ARITHMETIC FUNCTIONS OF FIBONACCI NUMBERS

Florian Luca

Syracuse University, Syracuse, NY 13244-1150
(Submitted November 1997-Final Revision February 1998)
For any integers $n \geq 1$ and $k \geq 0$, let $\phi(n)$ and $\sigma_{k}(n)$ be the Euler totient function of n and the sum of the $k^{\text {th }}$ powers of the divisors of n, respectively. In this note, we present the following inequalities.

Theorem:

(1) $\phi\left(F_{n}\right) \geq F_{\phi(n)}$ for all $n \geq 1$. Equality is obtained only if $n=1,2,3$.
(2) $\sigma_{k}\left(F_{n}\right) \leq F_{\sigma_{k}(n)}$ for all $n \geq 1$ and $k \geq 1$. Equality is obtained only if $n=1$ or $(k, n)=(1,3)$.
(3) $\sigma_{0}\left(F_{n}\right) \geq F_{\sigma_{0}(n)}$ for all $n \geq 1$. Equality is obtained only if $n=1,2,4$.

Proof:
(1) See [2] for a more general result.
(2) Let $k \geq 1$. Notice that $\sigma_{k}\left(F_{1}\right)=F_{\sigma_{k}(1)}=1$ for all $k \geq 1$. Moreover, as $\sigma_{k}(2)=1+2^{k} \geq 3$ for $k \geq 1$, it follows that $F_{\sigma_{k}(2)}=F_{1+2^{k}} \geq F_{3}=2>1=\sigma_{k}(1)=\sigma_{k}\left(F_{2}\right)$. Now let $n=3$. Notice that $F_{\sigma_{1}(3)}=F_{4}=3=\sigma_{1}(2)=\sigma_{1}\left(F_{3}\right)$. However, if $k \geq 2$, then $\sigma_{k}(3)=1+3^{k} \geq 10$. Since $F_{n}>n$ for $n \geq 6$, it follows that $F_{\sigma_{k}(3)}=F_{1+3^{k}}>1+3^{k}>1+2^{k}=\sigma_{k}(2)=\sigma_{k}\left(F_{3}\right)$ for $k \geq 2$. From this point on, we assume that $n \geq 4$.

Moreover, assume that

$$
\begin{equation*}
\sigma_{k}\left(F_{n}\right) \geq F_{\sigma_{k}(n)} \tag{1}
\end{equation*}
$$

for some $n \geq 4$ and some $k \geq 1$. First, we show that if inequality (1) holds, then n is prime. Indeed, assume that n is not prime.

Since $n^{k} \geq n k$ for all $n \geq 4$ and $k \geq 1$, and since $F_{u+v} \geq F_{u} \cdot F_{v}$ for all integers u and v, it follows that

$$
\begin{equation*}
F_{n^{k}} \geq F_{n k} \geq F_{n}^{k} \quad \text { for } n \geq 4 \text { and } k \geq 1 . \tag{2}
\end{equation*}
$$

Clearly

$$
\begin{equation*}
\frac{m}{\phi(m)}>\frac{\sigma_{k}(m)}{m^{k}} \text { for } m \geq 2 \text { and } k \geq 1 \tag{3}
\end{equation*}
$$

If $n \leq 41$, then $F_{n} \leq F_{41}<2 \cdot 10^{9}$. By Lemma 4.2 in [3], it follows that

$$
\begin{equation*}
6>\frac{F_{n}}{\phi\left(F_{n}\right)}, \tag{4}
\end{equation*}
$$

and by inequalities (1)-(4), it follows that

$$
\begin{equation*}
F_{6}=8>6>\frac{F_{n}}{\phi\left(F_{n}\right)}>\frac{\sigma_{k}\left(F_{n}\right)}{F_{n}^{k}} \geq \frac{F_{\sigma_{k}(n)}}{F_{n^{k}}} \geq F_{\sigma_{k}(n)-n^{k}} . \tag{5}
\end{equation*}
$$

Hence, $6>\sigma_{k}(n)-n^{k}$. Since n is not prime, it follows that

$$
\begin{equation*}
\sigma_{k}(n)-n^{k} \geq \sqrt{n}^{k} . \tag{6}
\end{equation*}
$$

Therefore, $6>\sqrt{n}^{k}$. Since $n \geq 4$, it follows that $6>\sqrt{4}^{k}=2^{k}$ or $k<3$. The only pairs (k, n) satisfying the inequality $6>\sqrt{n}^{k}$ for which $4 \leq n \leq 40$ is not prime are $(k, n)=(2,4)$ and $(1, n)$, where $4 \leq n \leq 35$ is not prime. One can check using Mathematika, for example, that $F_{\sigma_{k}(n)}>$ $\sigma_{k}\left(F_{n}\right)$ for all the above pairs (k, n).

Suppose now that inequality (1) holds for some $k \geq 1$ and some $n \geq 42$ that is not a prime. Since $F_{n} \geq F_{42}>2 \cdot 10^{9}$, it follows by Lemma 4.1 in [3] that

$$
\begin{equation*}
\log \left(F_{n}\right)>\frac{F_{n}}{\phi\left(F_{n}\right)} \tag{7}
\end{equation*}
$$

By inequalities (1), (2), (3), and (7), it follows that

$$
\begin{equation*}
\log \left(F_{n}\right)>\frac{F_{n}}{\phi\left(F_{n}\right)}>\frac{\sigma_{k}\left(F_{n}\right)}{F_{n}^{k}} \geq \frac{F_{\sigma_{k}(n)}}{F_{n^{k}}} \geq F_{\sigma_{k}(n)-n^{k}} . \tag{8}
\end{equation*}
$$

Since

$$
\begin{equation*}
\left(\frac{1+\sqrt{5}}{2}\right)^{n}>F_{n}>\frac{1}{\sqrt{5}} \cdot\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-1\right) \text { for all } n \geq 1 \tag{9}
\end{equation*}
$$

it follows from inequalities (6) and (9) that

$$
\begin{equation*}
n \log \left(\frac{1+\sqrt{5}}{2}\right)>\log F_{n}>F_{\sigma_{k}(n)-n^{k}}>\frac{1}{\sqrt{5}} \cdot\left(\left(\frac{1+\sqrt{5}}{2}\right)^{\sqrt{n} k}-1\right) \tag{10}
\end{equation*}
$$

If $k \geq 2$, then $\sqrt{n}^{k} \geq n$, and inequality (10) implies that

$$
\begin{equation*}
n \log \left(\frac{1+\sqrt{5}}{2}\right)>\frac{1}{\sqrt{5}} \cdot\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-1\right) \tag{11}
\end{equation*}
$$

Inequality (11) implies that $n<3$, which contradicts the fact that $n \geq 42$. Hence $k=1$. Inequality (10) becomes

$$
n \log \left(\frac{1+\sqrt{5}}{2}\right)>\frac{1}{\sqrt{5}} \cdot\left(\left(\frac{1+\sqrt{5}}{2}\right)^{\sqrt{n}}-1\right)
$$

which implies that $n<92$. One can check using Mathematika, for example, that $F_{\sigma_{1}(n)}>\sigma_{1}\left(F_{n}\right)$ for all $42 \leq n \leq 91$.

From the above arguments, it follows that if inequality (1) holds for some $n \geq 4$ and some $k \geq 1$, then n is prime. In particular, $n \geq 5$,

Write $F_{n}=q_{1}^{\gamma_{1}} \cdots \cdots q_{t}^{\gamma_{t}}$, where $q_{1}<\cdots<q_{t}$ are prime numbers, and $\gamma_{i} \geq 1$ for $i=1, \ldots, t$. We show that q_{1}, q_{2}, and t satisfy the following conditions:
(a) $q_{1} \geq n$;
(b) If $t>1$, then $q_{2} \geq 2 n-1$;
(c) $t-1>2(n-1) \log \left(\frac{3}{2} \cdot e^{-1 /(n-1)}\right)$.

Indeed, let q be one of the primes dividing F_{n}, From Lemma II and Theorem XII in [1], it follows that $q \mid F_{q^{2}} \cdot F_{q^{2}-1}$.

Suppose first that $q \mid F_{q^{2}}$. We conclude that $q \mid\left(F_{n}, F_{q^{2}}\right)=F_{\left(n, q^{2}\right)}$. Since $F_{1}=1$, we conclude that $\left(n, q^{2}\right) \neq 1$. Since both q and n are prime, it follows that $q=n$.

Suppose now that $q \mid F_{q^{2}-1}$. We conclude that $q \mid\left(F_{n}, F_{q^{2}-1}\right)=F_{\left(n, q^{2}-1\right)} \cdot q \equiv \pm 1(\bmod n)$. Then; clearly, $q \neq n \pm 1$ because q and n are both prime and $n \geq 5$. Hence, $q \geq 2 n-1$ in this case.

Now (a) and (b) follow immediately from the above arguments.
For (c), notice that by inequalities (1), (2), and (3),

$$
\begin{equation*}
\prod_{i=1}^{t}\left(1+\frac{1}{q_{i}-1}\right)=\frac{F_{n}}{\phi\left(F_{n}\right)}>\frac{\sigma_{k}\left(F_{n}\right)}{F_{n}^{k}} \geq \frac{F_{\sigma_{k}(n)}}{F_{n}^{k}}=\frac{F_{1+n^{k}}}{F_{n}^{k}} \geq \frac{F_{1+n^{k}}}{F_{n^{k}}} \geq \frac{3}{2}, \tag{12}
\end{equation*}
$$

because $F_{m+1} / F_{m} \geq 3 / 2$ for all $m \geq 3$. Taking logarithms in inequality (12), and using the fact that $\log (1+x)<x$ for all $x>0$, we conclude that

$$
\sum_{i=1}^{t} \frac{1}{q_{i}-1}>\log \left(\frac{3}{2}\right) .
$$

From (a) and (b), it follows that

$$
\begin{equation*}
\frac{1}{n-1}+\frac{t-1}{2(n-1)}>\log \left(\frac{3}{2}\right) . \tag{13}
\end{equation*}
$$

Inequality (13) is obviously equivalent to the inequality asserted at (c) above.
From inequality (10) and inequalities (a)-(c) above, it follows that

$$
\begin{aligned}
n \log \left(\frac{1+\sqrt{5}}{2}\right) & >\log F_{n} \geq \sum_{i=1}^{t} \log q_{i} \geq \log n+(t-1) \log (2 n-1) \\
& >(t-1) \log (2 n-1)>2(n-1) \log (2 n-1) \log \left(\frac{3}{2} \cdot e^{-1 /(n-1)}\right) .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\frac{n}{2(n-1) \log (2 n-1)} \cdot \log \left(\frac{1+\sqrt{5}}{2}\right)-\log \left(\frac{3}{2}\right)+\frac{1}{n-1}>0 . \tag{14}
\end{equation*}
$$

Inequality (14) implies that $n<5$, which contradicts the fact that $n \geq 5$.
(3) Let $k=0$. For any positive integer m, let $\tau(m)$ and $\nu(m)$ be the number of divisors of m and the number of prime divisors of m, respectively. Notice that $\tau(m)=\sigma_{0}(m)$. Therefore, the inequality asserted at (3) is equivalent to $\tau\left(F_{n}\right) \geq F_{\tau(n)}$ for $n \geq 1$.

Let n be a positive integer. Recall that a primitive divisor of F_{n} is a prime number q, such that $q \mid F_{n}$, but $q \nmid F_{m}$ for any $1 \leq m<n$. From Theorem XXIII in [1], we know that F_{n} has a primitive divisor for all $n \geq 1$ except $n=1,2,6,12$. We distinguish the following cases.

Case 1. $6 \nmid n$. Since $F_{d} \mid F_{n}$ for all $d \mid n$, and F_{d} has a primitive divisor for all d except $d=1$, 2 , it follows that $v\left(F_{n}\right) \geq \tau(n)-2$. Hence,

$$
\begin{equation*}
\tau\left(F_{n}\right) \geq 2^{\nu\left(F_{n}\right)} \geq 2^{\tau(n)-2} . \tag{15}
\end{equation*}
$$

Since $2^{k-2}>F_{k}$ for all $k \geq 4$, it follows that the inequality asserted by (3) holds for all n such that $\tau(n) \geq 4$.

If $\tau(n)=1$, then $n=1$ and $\tau\left(F_{1}\right)=F_{\tau(1)}=1$.
If $\tau(n)=2$, then $n=p$ is a prime and $\tau\left(F_{p}\right) \geq 1=F_{2}=F_{\tau(p)}$. Obviously, equality holds only if $p=2$.

If $\tau(n)=3$, then $n=p^{2}$, where p is a prime. Moreover, $\tau\left(F_{p^{2}}\right) \geq 2=F_{3}=F_{\tau\left(p^{2}\right)}$, and equality certainly holds for $p=2$. If $p>2$, then both F_{p} and $F_{p^{2}}$ have a primitive divisor; therefore,

$$
\tau\left(F_{p^{2}}\right) \geq 4>2=F_{3}=F_{\tau\left(p^{2}\right)}
$$

Case 2. $6 \mid n$, but $12 \nmid n$. In this case, $v\left(F_{n}\right) \geq \tau(n)-3$. Moreover, since $F_{6}=8 \mid F_{n}$, it follows that the exponent at which 2 appears in the prime factor decomposition of F_{n} is at least 3 . Hence,

$$
\tau\left(F_{n}\right) \geq 2^{\nu(n)-1} \cdot(3+1) \geq 2^{\tau(n)-4} \cdot 4=2^{\tau(n)-2}>F_{\tau(n)}
$$

because $\tau(n) \geq 4=\tau(6)$.
Case 3. $12 \mid n$. In this case, $v\left(F_{n}\right) \geq \tau(n)-4$. Moreover, since $2^{4} \cdot 3^{2}=F_{12} \mid F_{n}$, it follows that the exponents at which 2 and 3 appear in the prime factor decomposition of F_{n} are at least 4 and 2 , respectively. Thus,

$$
\begin{equation*}
\tau\left(F_{n}\right) \geq 2^{v(n)-2} \cdot(4+1) \cdot(2+1) \geq 2^{\tau(n)-6} \cdot 15 . \tag{16}
\end{equation*}
$$

Moreover, since $12 \mid n$, it follows that $\tau(n) \geq 6=\tau(12)$. By inequality (15), it follows that it suffices to show that

$$
\begin{equation*}
15 \cdot 2^{k-6}>F_{k} \quad \text { for } k \geq 6 \tag{17}
\end{equation*}
$$

This can be proved easily by induction.
This completes the proof of the Theorem.

REFERENCES

1. R. D. Carmichael. "On the Numerical Factors of Arithmetic Forms." Ann. of Math. 15 (1913-1914):30-70.
2. F. Luca. "Euler Indicators of Lucas Sequences." To appear in Bull. Math. Soc. Sci. Math. Roumanie.
3. M. Ward. "The Intrinsic Divisors of Lehmer Numbers." Ann. of Math. 62 (1955):230-236.

AMS Classification Numbers: 11A25, 11B39

