EVEN DUCCI-SEQUENCES

Anne L. Ludington-Young
Department of Mathematical Sciences, Loyola College in Maryland, Baltimore, MD 21210
(Submitted June 1997-Final Revision July 1997)

Ducci-sequences are successive iterations of the function

$$
D(X)=D\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(\left|x_{1}-x_{2}\right|,\left|x_{2}-x_{3}\right|, \ldots,\left|x_{n}-x_{1}\right|\right) .
$$

Note that $D: Z^{n} \rightarrow Z^{n}$, where Z^{n} is the set of n-tuples with integer entries. Since the entries of $D(X)$ are less than or equal to those of X, eventually every Ducci-sequence $\left\{X, D(X), D^{2}(X)\right.$, $\left.\ldots, D^{j}(X), \ldots\right\}$ gives rise to a cycle. That is, there exist integers i and j for which $0 \leq i<j$ and $D^{j}(X)=D^{i}(X)$. When i and j are as small as possible, we say that the resulting cycle, $\left\{D^{i}(X)\right.$, $\left.\ldots, D^{j-1}(X), \ldots\right\}$, is generated by X and has period $j-i$. If Y is contained in a cycle of period k, then $D^{j}(Y)=Y$ if and only if $k \mid j$.

Introduced in 1937, Ducci-sequences and their resulting cycles have been studied extensively (see [1]-[7]). It is well known that for a given cycle all the entries in all the tuples are equal to either 0 or a constant C (see [2] and [4]). Since for every $\lambda, D(\lambda X)=\lambda D(X)$, we can assume without loss of generality that $C=1$. Thus, when studying cycles of Ducci-sequences, we can restrict our attention to Z_{2}^{n}, the set of n-tuples with entries from $\{0,1\}$. In addition, we can view the operation associated with D as addition modulo 2 since, for $x, y \in\{0,1\},|x-y| \equiv(x+y)$ $(\bmod 2)$.

Most of the work on Ducci-sequences has focused on the case when n is odd or a power of 2. Here we consider the case when $n=2^{s} \cdot q$, where $s \geq 1$ and q is odd with $q>1$. We will show that associated with an n-tuple X are 2^{s} different q-tuples that completely determine the behavior of X. In particular, we will show that an n-tuple X is contained in a cycle if and only if each of the 2^{s} associated q-tuples is in a cycle. Further, the period of the cycle generated by X is determined by the periods of the cycles generated by the 2^{s} associated q-tuples.

To motivate the notation that will be introduced shortly, consider the following representations of a 12-tuple X :

$$
\begin{aligned}
X= & \left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}, x_{10}, x_{11}, x_{12}\right) \\
= & \left(x_{1}, 0,0,0, x_{5}, 0,0,0, x_{9}, 0,0,0\right)+\left(0, x_{2}, 0,0,0, x_{6}, 0,0,0, x_{10}, 0,0\right) \\
& +\left(0,0, x_{3}, 0,0,0, x_{7}, 0,0,0, x_{11}, 0\right)+\left(0,0,0, x_{4}, 0,0,0, x_{8}, 0,0,0, x_{12}\right) .
\end{aligned}
$$

We see that associated with X are the following four 3-tuples:

$$
\left(x_{1}, x_{5}, x_{9}\right),\left(x_{2}, x_{6}, x_{10}\right),\left(x_{3}, x_{7}, x_{11}\right), \text { and }\left(x_{4}, x_{8}, x_{12}\right) .
$$

When we form these smaller tuples, we will say that we compress the original tuple. Conversely, we can begin with these four 3 -tuples and expand them to a 12 -tuple by inserting zeros and adding.

Since we are interested in even tuples, we will often need to work with powers of 2. To simplify notation, we will write 2^{s} as $2^{\wedge} s$ whenever this expression appears as a superscript or subscript.

Let X be an n-tuple where $n=2^{s} \cdot q$ with $s \geq 1$. For $i \in\left\{1,2, \ldots, 2^{s}\right\}$, the compression functions $C_{i, 2^{\wedge s}}: Z_{2}^{n} \rightarrow Z_{2}^{q}$ are defined by $C_{i, 2^{\wedge} s}(X)=\left(c_{j}\right)$, where

$$
c_{j}=x_{i+(j-1)} \cdot 2^{\wedge} s
$$

For $i \in\left\{1,2, \ldots, 2^{s}\right\}$, the expansion functions $E_{i, 2^{\wedge} s}: Z_{2}^{q} \rightarrow Z_{2}^{n}$ are defined by $E_{i, 2^{\wedge} s}(Y)=\left(e_{j}\right)$, where

$$
\begin{cases}e_{j}=y_{\lambda+1} & \text { when } j=i+\lambda \cdot 2^{s} \text { for } \lambda=0,1, \ldots, q-1, \\ e_{j}=0 & \text { when } j \not \equiv i\left(\bmod 2^{s}\right) .\end{cases}
$$

The observations below follow immediately from the definitions of the compression and expansion functions:

$$
\begin{align*}
& X=\sum_{i=1}^{2 \wedge s} E_{i, 2^{\wedge} s}\left(C_{i, 2 \wedge_{s}}(X)\right) \text { for } X \in Z_{2}^{n}, \text { where } 2^{s} \mid n ; \tag{1}\\
& C_{i, 2}\left(E_{i, 2}(Y)\right)=Y \text { for } Y \in Z_{2}^{q}, \text { where } n=2 \cdot q ; \tag{2}\\
& C_{i, 2}\left(E_{j, 2}(Y)\right)=(0,0, \ldots, 0) \text { for } Y \in Z_{2}^{q}, \text { where } n=2 \cdot q \text { and } i \neq j ; \tag{3}\\
& C_{j, 2}\left(C_{i, 2^{\wedge}}(X)\right)=C_{i+(j-1) \cdot 2^{\wedge}, 2 \wedge(s+1)}(X) \text { for } X \in Z_{2}^{n}, \text { where } 2^{s+1} \mid n ; \tag{4}\\
& E_{i, 2 \wedge_{s}}\left(E_{j, 2}(Y)\right)=E_{i+(j-1) \cdot 2^{\wedge}, 2 \wedge(s+1)}(Y) \text { for } Y \in Z_{2}^{q}, \text { where } n=2^{s+1} \cdot q . \tag{5}
\end{align*}
$$

We use these observations to express $D^{2^{\wedge} \cdot m}(X)$ in terms of $D^{m}\left(C_{i, 2^{\wedge} s}(X)\right)$.
Theorem 1: Let X be an n-tuple, where $2 \mid n$. Then

$$
D^{2}(X)=\sum_{i=1}^{2} E_{i, 2}\left(D\left(C_{i, 2}(X)\right)\right)
$$

Proof: Let $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Then

$$
\begin{aligned}
D(X) & =\left(x_{1}+x_{2}, x_{2}+x_{3}, x_{3}+x_{4}, x_{4}+x_{5}, \ldots, x_{n-1}+x_{n}, x_{n}+x_{1}\right), \\
D^{2}(X) & =\left(x_{1}+x_{3}, x_{2}+x_{4}, x_{3}+x_{5}, x_{4}+x_{6}, \ldots, x_{n-1}+x_{1}, x_{n}+x_{2}\right) .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
C_{1,2}(X) & =\left(x_{1}, x_{3}, x_{5}, \ldots, x_{n-1}\right), \\
D\left(C_{1,2}(X)\right) & =\left(x_{1}+x_{3}, x_{3}+x_{5}, \ldots, x_{n-1}+x_{1}\right), \\
E_{1,2}\left(D\left(C_{1,2}(X)\right)\right) & =\left(x_{1}+x_{3}, 0, x_{3}+x_{5}, 0, \ldots, x_{n-1}+x_{1}, 0\right) .
\end{aligned}
$$

Similarly,

$$
E_{2,2}\left(D\left(C_{2,2}(X)\right)\right)=\left(0, x_{2}+x_{4}, 0, x_{4}+x_{6}, \ldots, 0, x_{n}+x_{2}\right)
$$

Thus

$$
D^{2}(X)=E_{1,2}\left(D\left(C_{1,2}(X)\right)\right)+E_{2,2}\left(D\left(C_{2,2}(X)\right)\right) .
$$

Theorem 2: Let X be an n-tuple, where $2 \mid n$. Then

$$
D^{2 m}(X)=\sum_{i=1}^{2} E_{i, 2}\left(D^{m}\left(C_{i, 2}(X)\right)\right)
$$

Proof: By Theorem 1, the result holds for $m=1$. Assume it holds for m and consider $m+1$. Now $D^{2(m+1)}(X)=D^{2}\left(D^{2 m}(X)\right)$. Thus

$$
\begin{equation*}
D^{2(m+1)}(X)=D^{2}\left(\sum_{i=1}^{2} E_{i, 2}\left(D^{m}\left(C_{i, 2}(X)\right)\right)\right)=\sum_{j=1}^{2} E_{j, 2}\left(D\left(C_{j, 2}\left(\sum_{i=1}^{2} E_{i, 2}\left(D^{m}\left(C_{i, 2}(X)\right)\right)\right)\right)\right) . \tag{6}
\end{equation*}
$$

Using observations (2) and (3), (6) simplifies to

$$
\begin{aligned}
D^{2(m+1)}(X) & =E_{1,2}\left(D\left(D^{m}\left(C_{1,2}(X)\right)\right)\right)+E_{2,2}\left(D\left(D^{m}\left(C_{2,2}(X)\right)\right)\right) \\
& =\sum_{i=1}^{2} E_{i, 2}\left(D^{m+1}\left(C_{i, 2}(X)\right)\right) .
\end{aligned}
$$

Theorem 3: Let X be an n-tuple, where $2^{s} \mid n$ with $s \geq 1$. Then

$$
D^{2^{\wedge} \cdot m}(X)=\sum_{i=1}^{2^{\wedge}} E_{i, 2^{\wedge}}\left(D^{m}\left(C_{i, \wedge^{\wedge} s}(X)\right)\right)
$$

Proof: By Theorem 2, the result holds for $s=1$. Assume it holds for s and consider $s+1$. Using the induction hypothesis, we have

$$
\begin{align*}
D^{\wedge^{\wedge}(s+1) \cdot m}(X) & =D^{\left(\wedge^{\wedge} s\right) \cdot(2 m)}(X)=\sum_{i=1}^{2^{\wedge} s} E_{i, 2^{\wedge} s}\left(D^{2 m}\left(C_{i, 2^{\wedge} s}(X)\right)\right) \\
& =\sum_{i=1}^{2^{\wedge} s} E_{i, 2^{\wedge}}\left(\sum_{j=1}^{2} E_{j, 2}\left(D^{m}\left(C_{j, 2}\left(C_{i, 2^{\wedge} s}(X)\right)\right)\right)\right) . \tag{7}
\end{align*}
$$

The last equality in (7) follows from Theorem 2. Using observations (4) and (5), (7) simplifies to

$$
\begin{aligned}
D^{2^{\wedge}(s+1) \cdot m}(X) & =\sum_{i=1}^{2^{\wedge} s} \sum_{j=1}^{2} E_{i+(j-1) \cdot 2^{\wedge} s, 2^{\wedge}(s+1)}\left(D^{m}\left(C_{i+(j-1) \cdot 2^{\wedge} s, 2^{\wedge}(s+1)}(X)\right)\right) \\
& =\sum_{i=1}^{2^{\wedge}(s+1)} E_{i, 2^{\wedge}(s+1)}\left(D^{m}\left(C_{i, 2^{\wedge}(s+1)}(X)\right)\right) .
\end{aligned}
$$

Corollary 1: Let X be an n-tuple, where $2^{s} \mid n$; with $s \geq 1 . X$ is contained in a cycle if and only if $C_{i, 2 \wedge_{s}}(X)$ is contained in a cycle for $i \in\left\{1, \ldots, 2^{s}\right\}$.

Proof: Suppose X is contained in a cycle of period k; that is, $D^{k}(X)=X$. Then

$$
D^{2 \wedge_{s} \cdot k}(X)=X
$$

Using (1) and Theorem 3, we see that

$$
C_{i, 2^{\wedge} s}(X)=C_{i, 2^{\wedge} s}\left(D^{2^{\wedge} \cdot k}(X)\right)=D^{k}\left(C_{i, 2^{\wedge} s}(X)\right)
$$

for $i \in\left\{1, \ldots, 2^{s}\right\}$. Hence for each $i, C_{i, 2^{\wedge}}(X)$ is in a cycle.

Conversely, suppose that, for each $i, C_{i, 2^{\wedge}}(X)$ is in a cycle of period k_{i}. Let $m=\operatorname{lcm}\left(k_{1}, k_{2}\right.$, $\left.\ldots, k_{2^{\wedge} s}\right)$. Since $D^{m}\left(C_{i, \wedge^{\wedge} s}(X)\right)=C_{i, 2^{\wedge} s}(X)$, by Theorem 3 and (1), $D^{2^{\wedge} \cdot m}(X)=X$. Hence, X is in a cycle.

For odd n, an n-tuple X is contained in a cycle if and only if the sum of the entries of X is congruent to 0 modulo 2 (see [4]). Thus by Corollary 1 , for $n=2^{s} \cdot q$, where $s \geq 1$ and q is odd with $q>1$, an n-tuple X is contained in a cycle if and only if for each $i \in\left\{1, \ldots, 2^{s}\right\}$ the sum of the entries of $C_{i, 2^{\wedge} s}(X)$ is congruent to 0 modulo 2. Although the terminology is different, this result appears in [4]. In a moment we will begin to consider how the period of the cycle containing X is related to the periods of the cycles containing $C_{i, 2^{\wedge} s}(X), i=1, \ldots, 2^{s}$. First, we prove a rather technical corollary that we will need later.

Corollary 2: Let X be an n-tuple, where $2^{s} \mid n$ with $s \geq 1$. Then

$$
C_{i, 2^{\wedge} s}\left(D^{2^{\wedge}(s-1)}(X)\right)=C_{i, 2^{\wedge} s}(X)+C_{i+2^{\wedge}(s-1), 2^{\wedge} s}(X)
$$

for $i=1,2, \ldots, 2^{s-1}$.
Proof: Let $n=2^{s} \cdot q=2^{s-1} \cdot 2 q$. By Theorem 3,

$$
D^{2^{\wedge}(s-1)}(X)=\sum_{i=1}^{2^{\wedge}(s-1)} E_{i, 2^{\wedge}(s-1)}\left(D\left(C_{i, 2^{\wedge}(s-1)}(X)\right)\right) .
$$

For $Z \in Z_{2}^{2 q}$ and $i=1,2, \ldots, 2^{s-1}$,

$$
\begin{aligned}
C_{i, \wedge^{\wedge} s} & \left(E_{i, 2^{\wedge}(s-1)}(Z)\right) \\
C_{j, 2^{\wedge} s}\left(E_{i, 2^{\wedge}(s-1)}(Z)\right) & =(0,0, \ldots, 0) \text { when } j \neq i .
\end{aligned}
$$

Hence $C_{i, 2^{\wedge} s}\left(D^{2 \wedge(s-1)}(X)\right)=C_{1,2}\left(D\left(C_{i, 2^{\wedge}(s-1)}(X)\right)\right)$. Now

$$
\begin{aligned}
& C_{i, 2^{\wedge}(s-1)}(X)=\left(x_{i}, x_{i+2 \wedge \wedge}(s-1), x_{i+2 \cdot 2^{\wedge}(s-1)}, x_{i+3 \cdot 2^{\wedge}(s-1)}, \ldots, x_{i+(2 q-1) \cdot 2^{\wedge}(s-1)}\right), \\
& D\left(C_{i, 2^{\wedge}(s-1)}(X)\right)=\left(x_{i}+x_{i+2^{\wedge}(s-1)}+x_{i+2 \cdot 2^{\wedge}(s-1)}, x_{i+2 \cdot 2^{\wedge}(s-1)}, \ldots, x_{i+(2 q-1) \cdot 2^{\wedge}(s-1)}+x_{i}\right), \\
& C_{i, 2^{\wedge}}\left(D^{2 \wedge(s-1)}(X)\right)=C_{1,2}\left(D\left(C_{i, \wedge^{\wedge}(s-1)}(X)\right)\right) \\
& =\left(x_{i}+x_{i+2^{\wedge}(s-1)}, x_{i+2 \cdot 2^{\wedge}(s-1)}+x_{i+3 \cdot 2^{\wedge}(s-1)}, \ldots, x_{i+(2 q-2) \cdot \wedge^{\wedge}(s-1)}+x_{i+(2 q-1) \cdot 2^{\wedge}(s-1)}\right) \\
& =\left(x_{i}, x_{i+2 \cdot 2^{\wedge}(s-1)}, \ldots, x_{i+(2 q-2) \cdot 2^{\wedge}(s-1)}\right)+\left(x_{i+2 \wedge(s-1)}, x_{i+3 \cdot 2^{\wedge}(s-1)}, \ldots, x_{i+(2 q-1) \cdot 2^{\wedge}(s-1)}\right) \\
& =C_{i, 2^{\wedge}}(X)+C_{i+2^{\wedge}(s-1), \wedge^{\wedge} s}(X) .
\end{aligned}
$$

We now begin considering how the period of the cycle containing X is related to the periods of the cycles containing $C_{i, 2^{\wedge} s}(X), i=1, \ldots, 2^{s}$.

Theorem 4: Let $n=2^{s} \cdot q$, where $s \geq 1$. Suppose X is an n-tuple which is contained in a cycle of period k. Let k_{i} be the period of the cycle containing the q-tuple $C_{i, 2^{\wedge} s}(X), i=1, \ldots, 2^{s}$. Then $k=2^{t} \cdot \operatorname{lcm}\left(k_{1}, k_{2}, \ldots, k_{2 \wedge_{s}}\right)$ for some $0 \leq t \leq s$.

Proof: Let $m=\operatorname{lcm}\left(\mathrm{k}_{1}, k_{2}, \ldots, k_{2^{\wedge} s}\right)$. As noted in the proof of Corollary $1, D^{2^{\wedge s \cdot m}}(X)=X$. Consequently, $k \mid 2^{s} \cdot m$.

We now show that $m \mid k$. Since $D^{k}(X)=X$, it follows that $D^{2^{\wedge} \cdot k}(X)=X$. As we showed in the proof of Corollary $1, D^{k}\left(C_{i, 2^{\wedge} s}(X)\right)=C_{i, 2^{\wedge} s}(X)$. Since k_{i} is the period of the cycle containing $C_{i, 2^{\wedge}}(X), k_{i} \mid k$ for $i=1, \ldots, 2^{s}$. Consequently, $m \mid k$. Since $m \mid k$ and $k \mid 2^{s} \cdot m$, we conclude that $k=2^{t} \cdot m$ for some $0 \leq t \leq s$.

Theorem 5: Let $n=2^{s} \cdot q$, where $s \geq 1$. Suppose X is an n-tuple which is contained in a cycle of period $k=2^{t} \cdot m$, where m is odd and $0 \leq t<s$. Then

$$
C_{i+2^{\wedge} t, 2^{\wedge}(t+1)}(X)=C_{i, 2^{\wedge}(t+1)}(X)+D^{\frac{m+1}{2}}\left(C_{i, 2^{\wedge}(t+1)}(X)\right)
$$

for $i=1, \ldots, 2^{t}$.
Proof: Since $0 \leq t<s, 1 \leq t+1 \leq s$, and $2^{t+1} \mid n$. Thus by Theorem 3,

$$
\begin{align*}
D^{2^{\wedge} t \cdot(m-1)}(X) & =D^{2^{\wedge}(t+1) \cdot \frac{m-1}{2}}(X) \\
& =\sum_{i=1}^{2^{\wedge}(t+1)} E_{i, 2^{\wedge}(t+1)}\left(D^{\frac{m-1}{2}}\left(C_{i, 2^{\wedge}(t+1)}(X)\right)\right) . \tag{8}
\end{align*}
$$

By hypothesis, $D^{2^{\wedge} \cdot m}(X)=X$. Since $X=D^{2^{\wedge} \cdot m}(X)=D^{2^{\wedge} t}\left(D^{2^{\wedge} t \cdot(m-1)}(X)\right)$,

$$
C_{i, 2^{\wedge}(t+1)}(X)=C_{i, 2^{\wedge}(t+1)}\left(D^{2^{\wedge} t}\left(D^{2^{\wedge} t \cdot(m-1)}(X)\right)\right)
$$

By Corollary 2,

$$
C_{i, 2^{\wedge}(t+1)}\left(D^{2^{\wedge} t}\left(D^{2^{\wedge} t \cdot(m-1)}(X)\right)\right)=C_{i, 2^{\wedge}(t+1)}\left(D^{2^{\wedge} t \cdot(m-1)}(X)\right)+C_{i+2^{\wedge} t, 2^{\wedge}(t+1)}\left(D^{2^{\wedge} t \cdot(m-1)}(X)\right)
$$

for $i=1, \ldots, 2^{t}$. Thus

$$
\begin{equation*}
C_{i, 2^{\wedge}(t+1)}(X)=C_{i, 2^{\wedge}(t+1)}\left(D^{2^{\wedge} t \cdot(m-1)}(X)\right)+C_{i+2^{\wedge} t, 2^{\wedge}(t+1)}\left(D^{2^{\wedge} t \cdot(m-1)}(X)\right) \tag{9}
\end{equation*}
$$

Using (8) to find the two terms on the right-hand side of (9), we can rewrite (9) as

$$
\begin{equation*}
C_{i, 2^{\wedge}(t+1)}(X)=D^{\frac{m-1}{2}}\left(C_{i, 2^{\wedge}(t+1)}(X)\right)+D^{\frac{m-1}{2}}\left(C_{i+2^{\wedge} t, 2^{\wedge}(t+1)}(X)\right) \tag{10}
\end{equation*}
$$

Applying $D^{\frac{m-1}{2}}$ to (10) gives

$$
\begin{equation*}
D^{\frac{m-1}{2}}\left(C_{i, 2^{\wedge}(t+1)}(X)\right)=D^{m}\left(C_{i, 2^{\wedge}(t+1)}(X)\right)+D^{m}\left(C_{i+2^{\wedge} t, 2^{\wedge}(t+1)}(X)\right) \tag{11}
\end{equation*}
$$

By hypothesis, $D^{2^{\wedge} t \cdot m}(X)=X$. Hence $D^{2 \wedge(t+1) \cdot m}(X)=X$. Thus, using Theorem 3 and (1),

$$
C_{j, 2^{\wedge}(t+1)}(X)=C_{j, 2^{\wedge}(t+1)}\left(D^{2^{\wedge}(t+1) \cdot m}(X)\right)=D^{m}\left(C_{j, 2^{\wedge}(t+1)}(X)\right)
$$

for $j=1, \ldots, 2^{t+1}$. Using this to simplify (11) and rearranging terms gives the desired result.
We now prove the converse of Theorem 5. To do so, we will need the following well-known result: when n is odd, the period of a cycle of n-tuples divides $n \cdot\left(2^{\phi(n)}-1\right)$, where $\phi(n)$ is Euler's phi function [3]. Actually, a great deal more is known about the period, but this is all we require. Specifically, when n is odd, the period of each cycle of n-tuples is odd.

Theorem 6: Let $n=2^{s} \cdot q$, where $s \geq 1$ and q is odd with $q>1$. Suppose X is an n-tuple that is contained in a cycle. Let $m=\operatorname{lcm}\left(k_{1}, k_{2}, \ldots, k_{2^{\wedge} s}\right)$, where k_{i} is the period of the cycle containing $C_{i, 2^{\wedge} s}(X)$ for $i=1, \ldots, 2^{s}$. If there exists $t, 0 \leq t<s$, such that

$$
\begin{equation*}
C_{i+2^{\wedge}, 2^{\wedge}(t+1)}(X)=C_{i, 2^{\wedge}(t+1)}(X)+D^{\frac{m-1}{2}}\left(C_{i, 2^{\wedge}(t+1)}(X)\right) \tag{12}
\end{equation*}
$$

for $i=1, \ldots, 2^{t}$, then $D^{2^{\lambda t \cdot m}}(X)=X$.
Proof: Since q is odd, each k_{i} is odd and hence m is odd. Further, since $D^{k_{i}}\left(C_{i, 2^{\wedge} s}(X)\right)=$ $C_{i, \wedge^{\wedge} s}(x), D^{m}\left(C_{i, 2^{\wedge} s}(X)\right)=C_{i, 2^{\wedge} s}(X)$ for $i=1, \ldots, 2^{s}$. Thus, if $t+1=s$,

$$
D^{m}\left(C_{i, 2^{\wedge}(t+1)}(X)\right)=C_{i, 2^{\wedge}(t+1)}(X) .
$$

On the other hand, if $r=t+1<s$, then

$$
\begin{aligned}
C_{i, \wedge^{\wedge} r}(X)=C_{i, \wedge^{\wedge}}(X) & +C_{i+2^{\wedge} r, 2^{\wedge}}(X)+C_{i+2 \cdot 2^{\wedge} r, 2^{\wedge} s}(X) \\
& +\cdots+C_{i+\left[2^{\wedge}(s-r)-1\right] \cdot 2^{\wedge}, 2^{\wedge} s}(X) .
\end{aligned}
$$

This implies $D^{m}\left(C_{i, 2^{\wedge} r}(X)\right)=C_{i, 2^{\wedge} r}(X)$; i.e., $D^{m}\left(C_{i, 2^{\wedge}(t+1)}(X)\right)=C_{i, 2^{\wedge}(t+1)}(X)$. Hence

$$
C_{i, 2^{\wedge}(t+1)}\left(D^{2^{\wedge}(t+1) \cdot m}(X)\right)=D^{m}\left(C_{i, 2^{\wedge}(t+1)}(X)\right)=C_{i, 2^{\wedge}(t+1)}(X),
$$

so $D^{2^{\wedge}(t+1) \cdot m}(X)=X$. We now use this to show that, in fact, $D^{2 \wedge \cdot m}(X)=X$.
As in the proof of Theorem 5, we consider $D^{2 \wedge t \cdot m}(X)$. Using (8), we have

$$
\begin{equation*}
C_{i, 2^{\wedge}(t+1)}\left(D^{2^{\wedge} \cdot(m-1)}(X)\right)=D^{\frac{m-1}{2}}\left(C_{i, 2^{\wedge}(t+1)}(X)\right) . \tag{13}
\end{equation*}
$$

Likewise, using (8) and (12), we have

$$
\begin{align*}
C_{i+2^{\wedge} t, 2^{\wedge}(t+1)}\left(D^{2^{\wedge t} \cdot(m-1)}(X)\right) & =D^{\frac{m-1}{2}}\left(C_{i+2^{\wedge}, 2^{\wedge}(t+1)}(X)\right) \\
& =D^{\frac{m-1}{2}}\left(C_{i, 2^{\wedge}(t+1)}(X)\right)+D^{\frac{m-1}{2}}\left(D^{\frac{m+1}{2}}\left(C_{i, 2^{\wedge}(t+1)}(X)\right)\right) \tag{14}\\
& =D^{\frac{m-1}{2}}\left(C_{i, 2^{\wedge}(t+1)}(X)\right)+C_{i, 2^{\wedge}(t+1)}(X) .
\end{align*}
$$

Note that (13) and (14) hold for $i=1, \ldots, 2^{t}$. Now, by Theorem 3, we have

$$
\begin{equation*}
C_{i, 2^{\wedge}(t+1)}\left(D^{2^{\wedge}(t+1) \cdot(m-1)}(X)\right)=D^{m-1}\left(C_{i, 2^{\wedge}(t+1)}(X)\right) . \tag{15}
\end{equation*}
$$

Likewise, using Theorem 3 and (12), we have

$$
\begin{align*}
C_{i+2^{\wedge}, 2^{\wedge}(t+1)}\left(D^{2^{\wedge}(t+1) \cdot(m-1)}(X)\right) & =D^{m-1}\left(C_{i+2^{\wedge} t, 2^{\wedge}(t+1)}(X)\right) \\
& =D^{m-1}\left(C_{i, 2^{\wedge}(t+1)}(X)\right)+D^{\frac{m-1}{2}}\left(C_{i, 2^{\wedge}(t+1)}(X)\right) . \tag{16}
\end{align*}
$$

Note that (15) and (16) hold for $i=1, \ldots, 2^{t}$. By Corollary 2,

$$
\begin{equation*}
C_{i, 2^{\wedge}(t+1)}\left(D^{2^{\wedge t}}(Z)\right)=C_{i, 2^{\wedge}(t+1)}(Z)+C_{i+2^{\wedge} t, 2^{\wedge}(t+1)}(Z) . \tag{17}
\end{equation*}
$$

We let $Z=D^{2^{\wedge}(t+1) \cdot(m-1)}(X)$ in (17), note that $2^{t}+2^{t+1} \cdot(m-1)=2^{t+1} \cdot m-2^{t}$, and use (15) and (16) to get

$$
\begin{equation*}
C_{i, 2^{\wedge}(t+1)}\left(D^{2^{\wedge}(t+1) \cdot m^{\wedge} 2^{\wedge} t}(X)\right)=D^{\frac{m-1}{2}}\left(C_{i, 2^{\wedge}(t+1)}(X)\right) . \tag{18}
\end{equation*}
$$

Now we let $Z=D^{2^{\wedge}(t+1) \cdot m-2^{\wedge} t}(X)$ in (17). This gives us

$$
\begin{align*}
C_{i, 2^{\wedge}(t+1)}\left(D^{2^{\wedge}(t+1) \cdot m}(X)\right)= & C_{i, 2^{\wedge}(t+1)}\left(D^{2^{\wedge}(t+1) \cdot m-2^{\wedge}}(X)\right) \\
& +C_{i+2^{\wedge}, 2^{\wedge}(t+1)}\left(D^{2^{\wedge}(t+1) \cdot m-2^{\wedge} t}(X)\right) . \tag{19}
\end{align*}
$$

We rewrite (19) using (18) and the fact that $C_{i, 2^{\wedge}(t+1)}\left(D^{2^{\wedge}(t+1) \cdot m}(X)\right)=C_{i, 2^{\wedge}(t+1)}(X)$:

$$
C_{i, 2^{\wedge}(t+1)}(X)=D^{\frac{m-1}{2}}\left(C_{i, 2^{\wedge}(t+1)}(X)\right)+C_{i, 2^{\wedge}(t+1)}\left(D^{2^{\wedge}(t+1) \cdot m-\wedge^{\wedge}}(X)\right)
$$

or

$$
\begin{equation*}
C_{i+2^{\wedge}, 2^{\wedge}(t+1)}\left(D^{2^{\wedge}(t+1) \cdot m-2^{\wedge} t}(X)\right)=D^{\frac{m-1}{2}}\left(C_{i, 2^{\wedge}(t+1)}(X)\right)+C_{i, 2^{\wedge}(t+1)}(X) . \tag{20}
\end{equation*}
$$

Comparing (13) to (18), we see that

$$
C_{i, 2^{\wedge}(t+1)}\left(D^{2^{\wedge} \cdot m-2^{\wedge} t}(X)\right)=C_{i, 2^{\wedge}(t+1)}\left(D^{2^{\wedge}(t+1) \cdot m-2^{\wedge} t}(X)\right)
$$

for $i=1, \ldots, 2^{t}$, and comparing (14) to (20), we see that

$$
C_{i+2^{\wedge} t 2^{\wedge}(t+1)}\left(D^{2^{\wedge} \cdot m-2^{\wedge t}}(X)\right)=C_{i+2^{\wedge}, 2^{\wedge}(t+1)}\left(D^{2^{\wedge}(t+1) \cdot m-2^{\wedge} t}(X)\right)
$$

for $i=1, \ldots, 2^{t}$. Hence $D^{2^{\wedge t \cdot m-2^{\wedge}}}(X)=D^{2^{\wedge}(t+1) \cdot m-2^{\wedge}}(X)$. This, in turn, implies that $D^{2^{\wedge} \cdot m}(X)=$ $D^{2^{\wedge}(t+1) \cdot m}(X)=X$.

Thus we have completely characterized the period of a cycle of n-tuples. We summarize the results of the last three theorems in the following corollary.
Corollary 3: Let $n=2^{s} \cdot q$, where $s \geq 1$ and q is odd with $q>1$. Suppose X is an n-tuple which is contained in a cycle of period k. Let $m=\operatorname{lcm}\left(k_{1}, k_{2}, \ldots, k_{2^{\wedge} s}\right)$, where k_{i} is the period of the cycle containing $C_{i, 2^{\wedge}}(X)$. Then $k=2^{t} \cdot \operatorname{lcm}\left(k_{1}, k_{2}, \ldots, k_{2^{\wedge} s}\right)$ for some $0 \leq t<s$ if and only if

$$
C_{i+2^{\wedge}, 2^{\wedge}(t+1)}(X)=C_{i, 2^{\wedge}(t+1)}(X)+D^{\frac{m+1}{2}}\left(C_{i, 2^{\wedge}(t+1)}(X)\right)
$$

for $i=1, \ldots, 2^{t}$, where t is as small as possible. If no such t exists, then $k=2^{s} \cdot m$.
We now show that there is a cycle for each possible period. Although there are many ways to do this, we will continue to use the compression functions.

Theorem 7: Let $n=2^{s} \cdot q$, where $s \geq 1$ and q is odd with $q>1$. Suppose there is a cycle of q tuples of period m. Then, for $0 \leq t \leq s$, there exists a cycle of n-tuples of period $2^{t} \cdot m$.

Proof: For $0 \leq r \leq s-1$, suppose there is a $\left(2^{s-1} \cdot q\right)$-tuple A that is contained in a cycle of period $2^{r} \cdot m$. By hypothesis, this holds for $s=1$. Consider the $\left(2^{s} \cdot q\right)$-tuple $X=E_{1,2}(A)$. Now $C_{1,2}(X)=A$ and $C_{2,2}(X)=(0,0, \ldots, 0)$. By Corollary $1, X$ is in a cycle. By Theorem 4, the period of the cycle containing X is either $2^{r} \cdot m$ or $2 \cdot\left(2^{r} \cdot m\right)$. Assume the period is $2^{r} \cdot m$. For $r>0$,

$$
\sum_{i=1}^{2} E_{i, 2}\left(C_{i, 2}(X)\right)=X=D^{2^{\wedge} r \cdot m}(X)=\sum_{i=1}^{2} E_{i, 2}\left(D^{2^{\wedge}(r-1) \cdot m}\left(C_{i, 2}(X)\right)\right) .
$$

Thus, $D^{2 \wedge(r-1) \cdot m}\left(C_{1,2}(X)\right)=C_{1,2}(X)$; i.e., $D^{2 \wedge(r-1) \cdot m}(A)=A$. This implies that A is in a cycle with period less than or equal to $2^{r-1} \cdot m$. This contradiction shows that the period of the cycle containing X is $2 \cdot\left(2^{r} \cdot m\right)=2^{r+1} \cdot m$ when $r>0$. On the other hand, if $r=0$, then

$$
C_{1,2}\left(D^{m-1}(X)\right)=D^{\frac{m-1}{2}}\left(C_{1,2}(X)\right)=D^{\frac{m-1}{2}}(A)
$$

and

$$
C_{2,2}\left(D^{m-1}(X)\right)=D^{\frac{m-1}{2}}\left(C_{2,2}(X)\right)=(0,0, \ldots, 0) .
$$

Since

$$
C_{1,2}\left(D^{m}(X)\right)=C_{1,2}\left(D^{m-1}(X)\right)+C_{2,2}\left(D^{m-1}(X)\right)=D^{\frac{m-1}{2}}(A) \neq A=C_{1,2}(X),
$$

we see that $D^{m}(X) \neq X$. Hence the period of the cycle containing X is $2 \cdot m$ when $r=0$. Therefore there are cycles of $\left(2^{s} \cdot q\right)$-tuples with period $2^{t} \cdot m$ for $1 \leq t \leq s$.

We now show that there is a cycle of $\left(2^{s} \cdot q\right)$-tuples with period m. Suppose there is a $\left(2^{s-1} \cdot q\right)$-tuple B that is contained in a cycle of period m and for which each $C_{i, 2^{\wedge}(s-1)}(B), i=1, \ldots$, 2^{s-1}, is also contained in a cycle of period m. By hypothesis, this holds for $s=1$. Consider the ($2^{s} \cdot q$)-tuple

$$
\begin{equation*}
Y=E_{1,2}(B)+E_{2,2}\left(B+D^{\frac{m+1}{2}}(B)\right) . \tag{21}
\end{equation*}
$$

Now $C_{1,2}(Y)=B$ and $C_{2,2}(Y)=B+D^{\frac{m+1}{2}}(B) ; C_{2,2}(Y)$ is also in a cycle of period m. Thus Y is in a cycle. We want to use Corollary 3 to show that the period of the cycle containing Y is m. Note that

$$
\begin{cases}C_{i, 2^{\wedge} s}(Y)=C_{\frac{i+1}{2}, 2^{\wedge}(s-1)}(B) & \text { when } i \text { is odd } \\ C_{i, 2^{\wedge} s}(Y)=C_{\frac{1}{2}, 2^{\wedge}(s-1)}\left(B+D^{\frac{m+1}{2}}(B)\right) & \text { when } i \text { is even. }\end{cases}
$$

By assumption, when i is odd, the period of the cycle containing $C_{i, 2{ }^{\wedge} s}(Y)$ is m. To show that this is also the case when i is even, it suffices to show that the period of the cycle containing $C_{j, 2^{\wedge}(s-1)}\left(B+D^{\frac{m+1}{2}}(B)\right)$ is m for $j=1, \ldots, 2^{s-1}$. Since $\operatorname{gcd}\left(m, 2^{s-1}\right)=1$, there exist integers g and h for which

$$
g \cdot m+h \cdot 2^{s-1}=\frac{m+1}{2}
$$

Either g or h is positive, but not both. Suppose $g>0$ and $h<0$. Then

$$
B=D^{g \cdot m}(B)=D^{-h \cdot 2^{\wedge}(s-1)}\left(D^{\frac{m+1}{2}}(B)\right),
$$

which implies

$$
C_{j, 2^{\wedge}(s-1)}(B)=D^{-h}\left(C_{j, 2^{\wedge}(s-1)}\left(D^{\frac{m+1}{2}}(B)\right)\right) .
$$

Hence, $C_{j, 2^{\wedge}(s-1)}\left(D^{\frac{m+1}{2}}(B)\right)$ is in the same cycle as $C_{j, 2 \wedge(s-1)}(B)$. Since this cycle has period m, the cycle containing $C_{j, 2^{\wedge}(s-1)}\left(D^{\frac{m+1}{2}}(B)\right)$ also has period m. In a similar manner, it can be shown that this is also the case when $g<0$ and $h>0$. Since the cycle containing $C_{i, 2^{\wedge} s}(Y), i=1, \ldots, 2^{s}$, has period m and since (21) holds, Corollary 3 implies that the cycle containing Y has period m.

For a given n, the maximal period of cycles of Ducci-sequences is denoted by $P(n)$. By Corollary 3 , if $n=2^{s} \cdot q$, where $s \geq 1$ and q is odd with $q>1$, then $P(n)$ divides $2^{s} \cdot P(q)$. We now show that, in fact, $P(n)=2^{s} \cdot P(q)$. This result appears in [2]; the proof there uses matrices and the fact that the cycle which has maximum period is generated by the n-tuple $(1,0, \ldots, 0,0)$. We offer a new proof here based on the compression functions. The result follows immediately from the proof of Theorem 7.

Theorem 8: Let $n=2^{s} \cdot q$, where $s \geq 1$ and q is odd with $q>1$. Then $P(n)=2^{s} \cdot P(q)$.
Proof: Let A be a q-tuple that is contained in a cycle of period $P(q)$. Then the proof of Theorem 7 shows that the $\left(2^{s} \cdot q\right)$-tuple $X=E_{1,2^{\wedge s}}(A)=E_{1,2}\left(E_{1,2}\left(\ldots E_{1,2}(X)\right)\right)$ is in a cycle of period $2^{s} \cdot P(q)$.

REFERENCES

1. C. Ciamberlini \& A. Marengoni. "Su una interessante curiosità numerica." Periodiche di Matematiche 17 (1937):25-30.
2. A. Ehrlich. "Periods in Ducci's N-Number Game of Differences." The Fibonacci Quarterly 28.4 (1990):302-05.
3. H. Glaser \& G. Schöffl. "Ducci-Sequences and Pascal's Triangle." The Fibonacci Quarterly 33.4 (1995):313-24.
4. A. L. Ludington-Young. "Cycles of Differences of Integers." J. Number Theory 13 (1981): 255-61.
5. A. L. Ludington-Young. "Length of the n-Number Game." The Fibonacci Quarterly 28.3 (1990):259-65.
6. A. L. Ludington-Young. "Length of the 7-Number Game." The Fibonacci Quarterly 26.3 (1988):195-204.
7. L. Meyers. "Ducci's Four-Number Problem: A Short Bibliography." Crux Mathematicorum 8 (1982):262-66.
AMS Classification Number: 11B65
