let $L_{n}=p x^{2}$. Then $3 \nmid n$ except $n=9$ for $p=19$, and so $2 \nmid x$ for $p \neq 19$ (see [5], Th. 3 and Th. 4).

Lemma 2: Let p be prime, $t \equiv \pm 1(\bmod 6)$, and $p \equiv \pm L_{5 t}(\bmod 8)$. Then $p \equiv \mp L_{t}(\bmod 4)$ and $(2 / p)\left(2 / L_{t}\right)=-1$.

Proof: If $t \equiv \pm 1(\bmod 12)$, then $5 t \equiv \pm 5(\bmod 12)$, whence (13) implies $L_{t} \equiv \pm 1(\bmod 8)$ and $L_{5 t} \equiv \pm 3(\bmod 8)$. Hence, the lemma holds. If $t \equiv \pm 5(\bmod 12)$, the lemma is proved in the same way.

Lemma 3: Let p be prime, $n=(12 s \pm 1) t, s>0, t \equiv \pm 1(\bmod 6)$, and $p \mid L_{t}$. Then $L_{n} \neq p x^{2}$.
Proof: Suppose $L_{n}=p x^{2}$. Then, from (13) and (5), we have $L_{n} \equiv L_{ \pm t} \equiv \pm L_{t}(\bmod 8)$. (12) implies $2 \nmid L_{n}, 2 \nmid L_{l}$, so $2 \nmid x$. Thus,

$$
\begin{equation*}
p \equiv L_{n} \equiv \pm L_{t}(\bmod 8) \tag{3.1}
\end{equation*}
$$

Rewrite $n=2 \cdot 3^{a} \cdot k \pm t$, where $k \equiv \pm 2(\bmod 6)$. From (16), it follows that

$$
\begin{equation*}
p x^{2}=L_{2.3^{a} k \pm t} \equiv-L_{ \pm t}=\mp L_{t}\left(\bmod L_{k}\right) \tag{3.2}
\end{equation*}
$$

It is easy to see that $k=2 h t$. (16) implies $L_{k}=L_{2 h t+0} \equiv L_{0}=2\left(\bmod L_{t}\right)$. This and $2 \nmid L_{t}$ imply $\left(L_{k}, L_{t}\right)=1$. Since $p \mid L_{t}$, we have $L_{k} \equiv 2(\bmod p)$ and $\left(L_{k}, p\right)=1$. (13) implies $L_{k} \equiv-1(\bmod 4)$. From (3.1), we have

$$
\begin{aligned}
\left(p\left(\mp L_{t}\right) / L_{k}\right) & =\mp\left(p / L_{k}\right)\left(L_{t} / L_{k}\right)=(\mp)(\pm)\left(L_{k} / p\right)\left(L_{k} / L_{t}\right) \\
& =-\left(L_{k} / p\right)\left(L_{k} / L_{t}\right)=-(2 / p)\left(2 / L_{t}\right)=-1 .
\end{aligned}
$$

This contradicts (3.2). Hence, $L_{n} \neq p x^{2}$.
Lemma 4: Let p be prime, $n=(12 s \pm 5) t, t \equiv \pm 1(\bmod 6)$, and $p \mid L_{t}$. Then $L_{n} \neq p x^{2}$.
Proof: Suppose $L_{n}=p x^{2}$. For the same reason as in the proof of Lemma 3, we have

$$
\begin{equation*}
p \equiv L_{n} \equiv \pm L_{5 t}(\bmod 8) \tag{3.3}
\end{equation*}
$$

Rewrite $n=2(6 s \pm 2) t \pm t=2 k \pm t$. Then (16) implies

$$
\begin{equation*}
p x^{2}=L_{2 k \pm t} \equiv-L_{ \pm t}=\mp L_{t}\left(\bmod L_{k}\right) . \tag{3.4}
\end{equation*}
$$

1999]

For the same reason as above, $L_{k} \equiv 2\left(\bmod L_{t}\right)$ and $L_{k} \equiv 2(\bmod p),\left(L_{k}, L_{t}\right)=\left(L_{k}, p\right)=1$, and $L_{k} \equiv-1(\bmod 4)$. Thus, from Lemma 2, we have

$$
\left(p\left(\mp L_{t}\right) / L_{k}\right)=\mp\left(p / L_{k}\right)\left(L_{t} / L_{k}\right)=(\mp)(\mp)\left(L_{k} / p\right)\left(L_{k} / L_{t}\right)=(2 / p)\left(2 / L_{t}\right)=-1 .
$$

This contradicts (3.4). Hence, $L_{n} \neq p x^{2}$.
Lemma 5: Let p be prime, $n=(12 s \pm 5) t, t=2^{r} d, r \geq 2, d \equiv \pm 1(\bmod 6)$, and $p \mid L_{t}$. Then $L_{n} \neq p x^{2}$.

Proof: Suppose $L_{n}=p x^{2}$. Since $2^{r}=4 \cdot 2^{r-2} \equiv 4(-1)^{r-2}= \pm 4(\bmod 12)$ for $r \geq 2$, we have $n \equiv \pm 5 t \equiv \mp t \equiv \pm 4$ or $\mp 4(\bmod 12)$. (13) implies $L_{n} \equiv L_{t} \equiv-1(\bmod 8)$, and so $L_{n}=p x^{2}$ implies $p \equiv-1(\bmod 8)$. Let $3 s \pm 1=2^{a} m, 2 \nmid m$. Then $n=2 m \cdot 2^{a+1} t \pm t=2 m k \pm t$. (16) implies

$$
\begin{equation*}
p x^{2}=L_{n} \equiv-L_{ \pm t}=-L_{t}\left(\bmod L_{k}\right) . \tag{3.5}
\end{equation*}
$$

Again, (16) implies $L_{k}=L_{2 \cdot 2^{a} t+0} \equiv(-1)^{2^{a}(t-1)} L_{0}= \pm 2\left(\bmod L_{t}\right)$, and so $L_{k} \equiv \pm 2(\bmod p)$. For the same reason as given above, $L_{k} \equiv-1(\bmod 8)$ and $\left(L_{k}, L_{t}\right)=\left(L_{k}, p\right)=1$. Thus,

$$
\left(p\left(-L_{t}\right) / L_{k}\right)=-\left(p / L_{k}\right)\left(L_{t} / L_{k}\right)=-(-1)\left(L_{k} / p\right)(-1)\left(L_{k} / L_{t}\right)=-(\pm 2 / p)\left(\pm 2 / L_{t}\right)=-1
$$

This contradicts (3.5). Hence, $L_{n} \neq p x^{2}$.
Lemma 6: Let p be prime, $n=(12 s \pm 1) t, t=2^{r} d, s>0, r \geq 2, d \equiv \pm 1(\bmod 6)$, and $p \mid L_{t}$. Then $L_{n} \neq p x^{2}$.

Proof: Suppose $L_{n}=p x^{2}$. Let $3 s=2^{a} m, 2 \nmid m$. Then $n=2 \cdot m \cdot 2^{a+1} t \pm t=2 m k \pm t$. The proof is completed in the same way as the proof of Lemma 5.
Lemma 7: Let p be an odd prime, and $L_{n}=p x^{2}$. Then $n=y(p)$.
Proof: From (1.2), we know that the lemma holds for $p=19$. Now we assume that $p \neq 19$. Then Lemma 1 implies $3 \nmid n$ and (2) implies $n=m t$, where $t=y(p)$ and $2 \nmid m$. Therefore, $m \equiv \pm 1$ $(\bmod 6)$. If $m>1$, then $m=12 s \pm 1$ or $m=12 s \pm 5$. Let $t=2^{r} d, r \geq 0, d \equiv \pm 1(\bmod 6)$. When $r=0$, the conditions of Lemma 3 and Lemma 4 are fulfilled. When $r \geq 2$, the conditions of Lemma 5 and Lemma 6 are fulfilled. These all lead to $L_{n} \neq p x^{2}$. Hence, $m=1$, and so $n=y(p)$. When $r=1$, (12) implies $3 \| L_{n}$, whence $L_{n}=p x^{2}$ iff $(p, n, x)=(3,2,1)$. Obviously, $2=y(3)$, and we are done.

Lemma 8: Let p be prime, $p>3$, and $t=y(p) \equiv \pm 1(\bmod 6)$. If $L_{t}=p x^{2}$, then $p \equiv \pm 1(\bmod 5)$ and t is prime.

Proof: $L_{t}=p x^{2}, 2 \nmid t$, and (4) imply $5 F_{t}^{2} \equiv 4(\bmod p)$. This implies $(5 / p)=1$, and so $p \equiv \pm 1(\bmod 5)$. Suppose that t is a composite. Then $t=k q$, where q is a prime greater than 3 , and $k>1$. (14) implies $L_{q} \neq \square$. Since $2 \nmid L_{q}$, there exists an odd prime r such that $r \mid L_{q}$ and $2 \nmid O_{r}\left(L_{q}\right)$. From (2), it is clear that

$$
\begin{equation*}
y(r)=q . \tag{3.6}
\end{equation*}
$$

If $r=q$, then $z(q)=2 \cdot y(q)=2 \cdot y(r)=2 q$. (6) implies $2 q \mid(q-(5 / q))$. This is impossible. Hence, $r \neq q$. If $r \nmid k$, then (11) implies $O_{r}\left(L_{k q}\right)=O_{r}\left(L_{q}\right)$. Therefore, $2 \nmid O_{r}\left(L_{t}\right)$. This means that
$L_{t}=p x^{2}$ implies $r=p$. Thus, from (3.6), we get $y(p)=q<k q=y(p)$. This is a contradiction! Hence, $r \mid k$. Let $k=r h$, then $L_{q h} \cdot L_{q r h} / L_{q h}=p x^{2}$. Let ($\left.L_{q h}, L_{q r h} / L_{q h}\right)=d$. (8) implies $d \mid r$, (2) implies $r \mid L_{q h}$, and so (11) implies $O_{r}\left(L_{q r h} / L_{q h}\right)=1$. Thus, $r \mid d$; hence, $d=r$. Then we have either (i) $L_{q h}=r u^{2}$ or (ii) $L_{q h}=r p u^{2}$. (ii) contradicts the fact that $y(p)=q r h$, since $q h<y(p)$. If (i) holds, then, from Lemma 7, we have $y(r)=q h$. Comparing it with (3.6), we get $h=1$ and $t=q r$.

For the same reason, there exists an odd prime s such that $s \mid L_{r}$ and $2 \nmid O_{s}\left(L_{r}\right)$. And we also have

$$
\begin{equation*}
y(s)=r \tag{3.7}
\end{equation*}
$$

and $s \neq r$. Again, for the same reason as $r \mid k$, we have $s \mid q$, whence $s=q$. Thus, (3.7) becomes

$$
\begin{equation*}
y(q)=r . \tag{3.8}
\end{equation*}
$$

Equations (3.6) and (3.8) imply that $z(r)=2 q$ and $z(q)=2 r$. Thus, (6) implies $2 q \mid(r-(5 / r))$ and $2 r \mid(q-(5 / q))$. Clearly, this is impossible. Hence, t is prime.

Lemma 9: Let p be prime, $p>3,2^{r} \| t=y(p)$, and $r \geq 2$. If $L_{t}=p x^{2}$, then $p \equiv 7$ or $23(\mathrm{mod}$ 40) and either $t=2^{r}$ or $t=2^{r} q$, where q is a prime satisfying $l_{2^{r}}=q \square$.

Proof: From the proof of Lemma 7, we know that $t=2^{r} d, d \equiv \pm 1(\bmod 6)$. From the proof of Lemma 5 , we know that $p \equiv-1(\bmod 8) . L_{t}=p x^{2}, 2 \mid t$, and (4) imply $5 F_{t}^{2} \equiv-4(\bmod p)$, and so $(-5 / p)=-(5 / p)=1$. This leads us to $p \equiv \pm 2(\bmod 5)$. Summarizing the above, we obtain $p=7$ or $23(\bmod 40)$.

From the proof of Lemma 8, we know that there exists an odd prime q such that $q \mid l_{2^{r}}$ and $2 \nmid O_{q}\left(l_{2^{r}}\right)$. From (2), it is clear that $y(q)=2^{r}$. If $d \neq 1$, then, for the same reason as in the proof of Lemma 8, we have $q \mid d$. Let $d=q h$, then $l_{2^{r} h} \cdot l_{2^{r} q h} / l_{2^{r} h}=p x^{2}$. Now (8), (2), and (11) imply $\left(l_{2^{r} h}, l_{2^{r} q h} / l_{2^{r} h}\right)=q$, so we get either (i) $l_{2^{r} h}=q u^{2}$ or (ii) $l_{2^{r} h}=q p u^{2}$. (ii) contradicts the fact that $y(p)=2^{r} q h$. If (i) holds, then Lemma 7 implies $y(q)=2^{r} h$. Comparing this with $y(q)=2^{r}$, we get $h=1$ and $l_{2^{r}}=q u^{2}$. Thus, the lemma is proved.

Proof of the Theorem: The Theorem follows from Lemmas 7 through 9.

4. AN ALGORITHM AND EXAMPLES

From the Theorem in Section 3 and using (1) and (6), we can give the following algorithm.
Algorithm: Let p be a given odd prime, $p \neq 3,19$.
I. If $p \not \equiv \pm 1(\bmod 5)$ and $p \not \equiv 7,23(\bmod 40)$, then (1.1) has no solution.
II. For $p \equiv \pm 1(\bmod 5)$, let $A=\left\{q_{1}, \ldots, q_{k}\right\}$ be the set of distinct prime factors greater than 3 of $p-1$.
(a) If A is empty, then (1.1) has no solution.
(b) For $i=1, \ldots, k$, calculate $L_{q_{i}}(\bmod p)$.
(c) If there exists an $i=j$ such that $L_{q_{j}} \equiv 0(\bmod p)$, then calculate $L_{q_{j}}$. If $L_{q_{j}}=p u^{2}$ ($u>0$), then $(n, x)=\left(q_{j}, u\right)$ is the solution of (1.1), otherwise (1.1) has no solution.
(d) If, for all $i=1, \ldots, k, L_{q_{i}} \neq 0(\bmod p)$, then (1.1) has no solution.
III. For $p \equiv 7$ or $23(\bmod 40)$, let $2^{a} \|(p+1)$ and $A=\left\{q_{1}, \ldots, q_{k}\right\}$ be the set of distinct prime factors greater than 3 of $p+1$.
(a) For $s=2,3, \ldots, a-1$, calculate $l_{2^{s}}(\bmod p)$.
(b) If there exists an $s=r$ such that $l_{2^{r}} \equiv 0(\bmod p)$, then calculate $l_{2^{r}}$. If $l_{2^{r}}=p u^{2}(u>0)$, then $(n, x)=\left(2^{r}, u\right)$ is the solution of (1.1), otherwise (1.1) has no solution.
(c) If, for all $s=2,3, \ldots, a-1, l_{2^{r}} \neq 0(\bmod p)$, then $s=2,3, \ldots, a-1$ and, for every q_{i} in A such that $q_{i} \equiv 7$ or $23(\bmod 40)$, calculate $l_{2^{s}}\left(\bmod q_{i}\right)$. Let B be the set of such (s, i) 's that $l_{2^{s}}=q_{i} \square$.
(d) If B is empty, then (1.1) has no solution.
(e) For each (s, i) in B, calculate $L_{2^{s} q_{i}}(\bmod p)$.
(f) If there exists an $(s, i)=(r, j)$ in B such that $L_{2^{r} q_{j}} \equiv 0(\bmod p)$, then calculate $L_{2^{r} q_{j}}$. If $L_{2^{r} q_{j}} \equiv p u^{2}(u>0)$, then $(n, x)=\left(2^{r} q_{j}, u\right)$ is a solution of (1.1), otherwise (1.1) has no solution.
(g) If, for all (s, i) in $B, L_{2^{s} q_{i}} \neq 0(\bmod p)$, then (1.1) has no solution.

Remark: For calculating $L_{m}(\bmod p)$ and L_{m}, there is an algorithm that determines the result after $\left[\log _{2} m\right]$ recursive calculations (see [2]).

Example 1: $p=63443 \equiv \pm 1(\bmod 5)$ and $p \not \equiv 7,23(\bmod 40)$. Hence, (1.1) has no solution.
Example 2: $p=19489 \equiv-1(\bmod 5), p-1=2^{5} \times 3 \times 7 \times 29, A=\{7,29\}$. By calculating, we get $L_{29} \equiv 0(\bmod p)$. But $L_{29}=59 p \neq p x^{2}$, so (1.1) has no solution.

Example 3: $p=4481 \equiv 1(\bmod 5), p-1=2^{9} \times 5 \times 7, A=\{5,7\}$. Since $L_{5}, L_{7} \not \equiv 0(\bmod p),(1.1)$ has no solution.

Example 4: $p=9349 \equiv-1(\bmod 5), p-1=2^{2} \times 3 \times 19 \times 41, A=\{19,41\}$. By calculating, we get $L_{19} \equiv 0(\bmod p)$ and $L_{19}=p$. Hence, $(n, x)=(19,1)$ is the solution of (1.1).

Example 5: $p=1103 \equiv 23(\bmod 40), p+1=2^{4} \times 3 \times 23, A=\{23\}$. Since $l_{2^{2}}, l_{2^{3}} \neq 0(\bmod p)$ and $l_{2^{2}}, l_{2^{3}} \neq 0(\bmod 23),(1.1)$ has no solution.

Example 6: $\quad p=1097 \equiv 7(\bmod 40), p+1=2^{6} \times 17, A=\{17\}$. Since $l_{2^{5}} \equiv 0(\bmod p)$ but $l_{2^{5}}=1087 \times 4481 \neq p x^{2}$, (1.1) has no solution.

Example 7: $p=3607 \equiv 7(\bmod 40), p+1=2^{3} \times 11 \times 41, A=\{11,41\}$. Since $l_{2^{2}}, l_{2^{3}} \neq 0(\bmod p)$ and 11 and $41 \neq 7,23(\bmod 40)$, (1.1) has no solution.

Example 8: $\left.\quad p=14503 \equiv 23(\bmod 40), p+1=2^{3} \times 7^{2} \times 37, A=7,37\right\}$. By the Algorithm, we get $l_{2^{2}}=7$ and $l_{2^{2} .7}=p \cdot 7^{2}$. Hence, $(n, x)=(28,7)$ is a solution of (1.1).

Remark: In II(c), III(b), and III(d) of the Algorithm, it is unnecessary to calculate L_{t}, where $t=q_{j}, 2^{r}$, or $2^{r} q_{j}$ for most of the $t^{\prime} \mathrm{s}$. The reason is that, if $p L_{t}$ is a quadratic nonresidue (mod m), where m is some prime, then $L_{l} \neq p x^{2}$. For example, by using the Algorithm and making m
run through the first 20 odd primes, and by means of a computer, we have verified the following proposition.
Proposition: Let p be prime, $10^{3}<p<6 \times 10^{4}$. Then (1.1) holds iff

$$
\begin{equation*}
(p, n, x)=(2207,16,1),(3571,17,1),(9349,19,1),(14503,28,7) . \tag{4.1}
\end{equation*}
$$

Extensive numeric results inspire the following conjecture.
Conjecture: Let p be an odd prime and $p \neq 3,19$. Then $L_{n}=p x^{2}$ iff one of the following conditions holds:
(a) $p \equiv \pm 1(\bmod 5), y(p)$ is prime, and $L_{y(p)}=p$, so $(n, x)=(y(p), 1)$;
(b) $p \equiv 7$ or $23(\bmod 40), y(p)=2^{r}$, and $L_{y(p)}=p$, so $(n, x)=(y(p), 1)$;
(c) $p \equiv 7$ or $23(\bmod 40), y(p)=2^{r} q$, where q is a prime greater than 3 satisfying $l_{2^{r}}=q$ and $L_{y(p)}=p q^{2}$, so $(n, x)=(y(p), q)$.

We point out that the conjecture would hold if we could show $p^{2} \backslash L_{y(p)}$ for all odd prime p. At this time, it remains unknown whether there exists an odd prime p such that $p^{2} \mid L_{y(p)}$.

REFERENCES

1. J. H. E. Cohn. "Square Fibonacci Numbers, etc." The Fibonacci Quarterly 2.2 (1964):10913.
2. A. Di Porto \& P. Filipponi. "More on the Fibonacci Pseudoprimes." The Fibonacci Quarterly 27.2 (1989):232-42.
3. M. Goldman. "On Lucas Numbers of the Form $p x^{2}$, Where $p=3,7,47$, or 2207." Math. Reports Canada Acad. Sci. (June 1988).
4. V. E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Boston: Houghton Mifflin, 1969.
5. N. Robbins. "Lucas Numbers of the Form $p x^{2}$, Where p Is Prime." Internatl. J. Math. \& Math. Sci. 14.4 (1991):697-704.
6. N. Robbins. "Fibonacci Numbers of the Form $c x^{2}$, Where $1 \leq p \leq 1000$." The Fibonacci Quarterly 28.4 (1990):306-15.
7. N. Robbins. "Some Congruence Properties of Binomial Coefficients and Linear Second Order Recurrence." Internatl. J. Math. \& Math. Sci. 11.4 (1988):743-50.
8. S. Vajda. Fibonacci and Lucas Numbers, and the Golden Section. Chichester: Ellis Horwood Ltd., 1989.
9. I. M. Vinogradov. Elements of Number Theory. New York: Dover, 1954.
10. Chizhong Zhou. Fibonacci-Lucas Sequences and Their Application (in Chinese). China: Hunan Science and Technology Publishing House, 1993. (MR. 95m: 11027)
AMS Classification Number: 11B39
