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1. INTRODUCTION 

Consider the second-order linear recurrences defined by 
Un+2 = P u * + l ~ QUn> U0 = °> Ul = *> 0) 
Vn+2 = PVn+1 ~ &n> ^ =2yV, = P, ( 2 ) 

and 
wn+2 = PWn+i ~ Qwn> wo> wi arbitrary. (3) 

The sequences (un) and (vn) were studied extensively by Lucas [17], and the sequence (wn) 
was popularized by Horadam [10], [11], [12], and was also studied by Zeitlin [23], [26], [27]. 
The sequence (un) is known as the fundamental Lucas sequence and the sequence (vn) is known 
as the primordial Lucas sequence. 

The relationship between wn and the pair of sequences un and vn is well known. Horadam 
[10] gives several formulas for wn\ 

W„=(Wl-PW0>n+W0Un+l> (5) 

Wn=WlHi-fiW0Vl- (6) 
In [19], it was shown that Algorithm LucasS impl i fy could be used to prove any poly-

nomial identity involving expressions of the form uan+b and van+b. Since w„ can be expressed in 
terms of un and vn, this means that we can algorithmically prove any polynomial identity involving 
expressions of the form wan+b using Algorithm LucasSimpl i fy . 

However, Algorithm LucasSimpl i fy , when applied to an expression involving w's will 
return a simplified expression involving w's and v's. Since it may be of interest to get results in 
terms of w's, we will now develop new algorithms that can be used to transform expressions 
involving Vs from one form to another. 

For example, Melham and Shannon [18] found an "addition formula" for simplifying wm+n\ 

w A2™m+l-PWm>n+WmVn 

Unfortunately, this formula involves the sequences (un) and <vw>. We call an identity impure 
if it contains terms involving w's or v's. Otherwise, if the identity only involves w's, we call it pure. 
It is our goal to find a pure formula for wn+m and related expressions. 
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2* OVERVIEW 

Two expressions occur frequently enough that we shall give them names: 

D = P2-4Q and e = w0w2-wf. (7) 

Since w2 = Pwx - Qw0, an equivalent formula for e is 

e^Pw^-Qw^-wf. (8) 

The quantity!) is the discriminant of the characteristic equation for the recurrence, and the quan-
tity e is known as the characteristic number of the sequence [2], [1]. Throughout this paper, we 
shall assume that 

g^O, D^O, and e^O. (9) 

In Section 3 we develop the Purification Theorem, which shows how to transform impure 
identities into pure identities. In subsequent sections, we then find the pure analogs (for wn) of all 
the classic identities known for un and vn, either by giving a reference to the literature where the 
pure identity was discovered, or by deriving the pure identity ourselves. If a simpler proof of the 
result can be given without using the Purification Theorem, then we present the simpler proof. 
We then give algorithms that allow pure expressions to be transformed from one form to another. 

3* THE PURIFICATION THEOREM 

To achieve our goal of finding pure identities, we need only express u„ and v„ in terms of 
members of the sequence (wn). 

Theorem 1 (The Purification Theorem): Any identity involving w's, v's, and w's can be trans-
formed into a pure identity (involving only w's). In particular, 

_w0wn+l-wlwn 
n~ e 

(10) 
(Pw0 - 2wx)wn+l - (2Qw0 - Pwx)wn 

e 
Proof: Algorithm LucasS impl i f y allows us to express both wn and wn+l in terms of u„ 

and vw. Solving these two equations for ww..and vn gives us formula (1-0). Thus, any expression 
involving w's and v's can be transformed into expressions involving w's. • 

4. THE ADDITION FORMULA 

The addition formulas for un and vn are well known: 

um+n , f\ 5 

(11) 

We would like to find a similar formula for wm+n. Horadam [10] gives several such formulas: 

v =
VmVn + DumUn 

m+n j 
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wn*m = ("m+1 ~ Pum)W
n + UmWn+U 

(12) 

W , = wm_jUn+J+l - Qwm-j-\Un+i> 

however, these are all impure. 
Applying LucasS impl i f y to um_1 gives um_l = (Pum-vm)/2Q. Substituting this value of 

um_l into Horadam's addition formula (12) and then applying the purification theorem gives us: 

w = (WQWm+l ~ WlWm)W
n+l - (WlWm+l ~ W2Wm)Wr, 

wn+m 

We state this in another form in the following theorem. 

Theorem 2 (The Addition Formula for w): For all integers n and rn, 

w0 
w„ 

wt m+l 
W„ Wt n+\ 

(13) 

5. THE NEGATION FORMULA 

Having found the addition formula entirely in terms of w's, we now proceed to express all the 
other standard formulas in the same manner. 

Horadam [10] expressed the negation formula in the following ways: 

w-„ = 2""KM„+i-wiM„); 

He also found the interesting formula: wnw_n = WQ + eQ~"u%. 
Unfortunately, these formulas are all impure. We can use the purification theorem to remove 

the w's and v's to arrive at a pure negation formula. 

Theorem 3 (The Negation Formula for w): For all integers n, 

_ (wf - Qwl)wn + w0(Pw0 - 2^)>v„+1 
w eQ" 

1 
eQ" w„ w, n+l 0 

(14) 

Solving equation (14) for wn+l gives us a useful formula that allows one to express wn+l in 
terms of w„ and w_„. 
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Theorem. 4 (The Symmetrization Formula): For all Integers n, 
_(wl-Qw2

0)wn-eQ"w_„ 
W - - w^-PwJ ' (15) 

provided that the denominator is not 0. 

6, THE SUBTRACTION FORMULA 

Melham and Shannon [18] expressed the subtraction formula in the following form: 

Again, this is an impure formula. We can now combine the negation formula with the addi-
tion formula to get a pure subtraction formula. 

Theorem 5 (The Subtraction Formula for w): For all integers n and m, 

1 
eQ» Qy»n 

vm+l 

(16) 

Proof: Horadam [10] found wn+m + Qmwn_m = wnvm. Solve for wn_m and then expand wn+tn 

by the addition formula and express vm in terms of wm and wm+l by the purification theorem. 
Upon simplifying, we get the desired result. D 

7. THE BINET FORM 

The Binet form (see [10]) for wn is given by the following theorem. 

Theorem 6 (The Binet Form): If rx and r2 are the roots of the characteristic equation 

x2-Px + Q = 0, 
then 

w„ = Ar? + Bif (17) 

where 

A=^zm. and B=mz3,. (18) 
h-r2 rx-r2 

This generalizes the result for Fibonacci numbers found by Binet [3]. 

Note that rx & r2 since P2 - 4Q * 0. One should also note that 
AB = jr and A+B = w0. (19) 

We also have 
ri-r2 = ^D. (20) 

Since wn+l = (Ar^r" + (Br2)r2, we can solve the system consisting of this equation and equa-
tion (17) for r" and r2. We get the following: 
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„ = ™n+i-r2wn a n d n = wn+l-rlWn 

wx-r2w0 Wi-rxw0 

These formulas may be used to replace powers of rx and r2 (with variable exponents) by simpler 
expressions involving rx and r2. 

If we let xn = wn+l - Qwn_x, then xn may be considered to be a companion sequence to wn, in 
the same way that vn is the companion of un. A little computation shows that 

r\ = j (x» +wn(h -ri))l(wi -Wo)-

This gives us the following theorem, since (rx)k = rx
n. 

Theorem 7 (De Moivre's Formula for wj: If xn = wn+l - Qwn_x and c - wl-r2w0 ^ 0, then for 
all integers k > 0, 

\+w w VZ)Y = xkn+wknjD 

This theorem is so named because of its resemblance to de Moivre's trigonometry formula. If 
<ww> = <ww>, we have 

fvw+yJZ)Y = vfa + i/faVD 

I 2 J " 2 ' 
8. SIMSON'S FORMULA 

In 1753, Robert Simson [21] found the formula 

Fn_xFn+l-Fn =(-1)". 

The analog for the sequence (w„) was found by Horadam [10]. 

Theorem 8 (Simsonfs Formula for w): For all integers n, 
™„-Vr,+l-w2

n=Q"-le- (23) 
Theorem 8 can also be expressed in the following manner: 

> w + 2 - ^ 2
+ i = e v (24) 

Horadam [10] also found the following generalization of Simson's formula. 

Theorem 9 (Catalan1 s Identity for w): For all integers n and r, 

wn+rwn-r-w2n=eQn~r^. (25) 
This generalizes a result found by Catalan for Fibonacci numbers in 1886 [4]. 

The determinant form of Simson's theorem is 

w, 
W" l = Q"e. (26) 
71+1 | 
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Horadam [10] generalized this to 

w w 
wM 

= Qn reurur+t, (27) 

which extends a result for generalized Fibonacci numbers found by Tagiuri [22] in 1901. Horadam 
and Shannon [13] expressed this as 

"WC = ^Q\us (28) 

In this form, it generalizes a 1960 result for Fibonacci numbers [7]. The special case of identity 
(27) when r = 1, n - a +1, and t = b-a-l is of interest. 

Theorem 10 (DfOcagmefs Identity for w): For all integers a and b, 

wn wh Qaeub_a. (29) 

This generalizes a result found by d'Ocagne for Fibonacci Numbers in 1885 [6]. The special 
case of formula (27) when n = a + r and t -b-a-r is also of interest: 

w„ wh 
yb+r 

••Qaeurub_a. (30) 

This formulation (with a = n and b-n + s) comes from [13]. Catalan's identity can be expressed 

Letting r = 1 and r - 2 in this formula and multiplying the results together yields a polynomial 
with wA

n and w\ terms. The w% term can be made to vanish in the case in which Q = -P2. This 
gives the following result. 

Theorem 11: If P2 + Q = 0, then 

^-^n^n-^n^n^W^)1- (31) 

This generalizes the identity Fw
4 - Fn_2Fn_lFn+lFn+2 = 1 that was stated by Gelin in 1880 and 

proved by Cesaro [5]. For another generalization of the Gelin-Cesaro identity, see [13]. 

Letting r = n'm formula (25) gives another interesting case. 

Theorem 12: For all integers n, 

WnW, O^ln 
2 2 

-wi=eui. 
(32) 

Gilbert [8] found an interesting pure formula in the form of a 3 x 3 determinant. 

Theorem 13: For all integers a, b, c, x, y, and z, 

^a+x Wa+y Wa+z 
Wb+x Wb+y ™b+z 
Wc+x Wc+y Wc+z 

= 0. (33) 
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9. CHANGE OF BASIS 

We often wish to change an expression involving wn and wn+l into one involving wn+a and 
wn+b for two distinct integers a and h. 

Theorem 14: For all integers n, 

w„} 1 (w* -wn ]( wh 
Wa+lWb-WaWb+AW2 -WlAWb+l -Wa+lAWn+b 

(34) 

Proof: Use the Addition Formula to express wa+l and wb+l in terms of wn and wn+l. This 
gives two equations in two variables wn and wn+l. We can thus solve for these variables. Putting 
the result in matrix form gives the above formula. • 

Note that the basis change is not always possible. The denominator can be written in the 
form -Qaeub_a by formula (29). Thus, the change of basis is possible if and only if ub_a * 0. 

10. THE FUNDAMENTAL IDENTITY 

Theorem 15 (The Fundamental Identity): The fundamental identity connecting wn and wn+l is 

Pw^n+i-QWn-wl^eQ"- (35) 
Proof: This follows immediately from formula (24) after replacing wn+2 by the value given in 

equation (3). D 

This result is not new; it is equivalent to Simson's theorem. If a is a constant, then the funda-
mental identity connecting wn and wn+a is 

vA^-0X2-^L^eX2 (36) 
This was obtained by using formula (34) on the fundamental identity, changing the basis from 

{wn, wn+l} to {wn, wn+a). Changing n to x and n + a to y gives the fundamental identity connecting 
wx and wy: 

vy_xwxwy - Qy~xw2
x -w2

y= eQxu2
y_x. (37) 

11. REMOVAL OF P AND Q 

It is occasionally useful to be able to remove the quantity P from an expression. If the expres-
sion is a polynomial in the variables P and wc. where the q are constants and if P always occurs in 
a product with one of the wc., then we can use the following results to accomplish our goal. 

Theorem 16: If £ is a positive integer, then 

^o = t(fjQJ^-2j- (38) 

Applying the translation theorem (see Section 17) yields 

Theorem 17: If k is a positive integer and r is an integer, then 
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Pkw. 
7=0 V J y 

k+r-2J • (39) 

We also have 

Theorem 18: If k is a positive integer and r is an integer, then 

Qkwr = ( - l )*i(*)(- iyiw, = tjj)<rtf P-'Vk+r+j • (40) 

12. THE DOUBLE ARGUMENT FORMULA 
Horadam [10] found the double argument formula in the following form: 

p\n-J 
W 

Q) -J ^--«*Wl-i (41) 

However, this is not a closed form. 
Horadaim also found a closed form (for wQ ^ 0): w2rl = (w* + eu%) /w0. Shannon and Horadam 

[20] found the double argument formula in the following form: w2n - vnwn-w0Qn. 
Unfortunately, both these formulas are impure. To get a pure formula, let m — n in the addi-

tion formula. We obtain the following result. 

Theorem 19 (The Double Argument Formula for w): For all integers n, 

W2n = 
w2w2

n - 2wxwnwn+l + w0w2„+l _ 

13. FORMULAS FOR wt 

— 
wo Wl w 
*>l W2 Wn+\ I 
Wn Wn+l 0 

w0 wl 

w, w2 

(42) 

kn 

To find expressions for wkn where k is a positive integer constant, you can use the recurrence 
foundbyZeitlin[24]: 

W, kn = Vr,W(k-l)n-QnW(k-2)n, k^2-

Lee [16] found a more direct formula for multiple argument reduction. For k > 1, 

wk„ = wnS(k)-w0Q"S(k-l), 

where 
L(*-i)/2j/, • , \ 

— l^-J-i)f_n^\j\,k-2j-i 

Jarden [14] found the following interesting formula: 

>^=i(fk(-e»«-i)^ 

(43) 

(44) 

(45) 

(46) 
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Zeitlin has found many related formulas. For example, Zeitlin ([27], eq. 1.14, with m = 0 and 
n = 0) found the following interesting formula: 

1 v (k}rU/2\ j k-j u \W^ if/is even, 
Wt= —r > cf. . \DlJI suJ„v„ ; , where cf = < (47) 

*" 2kp0\JJ n n ' J [ 2 ^ - i V o , if/is odd. V ; 

Formula (46) can be converted into a pure formula for wkn by letting s = 0 and substituting 
un = (w0wn+l - wxw„) I e and un_x = (wxwn+l - w2wn) I (eQ). We get the following. 
Theorem 20: lf&>0, then 

wkn =TY\ i K^r^yK^-^J*~V (48) 

This can be expanded out as a polynomial in wn and ww+1. Computer experiments suggest the 
following result. 

Conjecture 21 (The Multiple Argument Formula for w): If & is an integer larger than 1, then 

e j=0 v / 

where 

14. EXPANSION OF PRODUCTS 

Horadam [10] found 
WnVm=Wn+m+Q>»-m- (51) 

But we would really like to express wnwm as a sum of w's. To do that, we can proceed as follows. 
Changing m to m +1 in equation (51) gives 

WnVm+l = Wn+m+l + Q>n-m-l • (52) 

But it is easy to show that 
A 2J 

—L v -j 
£> m D 

where 

^ = - K v
w

+ - 7 T v
w + i ? (53) 

D = P2-4Q, Di = P2w0-2Qw0-Pwl, md D2 = 2wx-Pw0. (54) 

Multiplying (51) by I\/D, multiplying (52) by D2/D, and adding the results, gives us the follow-
ing theorem. 

Theorem 22 (The Product Formula for w): For all integers n and m, 

V „ = ̂ [0M+1A"V(m+i) + Q"DyW^m + A^„+m + D2wn+m+l], (55) 

where D, Dx, and Z)2 are as given in (54). 
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Applying the symmetrlzation formula and expressing wn_(m+l) in terms of wn_m and wn_m+l 
permits us to obtain another variation of the product formula. 

Theorem 23 (Symmetric Product Formula for w): If w0 ^ 0, then, for all integers n and m, 

WmW" = Ttr[eQ"Wm-" " eQm+"W-»-»> + e®"W»->»+ ^ - eK*,] • (56) 
lfm = n in formula (55), we get 

< = ~{2eQn + Dxw2n + D2w2n+l], (57) 

which can be used to turn squares into sums. Using formula (56), this can also be written as 

Dw0w2
n = (Dw2 - e)w2n + 2ew0Q" - ew_2nQ2". (58) 

Theorem 24: If A: is a positive integer, then wk can be expressed in the form 

7=0 

where cki is a polynomial in d, e, and wQ, with integer-coefficients, where d - Dw\. 

Proof: The proof is by induction. The case k = 2 is given above in formula (58). Assuming 
it is true for wk

n, take the formula for wk
n and multiply it by {DwQ)wn. The symmetric product 

formula then gives the answer in the desired form. D 

15. THE POWER EXPANSION FORMULA 

In 1878, Lucas ([17], §XH) found an explicit formula for wn in terms of w0, wl7 P, and Q (see 
also [25], [12], and [16]). 

Theorem 25: For all n > 0, 

^M=L("i^-u(-0i-{(r-t)^p-("^rOw°4 (60) 

16. THE UNIVERSAL RECURRENCE 

We can solve the system of equations 

for P and Q. Thus, any four consecutive terms of the sequence (wn) are enough to determine P 
and Q. The result is 

We cam substitute these values of P and Q into the identity wn+4 = Pwn+3 - Qwn+2 to arrive at 
a recurrence for (w„) that does not involve P, Q, w0, or wv The result is the following. 

1999] 171 



ALGORITHMIC MANIPULATION OF SECOND-ORDER LINEAR RECURRENCES 

Theorem 26 (The Universal Recurrence): Any second-order linear recurrence (wn) with con-
stant coefficients satisfies the recurrence 

Wn+4 2 ' ^ 0 Z ^ 

We call this the "universal recurrence" since it is satisfied by any second-order linear recurrence 
no matter what the coefficients or initial conditions, subject only to the restriction that the denom-
inator should not be 0. [This is equivalent to the condition that e ̂  0 and Q ̂  0 by formula (24).] 

The universal recurrence can be written in the form 

Wn+4 Wn+3 Wn+2 

™n+3 ™n+2 ™n+l = 0. (63) 

In this form, the result is due to Casorati. 

17. THE RECURRENCE FOR MULTIPLES 

Zeitlin [24] found the recurrence satisfied by the sequence (wkn), where k is a fixed positive 
integer: 

Wkn = VkWk{n-l) ~ Qkwk{n-2) - (64) 

This recurrence can be made pure by substituting the value for vk given by formula (10). 

Theorem 27 (The Translation Theorem): Let a be a nonzero integer. Given an identity involv-
ing wn, un, and v„, we can create another valid identity by replacing all occurrences of wx by 
wx+a. This operation is called a translation by a. 

Proof: Since the original identity is true for a completely arbitrary second-order linear recur-
rence (wn) it must be true for the particular second-order linear recurrence (wn+a). • 

Theorem 28 (The Dilation Theorem): Let & be a positive integer. Given an identity involving 
wn, un, and vn, we can create another valid identity by replacing all occurrences of wx by w^, 
provided that we also replace ux by % / % , vx by v^, Q by Qk, P by vk, and e by eu\. This 
operation is called "a dilation by k." 

Proof: The sequence (wkn) satisfies the second-order linear recurrence given by equation 
(64). Since the original identity is true for a completely arbitrary second-order linear recurrence 
(wn) it must be true for the particular second-order linear recurrence (wkn). However, this new 
recurrence has different parameters; namely, P' = vk and Q - Qk. If Wn = wkn, then the funda-
mental Lucas sequence (Un) that corresponds to (Wn) would satisfy the recurrence U„ - vkUn_x -
QkUn_2 with initial conditions U0 = 0 and Ux = l. But the sequence %, satisfies this recurrence 
by (64). To meet the initial conditions, we need only scale it down by a factor of uk. Thus, Uk = 
ukn I uk. A similar remark holds for the corresponding primordial Lucas sequence (Vn). 

Thus, if we convert to these new parameters, we should obtain a valid identity. Note that 
-wf, when converted, becomes w0w2k -w%, which is equal to eu\ by Theorem 12. • 

172 [MAY 



ALGORITHMIC MANIPULATION OF SECOND-ORDER LINEAR RECURRENCES 

18. THE RECURRENCE FOR POWERS 

Jarden [15] found the recurrence satisfied by the sequence (w'n), where t Is a fixed positive 
integer: 

Ff + 11 t+i 

S(-iyQ/o-i) /2 
J 

< j = 0 , 

where 

m 
L Ju uxu2 ,,.ur 

= 1. 

(65) 

(66) 

See also [9] and [10] for some related identities. Zeitlin [23], [26], has found many other 
identities involving powers ofw% 

19; THE ALGORITHMS 

We now summarize the algorithms found earlier in this paper. For the reader's convenience, 
we repeat some of the earlier formulas (leaving their original formula numbers). All of the algo-
rithms listed here have been implemented in Mathematica™, and are available from the author via 
e-mail. 

Algorithm ConvertToUV-to convert an expression involving w's into one involving z/'s and v's: 
Apply the substitution 

(2n/1- iVQ)if> t+iv0vw 

2 
w = • (4) 

Algorithm ConvertToW-to convert expressions involving w's and v's into expressions involving 
w's: 

Apply the identities 

_ (Pw0 - 2w{)wn+l - (2Qw0 - PwY)wn 

(10) 

Algorithm WReduce-to remove sums in subscripts: 
Repeatedly apply the addition formula 

Wn Wn+1 0 

Algorithm WNegate-to negate subscripts: 
Use the identity 

= Ot2 - Qy*l K+^o(^o - 2wx)wn+l 
eQ" w_ 

(13) 

(14) 
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Algorithm WShif t - to change basis: 
To convert an expression involving wn and wn+l into one involving wn+a and wn+b, apply the 

substitutions 
W» ^ 1 \"\ ~w0 || wb ~wa |[ wn+a | (34) 

Algorithm WExpand-to turn products into sums: 
Repeatedly apply the substitution 

W*Pn = ̂ [2W+1A^-(W+l) + QT^n-m + A ^ * + A^WflL (55) 

where D = P 2 - 4 g , £\ = P 2 w 0 -2gw 0 - /V 1 , and D2 = 2wx-Pw0. 

Algorithm WRemoveP-to remove P in coefficients with terms involving wc: 
If c is a constant, use the identity 

k 
Pkw, ^ ( k c-Znjex+c-2y. (39) y=o 

Algorithm WRemoveQ-to remove Q in coefficients with terms involving wt 

If c is a constant, use the identity 
k 

M K \( 1\J Dk-J' 
yk+c+j • =g(*)-i,̂ -A e^II 'K-iV'Sw («>) 

Algorithm RemovePowersOf WPlusl-to remove powers of wn+l: 
Use the identity 

<i = P^n^l-Q^l-^ (67) 
repeatedly until no wn+l term has an exponent larger than 1. This identity comes from formula 
(35). 

Algorithm RemovePowersOf W-to remove powers of wn: 
Use the identity 

w2 = Pw„wn+l-w2
n+l-eQ" 

repeatedly until no wn term has an exponent larger than 1 This identity comes from formula (35). 

Algorithm RemovePowersOf Q-to remove variable powers of Q. 
To remove any expressions of the form Qan+b from an expression, where n is a variable and a 

and b are independent ofn with a * 0, write Qan+b as Qb(Qn)a ifa>0 and as Qb(Q~n)~a if a < 0. 
Then replace g±w by the substitution 

174 [MAY 



ALGORITHMIC MANIPULATION OF SECOND-ORDER LINEAR RECURRENCES 

which comes from formula (35). If a < 0, we cannot In general replace Qan by any polynomial in 
the w's with subscripts consisting only of positive multiples of n. However, if Q happens to be a 
root of unity, then simplification is possible. The cases Q = -1 and Q = 1 frequently occur and are 
of this form. Let m be the smallest positive integer such that Qm = 1. Write Qan+b as QbQan. Let 
b be the residue of a modulo m, i.e., the positive integer such that 0 < b <m and b = a (mod m). 
Then Qa = Qb, so we can replace Qan by Qbn with b > 0. If b > 0, we proceed as in the previous 
case. 

Definition: A w-polynomial is any polynomial f(xu x2,..., xr) with constant coefficients, where 
each xi is of the form wx9 ux, vx9 or gx , with each x of the form a ^ +a2w2 + ••• +aknk +b, where 
b and the a7 are integer constants and the nt are variables. For purposes of this definition, the 
quantities P, Q, w0, and wx are to be considered constants. 

Algorithm WSimplif y-to convert an expression to canonical form: 
INPUT: Aw-polynomial. 
OUTPUT: Its "canonical form". Two expressions that are identical will have the same canonical 
form. In particular, an expression is identically 0 if and only if its canonical form is 0. 

Step 1. [Convert to w.] If any expression of the form ux or vx occurs, apply Algorithm 
ConvertToW to remove it. 

Step 2. [Remove variable sums in subscripts.] If any expression of the form a^+aj^ 
occurs in a subscript, apply Algorithm WReduce to remove such sums. Treat axnx -
a2n2 as a1nl + (-a2)n2. 

Step 30 [Make multipliers positive.] All subscripts are now of the form an + b9 where a and 
b are integers and n is a variable. For any term in which the multiplier a is negative, 
apply Algorithm WNegate. 

Step 4. [Remove multipliers.] All subscripts are now of the form an + b, where a is a non-
negative integer, b is an integer, and n is a variable. If a > 1, write an + b as n + n + 
—\-n + b with a copies of n and then apply Algorithm WReduce repeatedly until all 
these subscripts are of the form n + c, where c is an integer. 

Step 5. [Remove constants in subscripts.] If any expression of the form n + b with b ^ 0 and 
b & 1 occurs in a subscript, apply Algorithm WReduce to remove such sums. 

Step 6. [Remove powers of ww+1.] If any term involves an expression of the form w^+h 

where k>\ and n is a variable, apply Algorithm RemovePowersOfWPlusl to 
leave only linear terms in wn+l. 

Step 7e [Evaluate constants.] If any term involves an expression of the form w%, where c is 
an integer constant, replace wc by its numerical equivalent. If the symbols D or e 
occur, replace them by their equivalent values from formula (7). 

Step 80 [Simplify powers of Q.] If Q is a primitive ftfi1 root of unity, then replace all con-
stants appearing in an exponent with base Q by their residues modulo m. 

The canonical form is a polynomial f(xh x2,..., xr) with constant coefficients, where each xt 

is of the form wn, wn+h or Q±Tli, where the nt are variables, and the degree of each w +l term is 0 
or 1. If Q is a root of unity, then no exponent with base Q is negative. 
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Alternatively, to prove an identity, you can apply Algorithm L u c a s S i m p l i f y and show 
that the resulting canonical form is 0. 
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In Memoriam 

* v~" : t 

Richard Spain Vime (1913-1999) 
Richard Vine, retired subscription manager of The Fibonacci Quarterly (17 years), 

retiree from Lockheed, active participant in professional and community theater, avid 
tennis player, took his final bow and left this stage of life on January 25, 1999, after a 
long fight with bone cancer. Richard sends the following message to his friends in the 
Fibonacci Association: "It was a wonderful life; please think of me kindly and with 
love as I did you: La comrnedia efinita!" 
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