SUMS OF CERTAIN PRODUCTS OF FIBONACCI AND LUCAS NUMBERS

R. S. Melham

School of Mathematical Sciences, University of Technology, Sydney PO box 123, Broadway, NSW 2007, Australia
(Submitted September 1997-Final Revision February 1998)

1. INTRODUCTION

Inspired by the charming result

$$
\begin{equation*}
\sum_{k=1}^{n} F_{k}^{2}=F_{n} F_{n+1}, \tag{1.1}
\end{equation*}
$$

Clary and Hemenway [3] discovered factored closed-form expressions for all sums of the form $\sum_{k=1}^{n} F_{r k}^{3}$, where r is an integer. One of their main aims was to find sums that could be expressed neatly as products of Fibonacci and Lucas numbers. At the end of their paper they mentioned the result

$$
\begin{equation*}
\sum_{k=1}^{n} F_{k}^{2} F_{k+1}=\frac{1}{2} F_{n} F_{n+1} F_{n+2} \tag{1.2}
\end{equation*}
$$

published by Block [2] in 1953.
Motivated by (1.1) and (1.2), we have discovered an infinity of similar identities which we believe are new. For example, we have found

$$
\begin{equation*}
\sum_{k=1}^{n} F_{k} F_{k+1} F_{k+2}^{2} F_{k+3} F_{k+4}=\frac{1}{4} F_{n} F_{n+1} F_{n+2} F_{n+3} F_{n+4} F_{n+5} \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=1}^{n} F_{k} F_{k+1} F_{k+2} F_{k+3} F_{k+4}^{2} F_{k+5} F_{k+6} F_{k+7} F_{k+8}=\frac{1}{11} F_{n} F_{n+1} \ldots F_{n+9} . \tag{1.4}
\end{equation*}
$$

In Section 2 we prove a theorem involving a sum of products of Fibonacci numbers, and in Section 3 we prove the corresponding theorem for the Lucas numbers. In Section 4 we present three additional theorems, two of which involve sums of products of squares of Fibonacci and Lucas numbers.

We require the following identities:

$$
\begin{align*}
& F_{n+k}+F_{n-k}=F_{n} L_{k}, k \text { even, } \tag{1.5}\\
& F_{n+k}+F_{n-k}=L_{n} F_{k}, k \text { odd, } \tag{1.6}\\
& F_{n+k}-F_{n-k}=F_{n} L_{k}, k \text { odd, } \tag{1.7}\\
& F_{n+k}-F_{n-k}=L_{n} F_{k}, k \text { even, } \tag{1.8}\\
& L_{n+k}+L_{n-k}=L_{n} L_{k}, k \text { even, } \tag{1.9}\\
& L_{n+k}+L_{n-k}=5 F_{n} F_{k}, k \text { odd, } \tag{1.10}\\
& L_{n+k}-L_{n-k}=L_{n} L_{k}, k \text { odd, } \tag{1.11}\\
& L_{n+k}-L_{n-k}=5 F_{n} F_{k}, k \text { even, } \tag{1.12}\\
& L_{n}^{2}-L_{2 n}=-2=-L_{0}, n \text { odd, } \tag{1.13}
\end{align*}
$$

$$
\begin{align*}
& 5 F_{2 n}^{2}-L_{2 n}^{2}=-4=-L_{0}^{2}, \tag{1.14}\\
& 5 F_{2 n}^{2}-L_{4 n}=-2=-L_{0} . \tag{1.15}
\end{align*}
$$

Identities (1.5)-(1.8) occur on page 59 of Hoggatt [4], while (1.9)-(1.12) occur as (9)-(12), respectively, in Bergum and Hoggatt [1]. Identities (1.13)-(1.15) can be proved with the use of the Binet forms.

2. A FAMILY OF SUMS FOR THE FIBONACCI NUMBERS

Theorem 1: Let m be a positive integer. Then

$$
\begin{equation*}
\sum_{k=1}^{n} F_{k} F_{k+1} \ldots F_{k+2 m}^{2} \ldots F_{k+4 m}=\frac{F_{n} F_{n+1} \ldots F_{n+4 m+1}}{L_{2 m+1}} \tag{2.1}
\end{equation*}
$$

Proof: We use the elegant method described on page 135 in [3] to prove (1.2). Let l_{n} and r_{n} denote the left and right sides, respectively, of (2.1). Then $l_{n}-l_{n-1}=F_{n} F_{n+1} \ldots F_{n+2 m}^{2} \ldots F_{n+4 m}$. Also,

$$
\begin{aligned}
r_{n}-r_{n-1} & =\frac{F_{n} F_{n+1} \ldots F_{n+4 m}}{L_{2 m+1}}\left[F_{n+4 m+1}-F_{n-1}\right] \\
& =\frac{F_{n} F_{n+1} \ldots F_{n+4 m}}{L_{2 m+1}}\left[F_{(n+2 m)+(2 m+1)}-F_{(n+2 m)-(2 m+1)}\right] \\
& =l_{n}-l_{n-1} \text { using }(1.7) .
\end{aligned}
$$

Hence, to prove that $l_{n}=r_{n}$ it suffices to show that $l_{1}=r_{1}$. But

$$
\begin{aligned}
r_{1} & =\frac{F_{1} F_{2} \ldots F_{4 m+1} F_{2 m+1} L_{2 m+1}}{L_{2 m+1}}\left(\text { since } F_{2 n}=F_{n} L_{n}\right) \\
& =l_{1}, \text { and this completes the proof. }
\end{aligned}
$$

When $m=1$ and 2, identity (2.1) reduces to (1.3) and (1.4), respectively. However, while (1.1) and (1.2) can be proved in a similar way, they are not special cases of (2.1).

3. CORRESPONDING RESULTS FOR THE LUCAS NUMBERS

Corresponding to (1.1) we have

$$
\begin{equation*}
\sum_{k=1}^{n} L_{k}^{2}=L_{n} L_{n+1}-2 \tag{3.1}
\end{equation*}
$$

which occurs as I_{4} in Hoggatt [4]. The Lucas counterpart to (1.2) is

$$
\begin{equation*}
\sum_{k=1}^{n} L_{k}^{2} L_{k+1}=\frac{1}{2} L_{n} L_{n+1} L_{n+2}-3 . \tag{3.2}
\end{equation*}
$$

The constants on the right sides of (3.1) and (3.2) can be obtained by trial, and also in the same manner as in our next theorem, demonstrating a certain unity.

Theorem 2: Let m be a positive integer. Then

$$
\begin{equation*}
\sum_{k=1}^{n} L_{k} L_{k+1} \ldots L_{k+2 m}^{2} \ldots L_{k+4 m}=\frac{L_{n} L_{n+1} \ldots L_{n+4 m+1}}{L_{2 m+1}}-R_{0}, \tag{3.3}
\end{equation*}
$$

where

$$
R_{n}=\frac{L_{n} L_{n+1} \ldots L_{n+4 m+1}}{L_{2 m+1}}, n=0,1,2, \ldots
$$

Proof: Again, let l_{n} denote the left side of (3.3). Then

$$
\begin{aligned}
R_{n}-R_{n-1} & =\frac{L_{n} L_{n+1} \ldots L_{n+4 m}}{L_{2 m+1}}\left[L_{n+4 m+1}-L_{n-1}\right] \\
& =\frac{L_{n} L_{n+1} \cdots L_{n+4 m}}{L_{2 m+1}}\left[L_{(n+2 m)+(2 m+1)}-L_{(n+2 m)-(2 m+1)}\right] \\
& =L_{n} L_{n+1} \ldots L_{n+2 m}^{2} \ldots L_{n+4 m}[\operatorname{by}(1.11)] \\
& =l_{n}-l_{n-1} .
\end{aligned}
$$

From this we see that $l_{n}-R_{n}=c$, where c is a constant. Now,

$$
\begin{aligned}
c & =l_{1}-R_{1} \\
& =L_{1} L_{2} \ldots L_{4 m+1}\left[L_{2 m+1}-\frac{L_{4 m+2}}{L_{2 m+1}}\right] \\
& =L_{1} L_{2} \ldots L_{4 m+1} \cdot \frac{L_{2 m+1}^{2}-L_{4 m+2}}{L_{2 m+1}} \\
& =-\frac{L_{0} L_{1} L_{2} \ldots L_{4 m+1}}{L_{2 m+1}} \quad[b y(1.13)] \\
& =-R_{0} .
\end{aligned}
$$

This concludes the proof.
Since this method of proof applies to (3.1) and (3.2), we see that the appropriate constants on the right sides are $-2=-L_{0} L_{1}$ and $-3=-\frac{1}{2} L_{0} L_{1} L_{2}$, respectively. Accordingly, we write (3.1), for example, as

$$
\sum_{k=0}^{n} L_{k}^{2}=\left[L_{k} L_{k+1}\right]_{0}^{n} .
$$

We use this notation throughout the remainder of the paper.
Remark: If for $m=0$ we interpret the summands in (2.1) and (3.3) to be F_{k}^{2} and L_{k}^{2}, respectively, then we can realize (1.1) and (3.1) within the framework of our two theorems. However, the same cannot be said for (1.2) and (3.2).

4. MORE SUMS OF PRODUCTS

In this section we state three additional theorems, two of which involve sums of products of squares. Using (1.5)-(1.15), they can be proved in the same manner as Theorems 1 and 2, and so we leave this task to the reader. In each theorem, m is assumed to be a nonnegative integer.

Theorem 3:

$$
\begin{equation*}
\sum_{k=1}^{n} F_{k} F_{k+1} \ldots F_{k+4 m+2} L_{k+2 m+1}=\frac{F_{n} F_{n+1} \ldots F_{n+4 m+3}}{F_{2 m+2}}, \tag{4.1}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{k=1}^{n} L_{k} L_{k+1} \ldots L_{k+4 m+2} F_{k+2 m+1}=\left[\frac{L_{k} L_{k+1} \ldots L_{k+4 m+3}}{5 F_{2 m+2}}\right]_{0}^{n} . \tag{4.2}
\end{equation*}
$$

Theorem 4:

$$
\begin{align*}
& \sum_{k=1}^{n} F_{k}^{2} F_{k+1}^{2} \ldots F_{k+4 m}^{2} F_{2 k+4 m}=\frac{F_{n}^{2} F_{n+1}^{2} \ldots F_{n+4 m+1}^{2}}{F_{4 m+2}}, \tag{4.3}\\
& \sum_{k=1}^{n} L_{k}^{2} L_{k+1}^{2} \ldots L_{k+4 m}^{2} F_{2 k+4 m}=\left[\frac{L_{k}^{2} L_{k+1}^{2} \ldots L_{k+4 m+1}^{2}}{5 F_{4 m+2}}\right]_{0}^{n} . \tag{4.4}
\end{align*}
$$

In the proof of (4.3), when finding $r_{n}-r_{n-1}$, we obtain the expression $F_{n+4 m+1}^{2}-F_{n-1}^{2}$, which by (1.6) and (1.7) can be written as

$$
\begin{gathered}
{\left[F_{(n+2 m)+(2 m+1)}-F_{(n+2 m)-(2 m+1)}\right]\left[F_{(n+2 m)+(2 m+1)}+F_{(n+2 m)-(2 m+1)}\right]} \\
\quad=F_{n+2 m} L_{2 m+1} \cdot L_{n+2 m} F_{2 m+1}=F_{2 n+4 m} F_{4 m+2} .
\end{gathered}
$$

Similar expressions that arise in the proof of (4.4), and in the proof of the next theorem, can be treated in the same manner.

A simple special case of (4.3), which occurs for $m=0$, is $\sum_{k=1}^{n} F_{k}^{2} F_{2 k}=F_{n}^{2} F_{n+1}^{2}$.

Theorem 5:

$$
\begin{align*}
& \sum_{k=1}^{n} F_{k}^{2} F_{k+1}^{2} \ldots F_{k+4 m+2}^{2} F_{2 k+4 m+2}=\frac{F_{n}^{2} F_{n+1}^{2} \ldots F_{n+4 m+3}^{2}}{F_{4 m+4}}, \tag{4.5}\\
& \sum_{k=1}^{n} L_{k}^{2} L_{k+1}^{2} \ldots L_{k+4 m+2}^{2} F_{2 k+4 m+2}=\left[\frac{L_{k}^{2} L_{k+1}^{2} \ldots L_{k+4 m+3}^{2}}{5 F_{4 m+4}}\right]_{0}^{n} . \tag{4.6}
\end{align*}
$$

To conclude we mention that, for p real, the sequences $\left\{U_{n}\right\}$ and $\left\{V_{n}\right\}$, defined for all integers n by

$$
\begin{cases}U_{n}=p U_{n-1}+U_{n-2}, & U_{0}=0, U_{1}=1, \\ V_{n}=p V_{n-1}+V_{n-2}, & V_{0}=2, \\ V_{1}=p,\end{cases}
$$

generalize the Fibonacci and Lucas numbers, respectively. The results contained in Theorems 1-5 translate immediately to U_{n} and V_{n}. The reason is that if we replace F_{n} by U_{n}, L_{n} by V_{n}, and 5 by $p^{2}+4$, then U_{n} and V_{n} satisfy (1.5)-(1.15).

REFERENCES

1. G. E. Bergum \& V. E. Hoggatt, Jr. "Sums and Products for Recurring Sequences." The Fibonacci Quarterly 13.2 (1975):115-20.
2. D. Block. "Curiosum \#330: Fibonacci Summations." Scripta Mathematica 19.2-3 (1953): 191.
3. S. Clary \& P. D. Hemenway. "On Sums of Cubes of Fibonacci Numbers." In Applications of Fibonacci Numbers 5:123-36. Ed. G. E. Bergum et al. Dordrecht: Kluwer, 1993.
4. V. E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Boston: Houghton-Mifflin, 1969.

AMS Classification Numbers: 11B39, 11B37

