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1. INTRODUCTION 

M. Davis proved in [1] that, if the Diophantine equation 
9(u2 + 7v2)2-7(r2 + 7s2)2 = 2 (1) 

had no nontrivial solutions other than u-v-\ r - s=0, in nonnegative integers, then Hilbert's 
Tenth Problem would be unsolvable. J. Robinson proved that Hilbert's Tenth Problem would be 
unsolvable if (1) had only finitely many solutions. 

In [3], O. Herrmann proved the existence of nontrivial solutions of (1) and D. Shanks [5] 
solved (1) explicitly. 

D. Shanks and S. S. Wagstaff [6] found 48 more solutions of (1). They also conjectured that 
this equation has infinitely many solutions and gave an elaborate argument in this direction. 

In this note, it is proved that solutions of (1) are members of a certain Lucas sequence and its 
form is described. 

2. REPRESENTATION OF AnBn AS A MEMBER OF 
A RECURRENCE OF ORDER TWO 

Herrmann [2] considered the Pell-like equation 

9At-7B2
n=2. (2) 

He proved that, if A$ = 1, B0 = 1, then 

An+^%An + lBn and Bn+l = 9Ari + SBn (3) 

give all positive solutions of (2). 
If 4? has the form u2 +7v2 and Bn has the form r2 +7S2, then every solution of (2) is a solu-

tion of (1). 
By the first equation of (3), we have 

™„ = 4*i-H a n d 1Bn+i = 4»2-*4n , (4) 
while, by the second equation of (3), we see that 7Bn+l = 63An+S-7Bn and, by (4), that 

4 , +2-H+i = 634,+8(4f i -H) 
or 

4*2 = 164*1-4,, 4>-i. 4 = 15. (5) 
Analogously, 

Bn+2 = \6Bn+1-Bn, B0 = \, 5, = 17. (6) 
Now, consider the recurrence 

£4+2 = 16^+1-£/„, ^ = 0 , ^ = 1. (7) 
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By the theory of integer linear recurrences of order two, An = Un+l ~Un, Bn = Un+l + Un, and 

A,Bn = U2
n+l-U2

n=U2n+l. (8) 

Let S be the set of all odd positive numbers that have the form x2 + ly2 for any integers x, y. 
The criterion for an odd z G S is: 

(9) 

(10) 

z GS if and only if, for some prime/?, pk\\z, then pk G S; 

pk GS if and only i f / = 0,1,2, or 4 (mod 7). 

By the criterion for integer z G S, we have 

if Zj e 5, z2 G 5, then zxz2 G 5, 

if z = z^j, (z1? z2) = 1, and z G 5, then ^ G ^, z2 G 5. 

It is clear that a solution An, Bn of (2) is a solution of (1) if and only if A„ G 5, Bn G S. 
Since (4,, #„) = 1, we see by (8) that 4,, 5„ is a solution of (2) if and only if U2n+l GS . 

Later on, we shall say that U2n+l - AnBn is a solution of (2), and accordingly of (1), if An, Bn 

is a solution of (2). The notations Un and U(n) are considered to be equivalent. 
It is known that {Ut} is periodic modulo 7 and its period is {1, 2, 3,4, 5, 6, 0}. By (9) and 

(10), if Um G S and m is odd, then 
/w = l,7,9,ll (mod 14). (11) 

3. SOME PROPERTIES OF U(m) 

In what follows, we shall need some properties of recurrence (7), which we give here without 
proofs, since they can be found in [2] and [4]. 

Let ml and m2 be positive integers. Then 
UWmm/nJ,! = 1,2, (A) 

(Uim.m,)/ U(m2), U(m2)) = (mx, U(m2)). (B) 

If pl mdp2 are primes not equal to 3 or 7 and pl<p2, then, for k > 0, 

(jh,u<A)) = i- (Q 
If the prime q has the form q = 2-N + (71 q), where (7 / q) is the Legendre symbol, then 

q\U(N). (D) 

4 ?fPRJME?f AND "COMPOSITE" SOLUTIONS 

Let Um be a solution of (1). We say that m is a "prime" solution if m is prime and a "com-
posite" solution if m is a composite number. By the properties of integer linear recurring 
sequences of order two, if m is a "composite" solution, then there exists a "prime" solution. 

Theorem 1: Let m be an odd composite number, m = p\l • • • pk
d
d, 2 < px < p2 < • • • < pd, kt > 0. If 

d = l, then kx>\. Let U(m)eS. Then, for all i = l,2,...,rf, # GS, and for all *, \<k<kt, 
U(P!)GS. 
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Proof: We shall prove the theorem by induction on d. 
(i) Let d = 1 and m = p\\ kx >1. For 0 < k < kx, by (A) we have 

U(tf*) = U(tf)/U(rf)-U(rf). 
By(B), 

(t/fa*') / t/(A*), U<tf)) = (/>,*'~\ C/(A"» = 1 for A ^ 3 or 7. 

Since £/(«) e 5, we have U(rf) eS for k = l, 2,..., kx - 1 . So, for A: = 1, C/(A) e S and, by 
(U),PleS. 

If /J, = 3 or 7 and t/(>f') e S, then 

U(rf>) = PlU(rt)/U(plyU(pl)/pl and (fltfCrf1)/tf(fl), U(Pl)/Pl) = 1. 

Therefore, U(pl)/ px G £, which is impossible since 

U(3)/3 = 5-17eS and C/(7)/7 = 13-293-617 g£. 
(II? Let </ = 2, m = $pfc9 px<p2, and U(m)eS. Then, U(rn) = U(m)/U(p*2)'U(p*2). 

Since {U{m)IU{pk
2

2)'U{pk
2

2)) = {pk\U{pk
2

2)) = 1 by (C), we have£/(^2) G 5 and, by (i), A G 5, 

Furthermore, t/(wi) - C/(w) / £/(fl*') • £/(#*»). Let 

Then, £/(/») = p2-U(m)/U(pki)-U(pki)/pc
2 and M = U(pk')lpc

2 GS. Since / ? 2 G S , /?2
CGS, 

and M/?£ = £/(#*») G 5. By (i), we have £/(#) GS, pxGS. 

(Hi) Assume that the statements of Theorem 1 are true for \<t <d. Then, for t - d, let 
m = Pil'P22 Pdd> A <Pi <"'<Pd> andC/(/w)GiS. Also, let w = w ^ . By(ii),/?^>7. Fur-
thermore, U(m) = U(m)/U(pk/)-U(pk/y 

Since ( ^ ( w ) / ^ ( p H ^ O ) = K t / ( ^ 0 ) = l by (C), we have U(pk/)GS and, by (i), 

Consider U(m) = U(m)/U(ml)-U(ml). Let D = (U(m)/U(rnl\U(ml)) = (pk/,U(m)) = Pa, 
where 0 < c < ^ . Then, U(m) = D'U(m)/U(mlyU(mi)/D and M = U(mi)/DeS. Since 
D G S, we have f / ^ ) = M-D GS and, by the induction statements, for all /, 0<i <d, pt G £, 
U(pk) GS, 0<k <kt, and the theorem is proved. 

In [6], Daniel Shanks and Samuel S. Wagstaff conjectured that equation (1) has infinitely 
many solutions. Theorem 2 gives some information on the form of these solutions. 

Theorem 2: If there are infinitely many solutions of (1), but only finitely many "prime" solutions, 
then there is at least one prime q GS such that U(qk) G S for all k > 0. 

Inversely, if there are infinitely many solutions of (1) and, for each prime p G S, there exists 
k = k(p) such that U{pk) € S, then there are infinitely many "prime" solutions. 

Proof: Let {m,}, / = 1,2,... be the set of solutions of (1). If php2,. ..,pd is the finite set of 
"prime" solutions of (1), then, by Theorem 1, mi = pklip2

2'--pk
d

di. Since n^ -»oo, there exists 
at least one Pj,0<j <d such that kjt -> oo as /'-» oo. By Theorem 1, U(j?j) G S for all k > 1. 
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Inversely, if for each prime peS there exists k = k(q) and U(pk) £ S, then, by Theorem 1, 
U(pd) <£ S for d>k(p). If there are finitely many "prime" solutions, then, by Theorem 1, there 
exist finitely many "composite" solutions only. 

It is more probable that there exist infinitely many "prime" solutions. Indeed, if for each 
prime p eS there exists at least one prime q of the form q = 2p" + (7 I q), where (11 q) is the 
Legendre symbol, then (q/7) = -1 and so q £ S. By (D), q\U{pn) and (pn) <£ S. 

5. ON "COMPOSITE" SOLUTIONS 

In [6], the solution px = 53 was given and two new solutions of equation (1) were found: 
p2 = 67 and p3 = 7l. By Theorem 1, the corresponding "composite" solutions have the form 
m~PiPiPh ®,h,c>0. To test whether there are "composite" solutions, it is sufficient to con-
sider mx = P?,m2= PiPi,™!^ PiP3>m4 = Pi>ms = P2P31 a n d "% = P\-

A computer examination produced the following: 
For ml = 532 = 2809, Ufa) has no prime divisors up to 1 • 109. 
For /^ = 53-67 = 3551, l\03\Ufa), and 7103 £ S, so Ufa) £ S. 
For w% =53-71 = 3763, \919339\Ufa), and 1979339 eS, so Ufa)<£S. 
For m4 = 672 = 4489, 673349|| Ufa), and 673349 g S, so Ufa) £ S. 
For /^ = 67-71 = 4757, 332989|| Ufa), and 332989 g S, so Ufa) <£S. 
For m6 = 712 = 5041, 46427611|| Ufa), and 46427611 € S, so Ufa) £ S. 

Note that: 
For mj = 533 = 148877, 89326l|| Ufa), and 893261 £ S, so Ufa) <£ S. 

Perhaps the only "composite" solution of (1) of the form m = P1P2P3 is ml = 532 = 2809, and 
it is the least "composite" solution. 
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