ON THE SQUARE ROOTS OF TRIANGULAR NUMBERS

A. Behera and G. K. Panda

Department of Mathematics, Regional Engineering College, Rourkela 769 008, India
(Submitted July 1996-Final Revision November 1998)

1. BALANCING NUMBERS

We call an integer $n \in \mathbb{Z}^{+}$a balancing number if

$$
\begin{equation*}
1+2+\cdots+(n-1)=(n+1)+(n+2)+\cdots+(n+r) \tag{1}
\end{equation*}
$$

for some $r \in \mathbb{Z}^{+}$. Here r is called the balancer corresponding to the balancing number n.
For example, 6,35 , and 204 are balancing numbers with balancers 2,14 , and 84 , respectively. It follows from (1) that, if n is a balancing number with balancer r, then

$$
\begin{equation*}
n^{2}=\frac{(n+r)(n+r+1)}{2} \tag{2}
\end{equation*}
$$

and thus

$$
\begin{equation*}
r=\frac{-(2 n+1)+\sqrt{8 n^{2}+1}}{2} \tag{3}
\end{equation*}
$$

It is clear from (2) that n is a balancing number if and only if n^{2} is a triangular number (cf. [2], p. 3). Also, it follows from (3) that n is a balancing number if and only if $8 n^{2}+1$ is a perfect square.

2. FUNCTIONS GENERATING BALANCING NUMBERS

In this section we introduce some functions that generate balancing numbers. For any balancing number x, we consider the following functions:

$$
\begin{align*}
& F(x)=2 x \sqrt{8 x^{2}+1} \tag{4}\\
& G(x)=3 x+\sqrt{8 x^{2}+1} \tag{5}\\
& H(x)=17 x+6 \sqrt{8 x^{2}+1} \tag{6}
\end{align*}
$$

First, we prove that the above functions always generate balancing numbers.
Theorem 2.1: For any balancing number $x, F(x), G(x)$, and $H(x)$ are also balancing numbers.
Proof: Since x is a balancing number, $8 x^{2}+1$ is a perfect square, and

$$
\frac{8 x^{2}\left(8 x^{2}+1\right)}{2}=4 x^{2}\left(8 x^{2}+1\right)
$$

is a triangular number which is also a perfect square; therefore, its square root $2 x \sqrt{8 x^{2}+1}$ is a (an even) balancing number. Thus, for any given balancing number $x, F(x)$ is an even balancing number. Since $8 x^{2}+1$ is a perfect square, it follows that

$$
8(G(x))^{2}+1=\left(8 x+3 \sqrt{8 x^{2}+1}\right)^{2}
$$

is also a perfect square; hence, $G(x)$ is a balancing number. Again, since $G(G(x))=H(x)$, it follows that $H(x)$ is also a balancing number. This completes the proof of Theorem 2.1.

It is important to note that, if x is any balancing number, then $F(x)$ is always even, whereas $G(x)$ is even when x is odd and $G(x)$ is odd when x is even. Thus, if x is any balancing number, then $G(F(x))$ is an odd balancing number. But

$$
G(F(x))=6 x \sqrt{8 x^{2}+1}+16 x^{2}+1 .
$$

The above discussion proves the following result.
Theorem 2.2: If x is any balancing number, then

$$
\begin{equation*}
K(x)=6 x \sqrt{8 x^{2}+1}+16 x^{2}+1 \tag{7}
\end{equation*}
$$

is an odd balancing number.

3. FINDING THE NEXT BALANCING NUMBER

In the previous section, we showed that $F(x)$ generates only even balancing numbers, whereas $K(x)$ generates only odd balancing numbers. But $H(x)$ and $K(x)$ generate both even and odd balancing numbers. Since $H(6)=204$ and there is a balancing number 35 between 6 and 204, it is clear that $H(x)$ does not generate the next balancing number for any given balancing number x. Now the question arises: "Does $G(x)$ generate the next balancing number for any given balancing number x ?" The answer to this question is affirmative. More precisely, if x is any balancing number, then the next balancing number is $3 x+\sqrt{8 x^{2}+1}$ and, consequently, the previous one is $3 x-\sqrt{8 x^{2}+1}$.

Theorem 3.1: If x is any balancing number, then there is no balancing number y such that $x<y<3 x+\sqrt{8 x^{2}+1}$.

Proof: The function $G:[0, \infty) \rightarrow[1, \infty)$, defined by $G(x)=3 x+\sqrt{8 x^{2}+1}$, is strictly increasing since

$$
G^{\prime}(x)=3+\frac{8 x}{\sqrt{8 x^{2}+1}}>0 .
$$

Also, it is clear that G is bijective and $x<G(x)$ for all $x \geq 0$. Thus, G^{-1} exists and is also strictly increasing with $G^{-1}(x)<x$. Let $u=G^{-1}(x)$. Then $G(u)=x$ and $u=3 x \pm \sqrt{8 x^{2}+1}$. Since $u<x$, we have $u=3 x-\sqrt{8 x^{2}+1}$. Also, since $8\left(G^{-1}(x)\right)^{2}+1=\left(8 x-3 \sqrt{8 x^{2}+1}\right)^{2}$ is a perfect square, it follows that $G^{-1}(x)$ is also a balancing number.

Now we can complete the proof in two ways. The first is by the method of induction; the second is by the method of infinite descent used by Fermat ([2], p. 228).

By induction: We define $B_{0}=1$ (the reason is that $8 \cdot 1^{2}+1=9$ is a perfect square) and $B_{n}=$ $G\left(B_{n-1}\right)$ for $n=1,2, \ldots$. Thus, $B_{1}=6, B_{2}=35$, and so on. Let H_{i} be the hypothesis that there is no balancing number between B_{i-1} and B_{i}. Clearly, H_{1} is true. Assume H_{i} is true for $i=1,2, \ldots$, n. We shall prove that H_{n+1} is true, i.e., there is no balancing number y such that $B_{n}<y<B_{n+1}$. Assume, to the contrary, that such a y exists. Then $G^{-1}(y)$ is a balancing number, and since G^{-1} is strictly increasing, it follows that $G^{-1}\left(B_{n}\right)<G^{-1}(y)<G^{-1}\left(B_{n+1}\right)$, i.e., $B_{n-1}<G^{-1}(y)<B_{n}$, which is a contradiction to the assumption that H_{n} is true. So H_{n+1} is also true. Thus, if x is a balancing number, then $x=B_{n}$ for some n and there is no balancing number between x and $G(x)$.

By the method of infinite descent: Here assume H_{n} is false for some n. Then there exists a balancing number y such that $B_{n-1}<y<B_{n}$, and this implies that $B_{n-2}<G^{-1}(y)<B_{n-1}$. Finally, this would imply that there exists a balancing number B between B_{0} and B_{1}, which is false. Thus, H_{n} is true for $n=1,2, \ldots$.

This completes the proof of Theorem 3.1.
Corollary 3.2: If x is any balancing number, then its previous balancing number is $3 x-\sqrt{8 x^{2}+1}$.
Proof: $G\left(3 x-\sqrt{8 x^{2}+1}\right)=x$.

4. ANOTHER FUNCTION GENERATING BALANCING NUMBERS

In this section we develop a function $f(x, y)$ of two variables generating balancing numbers such that all the functions $F(x), G(x), H(x)$, and $K(x)$ are obtained as particular cases of this function.

Let x be any balancing number. We try to find balancing numbers of the form

$$
B=p x+q \sqrt{8 x^{2}+1},
$$

where $p, q \in \mathbf{Z}^{+}$. In the previous section we have seen that most of the balancing numbers are of this form. Since B is a balancing number, $8 B^{2}+1=\left(8 q x+p \sqrt{8 x^{2}+1}\right)^{2}+8 q^{2}-p^{2}+1$ must be a perfect square; this happens if $8 q^{2}-p^{2}+1=0$, i.e., $p=\sqrt{8 q^{2}+1}$. Since $p \in \mathbf{Z}^{+}$, it follows that $8 q^{2}+1$ must be a perfect square, and this is possible if q is a balancing number.

The above discussion proves the following theorem.
Theorem 4.1: If x and y are balancing numbers, then

$$
\begin{equation*}
f(x, y)=x \sqrt{8 y^{2}+1}+y \sqrt{8 x^{2}+1} \tag{8}
\end{equation*}
$$

is also a balancing number.
Remark 4.2: (a) $f(x, x)=F(x) ;$ (b) $f(x, 1)=G(x) ;$ (c) $f(x, 6)=H(x)$; (d) $f(x, G(x))=K(x)$.

5. RECURRENCE RELATIONS FOR BALANCING NUMBERS

We know that $B_{1}=6, B_{2}=35, B_{3}=204$, and so on. We have already assumed that $B_{0}=1$. In Section 3 we proved that, if B_{n} is the $n^{\text {th }}$ balancing number, then

$$
B_{n+1}=3 B_{n}+\sqrt{8 B_{n}^{2}+1} \quad \text { and } \quad B_{n-1}=3 B_{n}-\sqrt{8 B_{n}^{2}+1}
$$

It is clear that the balancing numbers obey the following recurrence relation:

$$
\begin{equation*}
B_{n+1}=6 B_{n}-B_{n-1} . \tag{9}
\end{equation*}
$$

Using the recurrence relation (9), we can obtain some other interesting relations concerning balancing numbers.

Theorem 5.1:

(a) $B_{n+1} \cdot B_{n-1}=\left(B_{n}+1\right)\left(B_{n}-1\right)$.
(b) $B_{n}=B_{k} \cdot B_{n-k}-B_{k-1} \cdot B_{n-k-1}$ for any positive integer $k<n$.
(c) $B_{2 n}=B_{n}^{2}-B_{n-1}^{2}$.
(d) $B_{2 n+1}=B_{n}\left(B_{n+1}-B_{n-1}\right)$.

Proof: From (9), it follows that

$$
\begin{equation*}
\frac{B_{n+1}+B_{n-1}}{B_{n}}=6 . \tag{10}
\end{equation*}
$$

Replacing n by $n-1$ in (10), we get

$$
\begin{equation*}
\frac{B_{n-1}+B_{n-2}}{B_{n-1}}=6 . \tag{11}
\end{equation*}
$$

From (10) and (11), we obtain $B_{n}^{2}-B_{n-1} \cdot B_{n+1}=B_{n-1}^{2}-B_{n-2} \cdot B_{n}$. Now, iterating recursively, we see that $B_{n}^{2}-B_{n-1} \cdot B_{n+1}=B_{1}^{2}-B_{0} \cdot B_{2}=36-1 \cdot 35=1$. Thus, $B_{n}^{2}-1=B_{n+1} \cdot B_{n-1}$, from which (a) follows.

The proof of (b) is based on induction. Clearly, (b) is true for $n>1$ and $k=1$. Assume that (b) is true for $k=r$, i.e., $B_{n}=B_{r} \cdot B_{n-r}-B_{r-1} \cdot B_{n-r-1}$. Thus,

$$
\begin{aligned}
B_{r+1} \cdot B_{n-r-1}-B_{r} \cdot B_{n-r-2} & =\left(6 B_{r}-B_{r-1}\right) B_{n-r-1}-B_{r} \cdot B_{n-r-2} \\
& =6 B_{r} \cdot B_{n-r-1}-B_{r-1} \cdot B_{n-r-1}-B_{r} \cdot B_{n-r-2} \\
& =B_{r}\left(6 B_{n-r-1}-B_{n-r-2}\right)-B_{r-1} \cdot B_{n-r-1} \\
& =B_{r} \cdot B_{n-r}-B_{r-1} \cdot B_{n-r-1}=B_{n},
\end{aligned}
$$

showing that (b) is true for $k=r+1$. This completes the proof of (b).
The proof of (c) follows by replacing n by $2 n$ and k by n in (b). Similarly, the proof of (d) follows by replacing n by $2 n+1$ and k by n in (b). This completes the proof of Theorem 5.1.

6. GENERATING FUNCTION FOR BALANCING NUMBERS

In Section 5 we obtained some recurrence relations for the sequence of balancing numbers. In this section our aim is to find a nonrecursive form for $B_{n}, n=0,1,2, \ldots$, using the generating function for the sequence B_{n}.

Recall that the generating function for a sequence $\left\{x_{n}\right\}$ of real numbers is defined by

$$
g(s)=\sum_{n=0}^{\infty} x_{n} s^{n} .
$$

Thus,

$$
x_{n}=\left.\frac{1}{n!} \frac{d^{n}}{d s^{n}} g(s)\right|_{s=0} \quad \text { (see [5], p. 29). }
$$

Theorem 6.1: The generating function of the sequence B_{n} of balancing numbers is $g(s)=\frac{1}{1-6 s+s^{2}}$ and, consequently,

$$
\begin{align*}
B_{n} & =6^{n}-\binom{n-1}{1} 6^{n-2}+\binom{n-2}{2} 6^{n-4}-\cdots+(-1)^{\left[\frac{n}{2}\right]}\binom{n-\left[\frac{n}{2}\right]}{\left[\frac{n}{2}\right]} 6^{n-\left[\frac{n}{2}\right]} \tag{12}\\
& =\sum_{k=0}^{\left[\frac{n}{2}\right]}(-1)^{k}\binom{n-k}{k} 6^{n-2 k},
\end{align*}
$$

where [] denotes the greatest integer function.

Proof: From (9) for $n=1,2, \ldots$, we have $B_{n+1}-6 B_{n}+B_{n-1}=0$. Multiplying each term by s^{n} and taking summation over $n=1$ to $n=\infty$, we obtain

$$
\frac{1}{s} \sum_{n=1}^{\infty} B_{n+1} s^{n+1}-6 \sum_{n=1}^{\infty} B_{n} s^{n}+s \sum_{n=1}^{\infty} B_{n-1} s^{n-1}=0
$$

which, in terms of $g(s)$, yields

$$
\frac{1}{s}(g(s)-1-6 s)-6(g(s)-1)+s g(s)=0 .
$$

Thus,

$$
\begin{align*}
g(s) & =\frac{1}{1-6 s+s^{2}}=\left(1-\left(6 s-s^{2}\right)\right)^{-1} \tag{13}\\
& =1+\left(6 s-s^{2}\right)+\left(6 s-s^{2}\right)^{2}+\left(6 s-s^{2}\right)^{3}+\cdots
\end{align*}
$$

When n is even, the terms containing s^{n} in (13) are $\left(6 s-s^{2}\right)^{n / 2},\left(6 s-s^{2}\right)^{(n / 2)+1}, \ldots,\left(6 s-s^{2}\right)^{n}$, and in this case the coefficient of s^{n} in $g(s)$ is

$$
\begin{equation*}
6^{n}-\binom{n-1}{1} 6^{n-2}+\binom{n-2}{2} 6^{n-4}-\cdots+(-1)^{n / 2} . \tag{14}
\end{equation*}
$$

When n is odd, the terms containing s^{n} in (13) are $\left(6 s-s^{2}\right)^{(n+1) / 2},\left(6 s-s^{2}\right)^{(n+3) / 2}, \ldots,\left(6 s-s^{2}\right)^{n}$, and in this case the coefficient of s^{n} in $g(s)$ is

$$
\begin{equation*}
6^{n}-\binom{n-1}{1} 6^{n-2}+\binom{n-2}{2} 6^{n-4}-\cdots+(-1)^{(n-1) / 2}\binom{\frac{n+1}{2}}{\frac{n-1}{2}} 6 . \tag{15}
\end{equation*}
$$

It is clear that (14) represents the right-hand side of (12) when n is even and (15) represents the right-hand side of (12) when n is odd. This completes the proof of Theorem 6.1.

7. ANOTHER NONRECURSIVE FORM FOR BALANCING NUMBERS

In Section 6 we obtained a nonrecursive form for $B_{n}, n=0,1,2, \ldots$, using the generating function. In this section we shall obtain another nonrecursive form for B_{n} by solving the recurrence relation (9) as a difference equation.

We rewrite (9) in the form

$$
\begin{equation*}
B_{n+1}-6 B_{n}+B_{n-1}=0, \tag{16}
\end{equation*}
$$

which is a second-order linear homogeneous difference equation whose auxiliary equation is

$$
\begin{equation*}
\lambda^{2}-6 \lambda+1=0 \tag{17}
\end{equation*}
$$

The roots $\lambda_{1}=3+\sqrt{8}$ and $\lambda_{2}=3-\sqrt{8}$ of (17) are real and unequal. Thus,

$$
\begin{equation*}
B_{n}=A \lambda_{1}^{n}+B \lambda_{2}^{n} \tag{18}
\end{equation*}
$$

where A and B are determined from the values of B_{0} and B_{1}. Substituting $B_{0}=1$ and $B_{1}=6$ into (18), we get

$$
\begin{gather*}
A+B=1, \tag{19}\\
A \lambda_{1}+B \lambda_{2}=6 . \tag{20}
\end{gather*}
$$

Solving (19) and (20) for A and B, we obtain

$$
A=\frac{\lambda_{2}-6}{\lambda_{2}-\lambda_{1}}=\frac{\lambda_{1}}{\lambda_{1}-\lambda_{2}} ; \quad B=\frac{6-\lambda_{1}}{\lambda_{2}-\lambda_{1}}=-\frac{\lambda_{2}}{\lambda_{1}-\lambda_{2}} .
$$

Substituting these values into (18), we get

$$
B_{n}=\frac{\lambda_{1}^{n+1}-\lambda_{2}^{n+1}}{\lambda_{1}-\lambda_{2}}, \quad n=0,1,2, \ldots
$$

Theorem 7.1: If B_{n} is the $n^{\text {th }}$ balancing number, then

$$
B_{n}=\frac{\lambda_{1}^{n+1}-\lambda_{2}^{n+1}}{\lambda_{1}-\lambda_{2}}, \quad n=0,1,2, \ldots,
$$

where $\lambda_{1}=3+\sqrt{8}$ and $\lambda_{2}=3-\sqrt{8}$.

8. LIMIT OF THE RATIO OF THE SUCCESSIVE TERMS

The Fibonacci numbers ([1], p. 6) are defined as follows: $F_{0}=1, F_{1}=1, F_{n}=F_{n-1}+F_{n-2}$ for $n=2,3, \ldots$. It is well known that

$$
\lim _{n \rightarrow \infty} \frac{F_{n+1}}{F_{n}}=\frac{1+\sqrt{5}}{2},
$$

which is called the golden ratio [1]. We prove a similar result concerning balancing numbers.
Theorem 8.1: If B_{n} is the $n^{\text {th }}$ balancing number, then

$$
\lim _{n \rightarrow \infty} \frac{B_{n+1}}{B_{n}}=3+\sqrt{8} .
$$

Proof: From the recurrence relation (9), we have

$$
\begin{equation*}
\frac{B_{n+1}}{B_{n}}+\frac{B_{n-1}}{B_{n}}=6 . \tag{21}
\end{equation*}
$$

Putting $\lambda=\lim _{n \rightarrow \infty} \frac{B_{n+1}}{B_{n}}$ in (21), we get $\lambda^{2}-6 \lambda+1=0$, i.e., $\lambda=3 \pm \sqrt{8}$. Since $B_{n+1}>B_{n}$, we must have $\lambda \geq 1$. Thus, $\lambda=3+\sqrt{8}$. This completes the proof of Theorem 8.1.

An alternative proof of Theorem 8.1 can be obtained by considering the relation

$$
B_{n+1}=3 B_{n}+\sqrt{8 B_{n}^{2}+1}
$$

and using the fact that $B_{n} \rightarrow \infty$ as $n \rightarrow \infty$.
It is important to note that the limit ratio $3+\sqrt{8}$ represents the simple periodic continued fraction ([4], Ch. X)

$$
\begin{equation*}
[\dot{6},-\dot{6}]=6+\frac{1}{-6+\frac{1}{6+\frac{1}{-6+\cdots}}}, \tag{22}
\end{equation*}
$$

and from Theorem 178 ([4], p. 147) it follows that, if C_{n} is the $n^{\text {th }}$ convergent of (22), then

$$
C_{n}=\frac{\lambda_{1}^{n+2}-\lambda_{2}^{n+2}}{\lambda_{1}^{n+1}-\lambda_{2}^{n+1}},
$$

where $\lambda_{1}=3+\sqrt{8}$ and $\lambda_{2}=3-\sqrt{8}$. An application of Theorem 7.1 shows that $C_{n}=\frac{B_{n+1}}{B_{n}}$; thus, $B_{0}=1$ and $B_{n+1}=B_{n} C_{n}, n=0,1,2, \ldots$.

9. AN APPLICATION OF BALANCING NUMBERS TO A DIOPHANTINE EQUATION

It is quite well known that the solutions of the Diophantine equation

$$
\begin{equation*}
x^{2}+y^{2}=z^{2}, \quad x, y, z \in \mathbf{Z}^{+} \tag{23}
\end{equation*}
$$

are of the form

$$
x=u^{2}-v^{2}, \quad y=2 u v, \quad z=u^{2}+v^{2},
$$

where $u, v \in \mathbf{Z}^{+}$and $u>v$ ([3], [4], [7]). The solution (x, y, z) is called a Pythagorean triplet. We consider the solutions of (23) in a particular case, namely,

$$
\begin{equation*}
x^{2}+(x+1)^{2}=y^{2} . \tag{24}
\end{equation*}
$$

In this section we relate the solutions of (24) with balancing numbers.
Let (x, y) be a solution of (24). Hence, $2 y^{2}-1=(2 x+1)^{2}$. Thus,

$$
\frac{\left(2 y^{2}-1\right) \cdot 2 y^{2}}{2}=y^{2} \cdot\left(2 y^{2}-1\right)
$$

is a triangular number as well as a perfect square. Therefore,

$$
\begin{equation*}
B=\sqrt{y^{2}\left(2 y^{2}-1\right)} \tag{25}
\end{equation*}
$$

is an odd balancing number (since y^{2} and $2 y^{2}-1$ are odd). Since $y^{2} \geq 1$, it follows from (25) that

$$
\begin{equation*}
y^{2}=\frac{1+\sqrt{8 B^{2}+1}}{4} . \tag{26}
\end{equation*}
$$

Again, since y is positive by assumption, we have

$$
y=\frac{1}{2} \sqrt{1+\sqrt{8 B^{2}+1}} .
$$

From (24) and (26), we obtain

$$
2 x^{2}+2 x+1=\frac{1+\sqrt{8 B^{2}+1}}{4} .
$$

Since x is positive, it follows that

$$
x=\frac{\sqrt{\frac{1}{2}\left(\sqrt{8 B^{2}+1}-1\right)}-1}{2}
$$

For example, if we take $B=35$ (an odd balancing number), then we have

$$
x=\frac{\left.\sqrt{\frac{1}{2}\left(\sqrt{8 \cdot 35^{2}+1}-1\right.}\right)-1}{2}=3,
$$

$$
y=\frac{1}{2} \sqrt{1+\sqrt{8 \cdot 35^{2}+1}}=5
$$

and

$$
3^{2}+(3+1)^{2}=5^{2}
$$

i.e.,

$$
x^{2}+(x+1)^{2}=y^{2} .
$$

ACKNOWLEDGMENT

It is a pleasure to thank the anonymous referee for valuable comments and suggestions that greatly improved the presentation of this paper.

REFERENCES

1. G. E. Andrews. Number Theory. New York: Hindustan Publishing Company, 1992.
2. L. E. Dickon. History of the Theory of Numbers II: Diophantine Analysis. New York: Chelsea, 1952.
3. H. Griffin. Elementary Theory of Numbers. New York: McGraw Book Company, 1954.
4. G. H. Hardy \& E. M. Wright. An Introduction to the Theory of Numbers. London: Oxford University Press, 1960.
5. V. Krishnamurthy. Combinatorics, Theory and Application. New Delhi: Affiliated EastWest Press, 1985.
6. I. Nivan \& H. S. Zukerman. An Introduction to the Theory of Numbers. New Delhi: Wiley Eastern, 1991.
7. O. Ore. Number Theory and Its History. New York: McGraw Book Company, 1948.

AMS Classification Numbers: 11B39, 11D09

