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PROBLEMS PROPOSED IN THIS ISSUE 

H-553 Proposed by Paul Bruckman, Berkeley, CA 
The following Diophantine equation has the trivial solution {A, 5, C, D) - (A, A, A, 0): 

A3 + B3 + C3 - 3 ABC = Dk, where k is a positive integer. (1) 
Find nontrivial solutions of (1), i.e., with all quantities positive integers. 

H-554 Proposed by N. Gauthier, Royal Military College of Canada 
Let &, a, and b be positive integers, with a and b relatively prime to each other, and define 

Nk:=(l + (-l)k-Lkr 
= (2-Lk)~\ k even; 
= -L~k\ k odd. 

a. Show that 
a-\ b-l 

r=0 .y=0 
br+as<ab 

2^ 2L Lq(br+as) ~ NqaNqb[2 + Z^(a+6) ^qa ^qb ^qab + ( V Lqa(b-1) 

-f (-1) Lqb(a_y + (-1) ^q(ab-a-b)] 

+ Nq[{-\fLq(ab_l)-Lqab\, 

where q is a positive integer. 
b. Show that 

I I ^ + f l s ) = NqaNqb\_{-\ra^Fq,ab_a_b) +Fqa +Fqb 
r=0 s=0 
br+as<ab 

~Fqab + \ V Fqa(b-l) + *qb(a-l) ~ ^q(a+b)] 

+ Nq[{-lfFq{ab_X)-Fqabl 

where q is a positive integer. 
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H-555 Proposed by Paul S. Bruckman, Berkeley, CA 
Prove the following identity: 

[n/3] 

(x» + y ) ( * +J/)" = -(-xyy + Y(-l?Cn,k[xy{x + y)ik{x2
 +xy + / ) - " , „ = 1, 2,..., (1) 

it=o 
where 

'"•<t = (" / J-"^"-2*)-
Using (1), prove the following: 

(a) 5" / 2 4=- l + X(-r /C n > ,5*4"- 3 * , ,, = 2,4,6,...; (2) 
A:=0 

[n/3] 

(b) S ^ ^ F ^ l + X C - O ' Q . S M ^ , ^ 1 , 3 , 5 , . . . ; (3) 
k=0 

[n/3] 

(c) A,=-1+Z(- 1 )*C I I ^2- 3 * , /i = l,2,3,.„. (4) 

SOLUTIONS 
An Odd Problem 

H-536 Proposed by Paul S. Bruckman, Highwood, IL 
(Vol 36, no. 1, February 1998) 

Given an odd prime/?, integers n and r with n > 1, let m = 2[^n) — 1, 

°n,r,p Z-J rn h. > n,r,p Z=a ™ ' h-
k=\ K k=\ K 

Prove the following congruences: 
ppp A - F ^ F M + F 

(a) £ , . , * ' " rop+r ," "P+r"r (modp); 

pPT _ J7PJ + J 
(b) 7 ^ ^ n mp+r ^ - ^ r- (modp). 

Solution by the proposer 
Proof: We begin with the following identity: 

Fnam = Fma"-\. (*) 

We may verify (*) by dealing with the cases n even or n odd separately, then expanding the Binet 
formulas. A similar identity holds with the a's replaced by /?'s. 

Raising each side of (*) to the power/?, we obtain: 

FPof* = F£oP'-l + i ; ^ - ^ ^ 
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For 1< k < / ? - ! , 

Then, multiplying throughout by ar, we obtain: 
/?— 1 nk+r 

FPa™P+r _ FPanp+r + ^ r E ^ ^ 0 _ ( m o ( j ^ 

Note that the quantities "! /£" are the uniquely determined inverses k~l (mod/?2); upon division 
throughout by p, these become the uniquely determined inverses k~l (mod p). A similar con-
gruence holds with the a's replaced by /?'s. Subtracting these two congruences and dividing 
throughout by p«j5 yields the result in (a). Adding these two congruences and dividing through-
out hyp yields (b). 

Note: Using these results, it may be shown that a necessary and sufficient condition for 
Z{p2) = Z{p) is that 

k=\ K 

Also solved by H.-J. Seiffert 

A Recurrent Theme 

H-537 Proposed by Stanley Rabinowitz, Westford, MA 
(Vol 36, no. 1, February 1998) 

Let (wn) be any sequence satisfying the recurrence 

Let e = w0w2 - wf and assume e * 0 and Q ̂  0. 
Computer experiments suggest the following formula, where k is an integer larger than 1: 

"ta = 4ric*wf?l(-i)X*ft, 
e ;=o V / 

where 

^=z(*;2)(H2-'oy<2-Vy 

Prove or disprove this conjecture. 

Solution by Paul S. Bruckman, Berkeley, CA 
We may express the wn's in terms of the "fundamental" sequence {(/>„), defined as follows: 

4, = («"-v") / (a-v) , (1) 
where 

u = y2(p+0i v = y2(p-0), e=(P2-4Q)l/i. (2) 
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Note that w + v = P, u-v-6^ and uv = Q. Also note that the ^w's satisfy the same recurrence 
relation as the wn9s, but have the initial values: 

^o = °> 01 = 1. (3) 
Also, ^_1 = -1 / g , ^2 = P. The formula for ww is then as follows: 

Wn=WA-Q*o4n-V (4) 
We proceed to obtain closed form expressions for the indicated sums. First, we obtain a closed 
formula for the ct 's, substituting the expressions in (4): 

Ci = ff~i(uWi _ ̂ y -^f^QXwo^-^-o^o i*y 

7=0 

= 6r\uwl - Qw0)ii'\wx - vw0f-2 - erXvw, - Qw^'\wx - uw0f~2 

or 
ci = r V (wx - vw0)k-1 - 0~lvi(wl - wwo)*"1. (5) 

Next, let 
k 

Note that this last expression differs from the sum given in the statement of the problem (with the 
roles of wn and wn+l interchanged). Substituting the expression in (5) yields: 

Sn,k = P't *QK)*-'(-"W,y («*~>i - vwo)*"1 - vk-'(w, - uwrf-1} 

or 
sn,k = r'^-^fK-^f-r'^-^fK-^,)4. (6) 

The problem (as corrected) asks us to verify or refute the relation 

^ = ^ H n - (7) 
Next, we employ the following relations [easily verified from the preceding relations, including 
(4)]: 

Wn - Wn+l = (^0 ~ WlV', (8) 
w» - w„+1 = (vw0 - wx)un. (9) 

It is also easily verified that 
(uw0 - Wi)(vw0 - Wj) = -e. (10) 

Putting these facts together, we obtain (after simplification): 

S„, k = 0 "V, - vwtf-\uwH - w„+1)k - 6r\wx - uw0)k-\vw„ - w„+lf 

= ek-\w4kn - g u ^ - i ) = ek-\n- Q- E.D. 
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Thus, there is a typographical error in the statement of the problem; the result is true only if the 
quantities wn and wn+l occurring in the first sum given are interchanged. 
Also solved by H.-J. Seiffert 

An Elementary Result 

H-538 Proposed by Paul S. Bruckrnan, Highwood, IL 
(Vol 36, no. 1, February 1998) 

Define the sequence of integers (Bk)k>0 by the generating function: 

(l-xy\l + xyi = Y,Bk&^, \x\<l (see[l]). 
k>0 Kl 

Show that 

YBk-^r
 l ^ , = ^ r - T » o g 2 ^ where i# = l + V2. 

p?0
 k (2*+ 2)! 8 4 B ' 

Reference 
1. P. S. Bruckrnan. "An Interesting Sequence of Numbers Derived from Various Generating 

Functions." The Fibonacci Quarterly 10.2 (1972):169-81. 
Solution by the proposer 

In [1], it is shown that 

tan"1 x • (1 - x2ym = £ Bf X 

**> *(2* + l)!' 
The following result is Elementary Problem E3140, Part (b)(ii), proposed by Khristo Boyadzhiev 
in The American Math Monthly 93.3 (1986):216: 

\\m-xx-{\-x2)-V2dx = 7T2 l%-\\og2u. 

(The notation is modified to conform to our own.) The result follows immediately, by integrating 
the series given in [1] term by term and evaluating it at the integral's limits. 

Beta Version 
H-539 Proposed by H.-J. Seiffert, Berlin, Germany 

(Vol 36, no. 2, May 1998) 

Let Hm(p) = fjB^PymGN,p>0, 

where 

denotes the Beta function. Show that for all positive reals/? and all positive integers n, 

±(-lf-i(n)H2k(p) = 4"+r-iB(n + p,n + p-l) + — ^ . (1) 
k=\ V J n-tp i 

From (1), deduce the identities 
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t^-'imyurj k=\ 
and 

Solution by the proposer 
Since 

I ( -^) / (?) = ̂ T-

B{ vp)=itu~2)i2{i - t)p~idt=2iyiv - ui^du> 

\-u> HJj>) = 2\ ^-{X-uy-'du, meN. 

it easily follows that 

r0 \-U 

If S„(p) denotes the left side of the stated identity (1), then, by the Binomial theorem, 

fV « 
S„(P) = 2 ( l - I f 2 ) ^ 1 

du 

k{ n \„2k 

v * / # 

Vi-^-'^.^f. ^ o - ^ - 1 
tfw = 2 ( l - » 0 " '—du 

\-U Jo 1-H 
or 

Substituting w = 1 - 2v yields 

^»=j o
I o-«r' - 2 ( i+i ir^ i di i . 

-S„(p) = 4"+p-x\V2vn+p-2(\-v)"+p-xdv. 

Integrating (4) by parts, we find 

-SJp) = - + 4"+p-1 f'2 vn+p-l(l - v)n+p-2dv. 
2 " n + p-l }o 

Replacing v by 1 - v in the latter integral, we get 

1 
itf)- ^ — + 4«+p-i f' v»+P-2(\ - v)n+p-]dv. 

- 1 Jl/2 k ' 

(2) 

(3) 

(4) 

(5) 

Now, the desired identity (1) follows by adding (4) and (5). 
Interestingly, (2) and (3) will follow from (1), simultaneously, when taking p = l/2. Since, 

as is well known, 

'i"HH»"w--"H)-7/(^'^-
we have 

*_1 1 (lA . •& 4r l(2r ^-l'H^W^'l^)%rnr 
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Each of the equations 

S^)-^)-*--|f^H^H4-*-
can be proved by a simple induction argument. Hence. 

'O 2k(2k\_t JAkl(2k 

Using 
^m-yitMvi*!-1!-*'* 

D, , 1 M 2;r 
5 « + — ,w 

In (2n-2\ 
2 ' " 2 j 42n~ 

and observing that ;r is an irrational number, from (1) with p = 1 / 2, we find the two equations 

!<-^f(zX*)-4M-"2) (6) 
and 

i^I'M")-1)^ (7) 
Obviously, (2) is equivalent to (6). Dividing (7) by 2 and adding 

l(-r(j)=i 
to both sides of the resulting equation gives (3). 

With p = l, identity (1), after dividing by 2, gives 

U W • " (2w)» 2*' 
where i/^ = /^ ( l ) 12- ZJ=1 1 / / is the rrfi" harmonic number. This equation (including a general-
ization in another direction) was obtained in [1]. 
Reference 
1. L. C. Hsu & H. Kappus. Problem B-818. The Fibonacci Quarterly 35.3 (1997):280-81. 
Also solved by P. Bruckman and partially by A. Stam. 
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