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1. BALANCING NUMBERS 

We call an Integer n e Z+ a balancing number if 

1+ 2+ --- + (»- l ) = (w + l) + (w + 2) +••• + (» + >•) (1) 

for some r e Z+. Here r is called the balancer corresponding to the balancing number n. 
For example, 6, 35, and 204 are balancing numbers with balancers 2, 14, and 84, respectively. 
It follows from (1) that, if n is a balancing number with balancer r, then 

n2^(n + r)(n + r + l) ^ 

r = - ( 2 f t + l) + V8ft2 + l 
2 W 

and thus 

It is clear from (2) that w is a balancing number if and only if n2 is a triangular number (cf 
[2], p. 3). Also, it follows from (3) that n is a balancing number if and only if 8n2 +1 is a perfect 
square. 

2. FUNCTIONS GENERATING BALANCING NUMBERS 

In this section we introduce some functions that generate balancing numbers. For any balan-
cing number x, we consider the following functions: 

F(x) = 2xV8x2 + l, (4) 
G(x) = 3x + V8x2 + 1, (5) 
H{x) = \lx + 6V8x2+l. (6) 

First, we prove that the above functions always generate balancing numbers. 

Theorem 2.1: For any balancing number x, F(x), G(x), and H(x) are also balancing numbers. 

Proof: Since x is a balancing number, 8x2 +1 is a perfect square, and 

8x2(8x2 + l ) ^ 4 x 2 ( 8 x 2 + 1) 

is a triangular number which is also a perfect square; therefore, its square root 2x V8x2 +1 is a (an 
even) balancing number. Thus, for any given balancing number x, F(x) is an even balancing num-
ber. Since 8x2 +1 is a perfect square, it follows that 

8(G(x))2 +1 = (8x + 3V8x2 + l)2 

is also a perfect square; hence, G(x) is a balancing number. Again, since G(G(x)) = H(x), it 
follows that i/(x) is also a balancing number. This completes the proof of Theorem 2.1. 
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It is important to note that, if x is any balancing number, then F(x) is always even, whereas 
G(x) is even when x is odd and G(x) is odd when x is even. Thus, if x is any balancing number, 
then G(F(x)) is an odd balancing number. But 

G(F(x)) = 6xV8x2 + l + \6x2 +1. 

The above discussion proves the following result. 

Theorem 2.2: If x is any balancing number, then 

K(x) = 6xV8x2 + l +16x2 +1 (7) 
is an odd balancing number. 

3, FINDING THE NEXT BALANCING NUMBER 

In the previous section, we showed that F(x) generates only even balancing numbers, 
whereas K(x) generates only odd balancing numbers. But H(x) and K(x) generate both even 
and odd balancing numbers. Since H(6) = 204 and there is a balancing number 35 between 6 and 
204, it is clear that H(x) does not generate the next balancing number for any given balancing 
number x. Now the question arises: "Does G(x) generate the next balancing number for any 
given balancing number x?!! The answer to this question is affirmative. More precisely, if x is 
any balancing number, then the next balancing number is 3x + V8x2 +1 and, consequently, the 
previous one is 3x - V8x2 4-1. 

Theorem 3.1: If x is any balancing number, then there is no balancing number y such that 
x < y < 3x + V8x2 +1 . 

Proof: The function G: [0, oo) -> [1, oo), defined by G(x) = 3x + V8x2 +1, is strictly increas-
ing since 

G'(x) = 3 + , 8* >Q. 

Also, it is clear that G is bijective and x < G(x) for all x > 0. Thus, G~l exists and is also strictly 
increasing with G~l(x) < x. Let u = G_1(x). Then G(u) = x and u = 3x + v8x2 +1. Since u < x, 
we have u = 3x - V8x2 4-1. Also, since 8(G_1(x))2 +1 = (8x - 3V8x2 +1)2 is a perfect square, it 
follows that G_1(x) is also a balancing number. 

Now we can complete the proof in two ways. The first is by the method of induction', the 
second is by the method of infinite descent used by Fermat ([2], p. 228). 

By induction: We define BQ = l (the reason is that 8 -12 +1 = 9 is a perfect square) and Bn = 
G(Bn_x) for n = 1,2,.... Thus, Bl = 6, B2 = 35, and so on. Let ZZJ be the hypothesis that there is 
no balancing number between Bt_x and Bt. Clearly, Hx is true. Assume Ht is true for / = 1, 2, ..., 
n. We shall prove that Hn+l is true, i.e., there is no balancing number^ such that Bn <y<Bn+v 

Assume, to the contrary, that such a j exists. Then G~l(y) is a balancing number, and since G_1 

is strictly increasing, it follows that G~l(Bn) <G~l(y) <G~~l(Bn+l), i.e., Bn_x <G~l(y) <Bn, which 
is a contradiction to the assumption that Hn is true. So Hn+l is also true. Thus, if x is a balancing 
number, then x = Bn for some n and there is no balancing number between x and G(x). 
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By the method of infinite descent: Here assume Hn is false for some n. Then there exists a 
balancing number y such that Bn_l <y<Bn, and this implies that Bn_2 <G~l(y) <Bn_x. Finally, 
this would imply that there exists a balancing number B between B0 and Bx, which is false. Thus, 
Hn is true for n = 1,2,.... 

This completes the proof of Theorem 3.1. 

Corollary 3.2: If x is any balancing number, then its previous balancing number is 3x - V8x2 +1 . 

Proof: G(3x-V8x2 + l) = x. 

4, ANOTHER FUNCTION GENERATING BALANCING NUMBERS 

In this section we develop a function f(x,y) of two variables generating balancing numbers 
such that all the functions F(x), G(x), H(x), and K(x) are obtained as particular cases of this 
function. 

Let x be any balancing number. We try to find balancing numbers of the form 

B- px + q^Sx2 + 1, 

where p, q e Z+. In the previous section we have seen that most of the balancing numbers are of 
this form. Since B is a balancing number, SB2 +1 = (8#x + pjsx2 +1)2 + 8#2 - p2 +1 must be a 
perfect square; this happens if Sq2-p2 + 1 = 0, i.e., p = JSq2 +1. Since p e Z+, it follows that 
$q2 +1 must be a perfect square, and this is possible if q is a balancing number. 

The above discussion proves the following theorem. 

Theorem 4.1: If x andj are balancing numbers, then 

f(x, y) = xftf + l +WS*2 + 1 (8) 
is also a balancing number. 
Remark 4.2: (a) fix, x) = F(x); (b) f(x, 1) = G(x); (c) f(x, 6) = H(x); (d) f(x, G(x)) = K(x). 

5. RECURRENCE RELATIONS FOR BALANCING NUMBERS 

We know that Bx-6, B2 - 35, B3 = 204, and so on. We have already assumed that B0 - 1. 
In Section 3 we proved that, if Bn is the n* balancing number, then 

Bn+1 = 3B„ + y[$BjTl and Bn_x = W„ - ^ +1. 

It is clear that the balancing numbers obey the following recurrence relation: 
Bn^ = 6Bn-Bn_v (9) 

Using the recurrence relation (9), we can obtain some other interesting relations concerning 
balancing numbers. 

Theorem 5.1: 
(a) B„^Bn_^{B„ + \){B„-l). 
0>) Bn = Bk- Bn-k ~ Bk-\ • Bn-k-i f o r a i w positive integer k < n. 
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(c) B2n=B2
n-B2

n_v 

(d) B2n+l = Bn(Bn+l-B
n-l)-

Proof: From (9), it follows that 
Bn+l + Bn_l=6 

Bn 
Replacing n by n - 1 in (10), we get 

B„-i + B
n-2=6 ( 1 1 ) 

Bn-l 

From (10) and (11), we obtain B% - Bn_x- Bn+l = B%_t- Bn_2° Bn. Now, iterating recursively, we 
see that B%-Bn_vBn+l = B?-B0B2 = 36-l-35 = l. Thus, B2

n -1 = Bn+l • Bn_h from which (a) 
follows. 

The proof of (b) is based on induction. Clearly, (b) is true for n > 1 and k = 1. Assume that 
(b) is true for k = r, i. e., Bn = Br- Bn_r - Br_x • Bn_r_v Thus, 

5r+1 • £„_,._! - 5 r • Bn_r_2 = (65r - 4-_1)5„_r_1 - 5 r • 5w_r_2 

= 6Br • 5 ^ ^ ! - 5 r - l ' 4i-r-l ~ ^r ' Bn-r-2 
= Br(6Bn-r-l ~ Bn-r-2) ~ Br-\ ' Bn-r-\ 
= Br • Bn_r - Br_x • Bn_r_x = £„, 

showing that (b) is true for k = r +1. This completes the proof of (b). 
The proof of (c) follows by replacing n by In and & by n in (b). Similarly, the proof of (d) 

follows by replacing n by In +1 and A by n in (b). This completes the proof of Theorem 5.1. 

6. GENERATING FUNCTION FOR BALANCING NUMBERS 

In Section 5 we obtained some recurrence relations for the sequence of balancing numbers. 
In this section our aim is to find a nonrecursive form for Bni n - 0,1,2,..., using the generating 
function for the sequence Bn. 

Recall that the generating function for a sequence {xn} of real numbers is defined by 

n=0 

Thus, 

(see [5], p. 29). 1 dn , . 
5=0 

Theorem 6.1: The generating function of the sequence Bn of balancing numbers is g(s) = 1 - 6 ^ 2 

and, consequently, 

Mi? 

A:=0 V 

where [ ] denotes the greatest integer function. 
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Proof: From (9) for n = 1,2,..., we have Bn+l - 6Bn + Bn_x = 0. Multiplying each term by sn 

and taking summation over n = 1 to n = oo, we obtain 

j i x ^ * - ef;^+^z^-^-1=o 
which, in terms of g(s), yields 

l(g(s) -l-6s)- 6(g(s) -1) +sg(S) = 0. 

Thus, 

g(s) = L _ - = (1 - (6s - s2))'1 

6 W 1-65 + 52 V V " (13) 
= l + ( 6^ -^ ) + (6^-^2)2 + (65-52)3 + .-.. 

When n is even, the terms containing sn in (13) are (6s-s2)"'2, (6s-.s2)('l/2)+1, ...,(6s~s2)n, and 
in this case the coefficient of sn in #(.$) is 

When 7i is odd, the terms containing sn in (13) are (6s - s2)^'2, (6^-^)(w+3) /2,. . . , (6s-s2)", and 
in this case the coefficient of sn in g(s) is 

6" - f W r 1 ) 6 "" 2 + P*2 2 ) 6 "" 4 - - +(-l)(w"1)/2[ J J6. (15) 
It is clear that (14) represents the right-hand side of (12) when n is even and (15) represents the 
right-hand side of (12) when n is odd. This completes the proof of Theorem 6.1. 

1. ANOTHER NONRECURSIVE FORM FOR BALANCING NUMBERS 
In Section 6 we obtained a nonrecursive form for Bn, n = 0,1,2,..., using the generating 

function. In this section we shall obtain another nonrecursive form for Bn by solving the recur-
rence relation (9) as a difference equation. 

We rewrite (9) in the form 
B^-6Bn+B^ = 0, (16) 

which is a second-order linear homogeneous difference equation whose auxiliary equation is 
A2-6A + l = 0. (17) 

The roots XY = 3 + -J$ and A2 = 3 - V8 of (17) are real and unequal. Thus, 

Bn = Arl+Br2, (is) 
where A and B are determined from the values of B0 and Bx. Substituting B0 = l and Bl = 6 into 
(18), we get 

A + B = \ (19) 
AAt + BA2 = 6. (20) 
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Solving (19) and (20) for A and B, we obtain 

A- ^ 2 ~ ^ = ^* • B= ^~^ 1 - ^ 2 

Substituting these values into (18), we get 

Ji,= ; ? , "=o,i,2,.... 

Theorem 7.1: If Bn is the 72th balancing number, then 

B„ = A\ 7 , " = 0,1,2,..., 

where Ax = 3 + V$ and 2 2 = 3 - V8 . 

8. LIMIT OF THE RATIO OF THE SUCCESSIVE TERMS 

The Fibonacci numbers ([1], p. 6) are defined as follows: F0 = 1,Fx = 1, Fn -Fn_l+Fn_2 for 
n = 2,3,.... It is well known that 

r Fn+l 1 + ̂ 5 
M-»OO r A 

which is called the golden ratio [1]. We prove a similar result concerning balancing numbers. 

Theorem 8.1: If Bn is the /1th balancing number, then 

l i m % ^ 3 + V8. 
«->>oo Bn 

Proof: From the recurrence relation (9), we have 

% L + % I - 6 . (21) 

Putting 2 = l i m ^ ^ - in (21), we get A2 - 6X +1 = 0, i.e., X = 3 ± V8. Since 5W+1 > 5„, we must 
have A > 1. Thus, A = 3 + V8 . This completes the proof of Theorem 8.1. 

An alternative proof of Theorem 8.1 can be obtained by considering the relation 

and using the fact that B„ -> oo as n -> oo. 

It is important to note that the limit ratio 3 + V8 represents the simple periodic continued 
fraction ([4], Ch. X) 

[6,-61 = 6 + —. , (22) 

- 6 + — h — 
6 + --6 + ... 

and from Theorem 178 ([4], p. 147) it follows that, if C„ is the nth convergent of (22), then 
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nn+2 nn+2 

where XY = 3 + JE and X2 = 3 - V8. An application of Theorem 7.1 shows thatQ = ^±L; thus, 
^ = 1 ^ ^ = 5 ^ , 1 1 = 0,1,2,.... 

9. AN APPLICATION OF BALANCING NUMBERS TO A 
DIOPHANTME EQUATION 

It is quite well known that the solutions of the Diophantine equation 

x2+y2 = z2, x,y,zGZ+ (23) 
are of the form 

x = u2-v2, y = 2uv, z = u2+v2, 

where % v e Z+ and 2/ > v ([3], [4], [7]). The solution (x, j , z) is called a Pythagorean triplet. 
We consider the solutions of (23) in a particular case, namely, 

x2 + (x + l ) 2 = / . (24) 

In this section we relate the solutions of (24) with balancing numbers. 
Let (x, y) be a solution of (24). Hence, 2y2 -1 = (2x +I)2. Thus, 

is a triangular number as well as a perfect square. Therefore, 

£ = V j W - l ) (25) 
is an odd balancing number (since y2 and 2 j 2 - 1 are odd). Since y2 > 1, it follows from (25) that 

y2=1±M7i (26) 

Again, since y is positive by assumption, we have 

From (24) and (26), we obtain 

V = I ^ 1 + V8#2+1 
' 2 

4 
Since x is positive, it follows that 

^(V8,S2 + l - l ) - l 
X~ 2 

For example, if we take 5 = 35 (an odd balancing number), then we have 

VKV8-352 + 1-Q-1 
X = — = 1 

2 
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and 
32 + (3 + l)2=52, 

i.e., 
x2 + (x + l)2 = j 2 . 

ACKNOWLEDGMENT 

It is a pleasure to thank the anonymous referee for valuable comments and suggestions that 
greatly improved the presentation of this paper. 

REFERENCES 

G. E. Andrews. Number Theory. New York: Hindustan Publishing Company, 1992. 
L. E. Dickon. History of the Theory of Numbers II: Diophantine Analysis. New York: 
Chelsea, 1952. 
H. Griffin. Elementary Theory of Numbers. New York: McGraw Book Company, 1954. 
G. H. Hardy & E. M. Wright. An Introduction to the Theory of Numbers. London: Oxford 
University Press, 1960. 
V. Krishnamurthy. Combinatorics, Theory and Application. New Delhi: Affiliated East-
West Press, 1985. 
I. Nivan & H. S. Zukerman. An Introduction to the Theory of Numbers. New Delhi: Wiley 
Eastern, 1991. 
O. Ore. Number Theory and Its History. New York: McGraw Book Company, 1948. 7 

AMS Classification Numbers: 11B39, 11D09 
• > •!• • > 

1999] 105 


