ELEMENTARY PROBLEMS AND SOLUTIONS

Edited by
Stanley Rabinowitz

Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to Dr. STANLEY RABINOWITZ; 12 VINE BROOK RD; WESTFORD, MA 01886-4212 USA. Correspondence may also be sent to the problem editor by electronic mail to stanley@tiac.net on Internet. All correspondence will be acknowledged.

Each solution should be on a separate sheet (or sheets) and must be received within six months of publication of the problem. Solutions typed in the format used below will be given preference. Proposers of problems should normally include solutions. Although this Elementary Problem section does not insist on original problems, we do ask that proposers inform us of the history of the problem, if it is not original. A problem should not be submitted elsewhere while it is under consideration for publication in this column.

BASIC FORMULAS

The Fibonacci numbers F_{n} and the Lucas numbers L_{n} satisfy

$$
\begin{aligned}
& F_{n+2}=F_{n+1}+F_{n}, F_{0}=0, F_{1}=1 ; \\
& L_{n+2}=L_{n+1}+L_{n}, L_{0}=2, L_{1}=1 .
\end{aligned}
$$

Also, $\alpha=(1+\sqrt{5}) / 2, \beta=(1-\sqrt{5}) / 2, F_{n}=\left(\alpha^{n}-\beta^{n}\right) / \sqrt{5}$, and $L_{n}=\alpha^{n}+\beta^{n}$.

PROBLEMS PROPOSED IN THIS ISSUE

B-878 Proposed by L. A. G. Dresel, Reading, England

Show that, for positive integers n, the harmonic mean of F_{n} and L_{n} can be expressed as the ratio of two Fibonacci numbers, and that it is equal to $L_{n-1}+R_{n}$ where $\left|R_{n}\right| \leq 1$. Find a simple formula for R_{n}.

Note: If h is the harmonic mean of x and y, then $2 / h=1 / x+1 / y$.

B-879 Proposed by Mario DeNobili, Vaduz, Lichtenstein

Let $\left\langle c_{n}\right\rangle$ be defined by the recurrence $c_{n+4}=2 c_{n+3}+c_{n+2}-2 c_{n+1}-c_{n}$ with initial conditions $c_{0}=0, c_{1}=1, c_{2}=2$, and $c_{3}=6$. Express c_{n} in terms of Fibonacci and/or Lucas numbers.

B-880 Proposed by A. J. Stam, Winsum, The Netherlands

Express

$$
\sum_{2 i \leq m}\binom{m-i}{i}(-1)^{i} 3^{m-2 i}
$$

in terms of Fibonacci and/or Lucas numbers.

B-881 Proposed by Mohammad K. Azarian, University of Evansville, IN

Consider the two equations

$$
\sum_{i=1}^{n} L_{i} x_{i}=F_{n+3} \text { and } \sum_{i=1}^{n} L_{i} y_{i}=L_{2}-F_{n+1} .
$$

Show that the number of positive integer solutions of the first equation is equal to the number of nonnegative integer solutions of the second equation.

B-882 Proposed by A. J. Stam, Winsum, The Netherlands

Suppose the sequence $\left\langle A_{n}\right\rangle$ satisfies the recurrence $A_{n}=A_{n-1}+A_{n-2}$. Let

$$
B_{n}=\sum_{k=0}^{n}(-1)^{k} A_{n-2 k} .
$$

Prove that $B_{n}=A_{0} F_{n+1}$ for all nonnegative integers n.

B-883 Proposed by L. A. G. Dresel, Reading, England

Let $\left\langle f_{n}\right\rangle$ be the Fibonacci sequence F_{n} modulo p, where p is a prime, so that we have $f_{n} \equiv F_{n}$ $(\bmod p)$ and $0 \leq f_{n}<p$ for all $n \geq 0$. The sequence $\left\langle f_{n}\right\rangle$ is known to be periodic. Prove that, for a given integer c in the range $0 \leq c<p$, there can be at most four values of n for which $f_{n}=c$ within any one cycle of this period.

SOLUTIONS

A Perfect Square

B-860 Proposed by Herta T. Freitag, Roanoke, VA

(Vol. 36, no. 5, November 1998)
Let k be a positive integer. The sequence $\left\langle A_{n}\right\rangle$ is defined by the recurrence $A_{n+2}=2 k A_{n+1}-A_{n}$ for $n \geq 0$ with initial conditions $A_{0}=0$ and $A_{1}=1$. Prove that $\left(k^{2}-1\right) A_{n}^{2}+1$ is a perfect square for all $n \geq 0$.

Solution by Don Redmond, Southern Illinois University, Carbondale, IL

We give a generalization. Let p and q be integers and let $A_{0}=0$ and $A_{1}=1$. Define, for $n \geq 0$, the sequence $\left\langle A_{n}\right\rangle$ by $A_{n+2}=2 p A_{n+1}-q A_{n}$. Then, for $n \geq 0$,

$$
q^{n}+\left(p^{2}-q\right) A_{n}^{2}
$$

is a perfect square. If we let $q=1$ and $p=k$, we obtain the desired result.
Let s and t be the roots of the polynomial $x^{2}-2 p x+q=0$. Then we know that we can write, for $n \geq 0$,

$$
A_{n}=\frac{s^{n}-t^{n}}{s-t} .
$$

Now $s+t=2 p, s t=q$, and $s-t=2 \sqrt{p^{2}-q}$. Thus,

$$
4 q^{n}+4\left(p^{2}-q\right) A_{n}^{2}=4(s t)^{n}+(s-t)^{2}\left(\frac{s^{n}-t^{n}}{s-t}\right)^{2}=4(s t)^{n}+\left(s^{n}-t^{n}\right)^{2}=\left(s^{n}+t^{n}\right)^{2} .
$$

Hence

$$
q^{n}+\left(p^{2}-q\right) A_{n}^{2}=\left(\frac{s^{n}+t^{n}}{2}\right)^{2} .
$$

Finally, $\left(s^{n}+t^{n}\right) / 2$ is indeed an integer because it satisfies the same recurrence as A_{n} but with initial values 1 and p.

Seiffert also found this generalization. Lord showed that, for the original sequence,

$$
\left(k^{2}-1\right) A_{n}^{2}+1=\left(k A_{n}-A_{n-1}\right)^{2} .
$$

Redmond noted that another generalization can be found on page 501 of [1]: If a_{0} is any integer, $a_{1}=k a_{0}+p$ and, for $n \geq 0, a_{n+2}=2 k a_{n+1}-a_{n}$, then $\left(k^{2}-1\right)\left(a_{n}^{2}-a_{0}^{2}\right)+p^{2}$ is a perfect square. The problem at hand is the case $a_{0}=0$ and $p=1$.

Reference:

1. Don Redmond. Number Theory: An Introduction. New York: Marcel Dekker, 1996.

Solutions also received by Richard André-Jeannin, Paul S. Bruckman, Charles K. Cook, Leonard A. G. Dresel, Steve Edwards, N. Gauthier, Joe Howard, Hans Kappus, Harris Kwong, Graham Lord, Maitland A. Rose, H.-J. Seiffert, Indulis Strazdins, Andràs Szilàrd, and the proposer.

Integer Coefficients?

B-861 Proposed by the editor

(Vol. 36, no. 5, November 1998)
The sequence $w_{0}, w_{1}, w_{2}, w_{3}, w_{4}, \ldots$ satisfies the recurrence $w_{n}=P w_{n-1}-Q w_{n-2}$ for $n>1$. If every term of the sequence is an integer, must P and Q both be integers?

Counterexample by Steve Edwards, Southern Polytechnic State University, Marietta, GA

The sequence $w_{n}=k$, where k is an integer, is a counterexample when p is not an integer and $P-Q=1$.

Solution by L. A. G. Dresel, Reading, England

We shall prove that P and Q must both be integers provided that $w_{1}^{2}-w_{0} w_{2} \neq 0$.
Let $D_{n}=w_{n+1}^{2}-w_{n} w_{n+2}$. Eliminating P from the equations $w_{n+2}=P w_{n+1}-Q w_{n}$ and $w_{n+3}=$ $P w_{n+2}-Q w_{n+1}$, we have $D_{n+1}=Q D_{n}$ for $n \geq 0$. Therefore, $D_{1}=Q D_{0}$, and by induction $D_{n}=Q^{n} D_{0}$ for $n \geq 0$.

If $D_{0} \neq 0$, then $Q=D_{1} / D_{0}$ is the ratio of two integers, and then $D_{n}=Q^{n} D_{0}$ for all $n \geq 1$ implies that Q must be an integer.

It remains to prove that P must also be an integer in this case. Suppose, on the contrary, that P is a rational fraction, $P=p / d$, where $\operatorname{gcd}(p, d)=1$. Consider the recurrence in the form $P w_{n}=w_{n+1}+Q w_{n-1}$ for $n \geq 1$. It follows that d divides w_{n}, so that d divides $w_{1}, w_{2}, w_{3}, \ldots$. Therefore, for $n \geq 2$, the right side of the recurrence is divisible by d, and we have d^{2} divides w_{2}, w_{3}, w_{4}, \ldots. Continuing in this way (let us call it the escalator principle), we find that for each n, d^{n} divides w_{n}. Hence $d^{2 n+2}$ divides $D_{n}=Q^{n} D_{0}$ for all n, and it follows that Q is divisible by d^{2}.

Returning again to the recurrence $P w_{n}=w_{n+1}+Q w_{n-1}$ for $n \geq 1$, we see that the right side is divisible by d^{2}, and therefore d^{3} divides $w_{1}, w_{2}, w_{3}, \ldots$. Then, for $n \geq 2$, the right side of the recurrence is divisible by d^{5}, so that d^{6} divides $w_{2}, w_{3}, w_{4}, \ldots$. Continuing with this escalator principle, we find that, for each n, $d^{3 n}$ divides w_{n}. Hence, $d^{6 n+6}$ divides $D_{n}=Q^{n} D_{0}$ for all n, and it follows that Q is divisible by d^{6}. Returning again (and again) to the recurrence formula and applying the escalator principle, we require even higher powers of d dividing both Q and D_{0}, so that we cannot construct the sequence of integers unless $d=1$.

This implies that when $D_{0} \neq 0$, both P and Q must be integers.

Counterexamples also received by Richard André-Jeannin, Paul S. Bruckman, H.-J. Seiffert, and Andràs Szilàrd.

Large LCM

B-862 Proposed by Charles K. Cook, University of South Carolina, Sumter, SC

 (Vol. 36, no. 5, November 1998)Find a Fibonacci number and a Lucas number whose sum is 114,628 and whose least common multiple is $567,451,586$.

Solution by Scott H. Brown, Auburn University at Montgomery, Montgomery, AL

Since the sum of the two numbers ends in 8, we test the combinations in the one's digits: $0+8,1+7,2+6,3+5$, and $4+4$. Testing these combinations and observing that they must add up to 114,628 , many of these combinations are eliminated with the exception of the following:
(b)

$$
\begin{array}{cc}
F_{21}=10,946 & L_{24}=103,682 ; \tag{a}\\
F_{25}=75,025 & L_{22}=39,603 .
\end{array}
$$

These values were found on pages 83 and 84 in [1].
Factoring the integers in question, we find $10946=2 \cdot 13 \cdot 421,103682=2 \cdot 47 \cdot 1103,75025=$ $5^{2} \cdot 3001$, and $39603=3 \cdot 43 \cdot 307$.

Checking the LCM we find, in case (a), $\operatorname{lcm}\left(F_{21}, L_{24}\right)=2 \cdot 13 \cdot 421 \cdot 47 \cdot 1103=567451586$ and, in case (b), $\operatorname{lcm}\left(F_{25}, L_{22}\right)=2971215075$. Case (b) does not give the desired LCM.

Hence, the answer is F_{21} and L_{24}.

Reference

1. Verner E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Santa Clara, CA: The Fibonacci Association, 1979.
Solutions also received by Richard André-Jeannin, Paul S. Bruckman, Leonard A. G. Dresel, Steve Edwards, Daina Krigens, Carl Libis, H.-J. Seiffert, Indulis Strazdins, Andràs Szilàrd. and the proposer.

Matrix Lucas Sequence

B-863 Proposed by Stanley Rabinowitz, Westford, MA (Vol. 36, no. 5, November 1998)
Let

$$
A=\left(\begin{array}{cc}
-9 & 1 \\
-89 & 10
\end{array}\right), \quad B=\left(\begin{array}{cc}
-10 & 1 \\
-109 & 11
\end{array}\right), \quad C=\left(\begin{array}{cc}
-7 & 5 \\
-11 & 8
\end{array}\right), \quad \text { and } \quad D=\left(\begin{array}{cc}
-4 & 19 \\
-1 & 5
\end{array}\right),
$$

and let n be a positive integer. Simplify $30 A^{n}-24 B^{n}-5 C^{n}+D^{n}$.

Solution by Hans Kappus, Rodersdorf, Switzerland

It is easily checked that the matrix equation $X^{2}=X+I$, where I is the identity matrix, is true for $X=A, B, C$, and D. Hence, the matrices $M_{n}=30 A^{n}-24 B^{n}-5 C^{n}+D^{n}, n=0,1,2, \ldots$, satisfy the recurrence $M_{n+2}=M_{n+1}+M_{n}$. Furthermore, $M_{0}=2 I$ and $M_{1}=I$. Therefore,

$$
M_{n}=L_{n} I=\left(\begin{array}{cc}
L_{n} & 0 \\
0 & L_{n}
\end{array}\right), \quad n=0,1,2, \ldots
$$

Solutions also received by Richard André-Jeannin, Paul S. Bruckman, Charles K. Cook, Leonard A. G. Dresel, Carl Libis, Maitland A. Rose, H.-J. Seiffert, Andràs Szilàrd, and the proposer.

Confound Those Congruences

B-864
Proposed by Stanley Rabinowitz, Westford, MA (Vol. 36, no. 5, November 1998)
The sequence $\left\langle Q_{n}\right\rangle$ is defined by $Q_{n}=2 Q_{n-1}+Q_{n-2}$ for $n>1$ with initial conditions $Q_{0}=2$ and $Q_{1}=2$.
(a) Show that $Q_{7 n} \equiv L_{n}(\bmod 159)$ for all n.
(b) Find an integer $m>1$ such that $Q_{11 n} \equiv L_{n}(\bmod m)$ for all n.
(c) Find an integer a such that $Q_{a n} \equiv L_{n}(\bmod 31)$ for all n.
(d) Show that there is no integer a such that $Q_{a n} \equiv L_{n}(\bmod 7)$ for all n.
(e) Extra credit: Find an integer $m>1$ such that $Q_{19 n} \equiv L_{n}(\bmod m)$ for all n.

Solution by David M. Bloom, Brooklyn College of CUNY, Brooklyn, NY
For $k \geq 0$, we have

$$
\begin{equation*}
Q_{n+k}+(-1)^{k} Q_{n-k}=Q_{n} Q_{k} \tag{1}
\end{equation*}
$$

by induction on k. (The cases $k=0$ and $k=1$ are easy.) Next, we show the following:

$$
\begin{equation*}
\text { If } a \text { is odd and } m \mid\left(Q_{a}-1\right) \text {, then } Q_{a n} \equiv L_{n}(\bmod m) \text { for all } n \text {. } \tag{2}
\end{equation*}
$$

Indeed, (2) holds for $n=0$ trivially and for $n=1$ by hypothesis on m, and, if true for $n=j-1$, then

$$
\begin{aligned}
Q_{a(j+1)} & =Q_{a(j-1)}+Q_{a j} Q_{a} & & {[\text { by }(1)] } \\
& \equiv Q_{a(j-1)}+Q_{a j}(\bmod m) & & \left(\text { since } Q_{a}=1\right) \\
& \equiv L_{j-1}+L_{j}(\bmod m) & & \text { (by the induction hypothesis) } \\
& \equiv L_{j+1}(\bmod m) & &
\end{aligned}
$$

so that (2) holds for $n=j+1$. Hence, (2) holds for all n by induction.
Part (a) of the problem now follows from (2) with $a=7$ since $Q_{7}-1=477$ is divisible by 159 .
Part (b) holds with $m=13$ since 13 divides $Q_{11}-1$.
Part (c) holds with $a=17$ since 31 divides $Q_{17}-1$.
Part (e) holds with $m=Q_{19}-1=18738637$.
Finally, if $Q_{a n} \equiv L_{n}(\bmod 7)$ for all n, then, in particular, $Q_{a} \equiv L_{1}=1(\bmod 7)$. However, this is impossible since we have $(\bmod 7)$

$$
\left(Q_{0}, Q_{1}, Q_{2}, \ldots\right) \equiv(2,2,6,0,6,5,2,2, \ldots)
$$

which clearly repeats with period 6 and never assumes the value 1 . Thus, part (d) is proved.

Solutions also received by Richard André-Jeannin, Paul S. Bruckman, Leonard A. G. Dresel,

 H.-J. Seiffert, Andràs Szilàrd, and the proposer.Belated Acknowledgment: Brian Beasley was inadvertently omitted as a solver of Problems B854, B-855, and B-857.

