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1. INTRODUCTION 

Let aQ,au...,ar_x be arbitrary complex numbers with ar_l^0 ( l<r<oo) . For a given 
sequence of complex numbers A = (a_r+l, #_r+2, ...,<x0), we define the weighted r-gemeralized 
Fibonacci sequence {y (̂w)KJL_r+i by using a recurrence formula involving r +1 terms* as follows: 

yA(n) = an (n = -r + l,-r + 2,...,0); 
r 

yA(p)^Y*ai-iyA(n-i) (/i = 1,2,3,...). 
i=l 

When at = 1 for all / and A = (0,0, ...,0,1), we get the r-generalized Fibonacci numbers (see 
[4]). A Binet-type formula and a combinatorial expression of weighted r-generalized Fibonacci 
sequences are given in [3]. Furthermore, in [2], the convergence of the sequence { jVU^/^V 2 } 
has been studied, where q is a root of the characteristic polynomial P(x) -xr- a0xr~l 

-ar_2x-ar_l of multiplicity v. 
The purpose of this paper is to generalize the weighted r-generalized Fibonacci sequences 

with 1 < r < oo to a class of sequences which are defined by recurrence formulas involving infi-
nitely many terms, and to analyze their asymptotic behavior. We call such sequences ^-general-
ized Fibonacci sequences. This is a new generalization of the usual Fibonacci sequences and 
almost nothing has been known about such sequences until now. For example, there has been no 
theory of difference equations for such sequences. 

More precisely, an oo-generalized Fibonacci sequence is defined as follows. We suppose that 
two infinite sequences of complex numbers are given, one for the initial sequence and the other 
for the weight sequence. Then a member of the oo-generalized Fibonacci sequence is determined 
by the weighted series of its preceding members (for a precise definition, see §2). Since the 
recurrence formula always involves infinitely many terms, we always have to worry about the 
convergence of the series corresponding to the recurrence formula and hence we need auxiliary 
conditions on the initial sequence and the weight sequence. 

This is called an r-th order linear recurrence in [3]. 
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One of the striking results of this paper is that, under certain conditions, an oo-generalized 
Fibonacci sequence behaves very much like a weighted r-generalized Fibonacci sequence with r 
finite, as far as its asymptotic behavior is concerned. 

The paper is organized as follows. In §2 we give a precise definition of the oo-generalized 
Fibonacci sequences. In §3 we analyze their asymptotic behavior under certain conditions. In §4 
we give some explicit examples in order to illustrate our results. 

2. oo-GENERALIZED FIBONACCI SEQUENCES 

Take an infinite sequence {at}f=0 of complex numbers, which will later be the weight 
sequence of oo-generalized Fibonacci sequences. We set h(z) = T^=oaizl f°r ZGC and u(x) = 
£/Li \ai |x' for x e R. Let R denote the radius of convergence of the power series h, which coin-
cides with the radius of convergence of u. We assume the following condition: 

0<i?<oo. (2.1) 

Let X be the set of sequences {x,}*^ of complex numbers such that there exist C > 0 and 7" with 
0 < 7 <R satisfying |x. | < CT for all i. Note that X is an infinite dimensional vector space over 
C; it will be the set of initial sequences for oo-generalized Fibonacci sequences associated with 
the weight sequence {a,.}^. Define f:X->C by f(x0,xh...) = J^L0aixi. Since the series 
H^LQ^CT converges absolutely, the series defining/also converges absolutely. 

Lemma 2.2: If {yQ, y_l9y_2,...} eX, then the sequence {jm,JVi> Jm-2> •••> Ji> Jo, J-i, J-2?---} is 
an element of Xfor every finite sequence of complex numbers ym, ym_h ...,yx (m> 1). 

Proof: By our assumption, there exist C > 0 and T with 0 < T < R such that \y_t \ < CT for 
all i > 0. Then we have \y_t \ < (CT-m)Ti+m for all i > 0. On the other hand, there exists C" > 0 
such that \ym_j | < C'TJfor j = 0,1,..., m -1. Putting C" = max{C, CTm}, we have \ym_j \ < 
C"TJ for all j > 0. This completes the proof. • 

Now we define an oo-generalized Fibonacci sequence as follows. For a sequence {y0, y_u 

_y_2,...}eJ5we define the sequence {yx, y2, y3,...} by 
°° 

yn = /(yn_i,y„-2,JV3>•••) = Z ^ - i ^ - / (P = *>2>3>•••)• 

This is well defined by Lemma 2.2. The sequence {j7}/eZ is called an co-generalized Fibonacci 
sequence associated with the weight sequence {tfj^o- Note that if there exists an integer r > 1 
such that at = 0 for all i>r, then the sequence {^}^0 satisfies the condition (2.1) and the above 
definition coincides with that of weighted r-generalized Fibonacci sequences. Thus oo-generalized 
sequences generalize weighted r-generalized Fibonacci sequences with r finite. 

Lemma 23: 
(1) Suppose that each at is a nonnegative real number and that there exists an S with 

0<S<R satisfying 
a0 > S~l-u(S) (or, equivalently, Sh(S) > 1). (2.3.1) 

Then there exists a unique q e~R such that q > S~l, {q~(l+V)}Zo G X>m^ f(ffl? (f2^ #~3> • ••) = 1-
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(2) Suppose that there exists an S with 0<S <R satisfying 
\a0\>S-1 + u(S). (2.3.2) 

Then there exists a unique q GC such that \q\> S~\ {#~(,+1)},°Lo e X, and f(q~\ q~2, q~3,...) = l. 

Proof: 
(1) For JC > R~\ set <p(x) = f(x~\ x~2, x~\...) = x-xh(x~x). Note that <p is a difFerentiable 

function. Then we have l i m ^ ^ ^ x ^ O and <p'{x) = f(-x~2, -2x~3,.. .)<0 for all x>R~l. 
Furthermore, we have <p(S~l)> 1 by (2.3.1). Then the intermediate value theorem implies that 
there exists a unique q > S~l such that <p{q) = 1. 

(2) Define the holomorphic function v(z) by v(z) = 1- Y?=l atzl+l for z with |z| < R. Then, 
for z with \z\ = S, we have 

K ^ l ^ l + X K - H z r ^ l + M ^ ) < \a0\S=\a0z\ 
j = l 

by (2.3.2). Hence, by Rouche's theorem, a^z- v(z) and a0z have the same number of zeros in the 
region \z\ < S. Note that a{f-v{z) = 0 if and only if zA(z) = 1. Since a^z has a unique zero in 
the region, we have the conclusion. D 

Remark 2.4: For a weighted r-generalized Fibonacci sequence of nonnegative real numbers with 
r finite, condition (2.3.1) is always satisfied, and the real number q as in Lemma 2.3(1) is the 
unique positive real root of the characteristic polynomial (not necessarily asymptotically simple in 
the terminology of [2]). 

Remark 2.5: In the situation of the above lemma, if {y0, y_h y_2,...} = {1, q~l, q~2,q~3,.}, then 
we can check easily that yn - qn for all n e Z. 

Note that if condition (2.3.1) or (2.3.2) is not satisfied, then, in general, there exists no q ^ 0 
such that {q~(i+l)}Zo GX a n d / (^ _ 1

? ?~2,9~3,•••) = l- F o r example, consider at = -1 /(/ + !)!. 
The sequence {#,•}£<) satisfies condition (2.1) with R = oo. However, l-zh{z)-ez and there 
exists no q ^ 0 with q~lh(q~l) = 1. 

3. CONVERGENCE RESULT FOR limH^n yH/qn 

Our aim in this section is to prove a convergence theorem for the sequence {yn I qn) (Theo-
rem 3.10), where {yn} is an oo-generalized Fibonacci sequence as defined in §2 and q is as in 
Lemma 2.3. 

We first define the auxiliary sequence {gn} as follows. We set gQ = 1, gn = 0 for w < - 1 , and 
define {gn}™=i as the oo-generalized Fibonacci sequence associated with the weight sequence 
{af}f=0 and the initial sequence {gn}~=o> ie-? ft = /(go, g-i, g-2> •••), Si = / ( f t , go, g-i, •••), etc. 
Lemma 3.1: For all n > 1, we have 

oo f n 

J^&^o + E X&^+y-i 
z = l 

y-

Furthermore, the series on the right-hand side converges absolutely; i.e., the following series 
converges: 
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\sM + S Y\sn-j^+J-i\p-il 
/=i V;=i J 

Proof: Note that gt = a0. Then the equality for n = 1 together with the absolute conver-
gence is easily checked. Now assume that, for n, n-l,n-2,...,l, the right-hand side of the 
equality converges absolutely and that the equality is valid. Then we have 

oo 

i=0 
oo f n—i \ | oo 

= Z a . | Sn-^o+X Zfti-/-/»k+y-i \y-k +Za^«-. Z< 
j=0 k=i \j=i / J 

,/=0 /=0 fc=l \ ^ = 1 J Jfe=l 

oo / w - 1 w - i A 

k=l \i=0 j=\ j 
y-k 

y-k 

oo f n fn-j \ 

= g»+iy0 + Z Z Z a^«-y-- k+y-i+ £WH* 
t=lV;=l V'=0 J 

= S»+iy0 + 1 Z &H-1-A+y-i K-* • 

Note that we can change the order of addition, since each of the series appearing in the second 
line converges absolutely. Thus, the equality is valid also for n +1 and the right-hand side con-
verges absolutely. • 

Set 

*m = Z 4 r 0»*o), 
i=m H 

where q is as in Lemma 2.3. Note that b0 = f(q~l, q~2, q~3,...) = 1. By the previous lemma com-
bined with Remark 2.5, we have, for n > 1, 

oo f n \ 

'=1 v = 1 y 
Hence, we have 

1-&. + Y y ^"-j -^+/-i _ &i | y ( y q/+/-i ]&»-/ _ g» , y ^ &»-/ 
« ZL Z ^ »-y /+/ n Z-t\Lj ai+j an-j Qn La j Qn-j • 

H i=i j=\ H H H j=\ V/=l H JH H j=l H 

In other words, we have 1 = b0cn + ̂ c ^ + b2cn_2 + • • • + ftwc0 for all f? > 0, where cn- gn/qn. We 
will show that l im^^ cn exists. Set kn = cn - cn_x. 
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Lemma 3.2: For all n > 1, we have 

K= Z H ) V A > 
where ®Jf2 is the finite set defined by 

0 n = | ( i 1 , . . . , g : i / G Z , j y ^ l , 5 > l , 5 ; ' / = w L 

Proof: First, note that &0&0 = 1 and that kQbn + k}bn_l + • • • + &w50 = 0 (n > 1). The equality is 
easily checked for n = 1. Suppose that the equality is valid for «, /? - 1 , . . . , 1. We put ©0 = {0} and 
adopt the convention that the sum over 0O is equal to 1. Then we have 

H+i 

*,»i = -¥»-AA-i--"-**«*o = - I > Z H)^, - V 

On the other hand, we have 
w+l 

®»+l = U{(^ 'l> -> *r) : ft, ..., O ^ ©IH-1-/}-
1=1 

Then it follows that 

*n+i = Z H) r V"V 
(ij,. . . , Ir )€0 „ + 1 

This completes the proof. D 

Lemma 3J: If Z^=il#J < 1, then the series T^=0K converges absolutely and is equal to 

Proof: First, note that the series l^L^-Vfz1 converges absolutely for \z\<\ and is equal to 
(1+z)"1. Since E^i|ftOT| < 1 by our assumption, we see that the series E ^ - i y C ^ ^ U i O 1 c o n" 
verges absolutely and is equal to (l + EJJUO"1 = O^Z^oKJ • Hence, we can change the order of 
addition in the series Y^0(-iy(Il™=ibmy. Then, using Lemma 3.2, it is not hard to verify that, 
changing the order of addition appropriately, this series coincides with the series E^=0 kn. This 
completes the proof. D 

Note that Lemma 3.3 is an analog of Lemma 13 and Theorem 14 of [2]. However, the 
method in [2] cannot be applied directly to our case. 

Proposition 3.4: Suppose that there exists anS with 0<S<R satisfying (2.3.1) or (2.3.2), and 

S2u'(S)<l. (3.4.1) 

Then l i m ^ cn = l i m ^ gn I qn exists and is equal to (l + T2/f'(g-1))-1 = (Z^o bm)-\ 

Proof: Since k0b0 = 1 and k0bn + kfin_x + • • • + kjb0 = 0 for all n > 1, we see that 

y=o /=o 
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On the other hand, we have 
OO 00 

5X1=Z 
m=l m=l 

00 n 

Z ai 
. qi+1 

i=m%l 

* I Ikis'+1=I'k \sM = s2w(S) < i 
m=\ i-m i=\ 

by (3.4.1). Thus, lim^^c^ = T^oK converges absolutely by Lemma 3.3. Therefore, we have 
(5^=o O(£^=o K) - 1> s i n c e £w=o bm converges absolutely. On the other hand, we have 

V/=o ) i=\ 

and S*=o bm = 1 + E," i iatq (l+1). This completes the proof. D 

Note that the limit as in Proposition 3.4 does not always exist in general as is seen in [2] if we 
drop the condition (3.4.1). When there exists an r with at = 0 (i>r), the above lemma shows 
that the sequence is asymptotically simple with dominant root q and dominant multiplicity 1 in the 
terminology of [2]. 

Remark 3.5: Note that it is easy to construct sequences which satisfy condition (2.1) and which 
admit a real number S with 0 < S < R satisfying (2.3.1) or (2.3.2), and (3.4.1). For example, take 
an arbitrary holomorphic function hx{z) defined in a neighborhood of zero. Then the sequence 
appearing as the coefficients of the power series expansion of the holomorphic function A (z) = 
hx{z) + a at z = 0 satisfies the above conditions for all a e C with sufficiently large modulus \a\. 

Remark 3.6: Suppose that each at is a nonnegative real number and that there exists an S with 
0<S<R satisfying (2.3.1). Then the condition in Lemma 3.3 is equivalent to each of the follow-
ing: 

=1 <r 
(2) X(/-l)^<ao; 

(3) q-2u>(q-l) = q-2h>(q-l)<l; 

(4) e'(q-l)<2q, 

where e(x) = xh(x) for x > R~l. Note that h(q~l) = q and e(q~l) = 1. In particular, each of the 
above conditions is equivalent to (3.4.1). 

Problem 3.7: Suppose that the sequence {a7}^0 admits an S with 0 < S < R satisfying (2.3.1) or 
(2.3.2). If TZ=\\bm 1^1, what happens? Does it happen that l im^^ gn I q" exists and is not equal 
to the value as in Proposition 3.4? 

Remark 3.8; Suppose that each at is a nonnegative real number and that there exists an S with 
0<$ <R satisfying (2.3.1). If a = l im^^ gn I qn exists, then we have 1 < a Z*=0 bm<2. This is 
seen as follows. First, we see easily that 

n J f n \f n \ 2n j 

y=0 m=0 \m=0 J\l=0 J J=0 m=0 
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This implies that 

n + l<[£bjfcc]<2n + l, 
since HJ

m=obmCj-m = 1 (J > 0), as we have seen in the paragraph just before Lemma 3.2. Hence, 
we have 

Hm-mm Thus, if a = l im^^ cn = l im^^ gn I qn exists, then we have 1 <aj^bm ^ 2 • 

Now we proceed to the study of the asymptotic behavior of the sequence {yn}Z=i • ^Y 
Lemma 3.1, for all n > 1, we have 

on f „ \ 

y-i-

7hm, we Mve dn = c^ + JZi^y-i (n> I), where dn=yn/qn and e^ = H7
J=l(crl_Jui+J_l/qJ). 

Since the above series converges absolutely by Lemma 3.1, we have 
n £ f oo ^ n 

d„ = c„y0 + £ -^f-\ X«,+y-iJ-, = <y0 + EC»-/^> 

where p} = q~J TZiai+j-d>-i 0" ^ 0- Putting />0 = .y0, we have d„ = YPJ^C^JPJ (ra > 0). Set 
'» = ^» - < - l ( » ^ 1) a n d 'o = Jo = 4) • T h e n w e h a v e *, = PoK + PlK-l + - + Pn-A + PnK &* & 
w > 0. Thus, if the series Y^sPi converges absolutely, then the series Z™=0'H converges abso-
lutely and is equal to the product (E^o/OC^o*;) ' 

since the series 2z=o ̂  converges absolutely 
under the condition of Lemma 3.3. Note that Ef=0 tt = dn and that Hm^^ dn - X*0 h -
Lemma 3.9: If there exists an S with 0<S<R satisfying (2.3.1) or (2.3.2), and (3.4.1), then the 
series Z°L0 i7/ converges absolutely and is equal to X^o q%y-f-

Proof: First, consider the series Z^o f ̂ /J-i • Since the sequence {)>__, }*L0 *s a n element of X, 
there exist C > 0 and J with 0 < T < R satisfying \y_f \ < CT for all i. If JT|^| < 1, then we have 

and, hence, the series E^o^A/X-/ converges absolutely by the proof of Proposition 3.4. When 
T\q\ > 1, we have 

\q%y-i\ = M 

Now consider the series 

f_Oj_ Lv-JsW »+i 
\r 

\y^C\q);\T\q\yf}^. 

\aj\=f{(T\q\y+x-\ 
\M M T\q\-l 

The radius of convergence of the power series 

\ajK\iry-

(3.9.1) 

(3.9.2) 
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W(Z): ! 
7=0 

{{T\q\Tl-\ 
( m-i , \aAzJ 

is equal to 

lim sup A (^i^iy+1-i 
T\q\-\ 

V1 

ma.-
R 

T\q\ 

Since we always have \q[~l< R/(T\q\), we see that the series (3.9.2) converges (absolutely). 
Changing the order of the addition, we see that the series 

00 °° 1/7.1 

/=o j=i \q\ 

converges (absolutely). Thus, by (3.9.1), we see that the series Z^o tfhy-t converges absolutely. 
Then we have 

\M * J 1=1 V=1 q , /=1 i=\ 
y~t 

,«,-, 

Here we have changed the order of addition, which is allowed since the series in the first line 
converges absolutely as we have seen above. This completes the proof. D 

Thus, we have proved the following. 

Theorem 3.10: Let {^}*0 be a sequence of complex numbers which satisfies (2.1) and which 
admits an S with 0<S<R satisfying (2.3.1) or (2.3.2), and (3.4.1). Then limn_>o0yn/qn exists 
and is equal to 

m=0 J j=0 

where q is as in Lemma 2.3. 

Note that the above limiting value can be calculated by using only at (i > 1), y_j (J > 0), and 
q. We also note that the above result coincides with the results in [2] concerning the case where 
there exists an integer r such that af -0 for all i>r. Furthermore, we note that, using our 
results of this section, we can obtain convergence results for the ratio of two oo-generalized Fibo-
nacci sequences and for the ratio of successive terms of an oo-generalized Fibonacci sequence. 
For details, see [2, §3]. As to the ratio of two successive terms Dence [1] has obtained a similar 
result for weighted r-generalized Fibonacci sequences with r finite; however, Dence uses all the 
roots of the characteristic polynomial, while we obtain a formula in terms of only one root q. 

Problem 3.11: For a given sequence {aJJo as above, characterize those sequences {yn}n GZ such 
that yn - f(y„_i, JV-2,yn-3> ..) for all n GZ (not just for n > 1). Note that yn - qn is such an 
example. When a0 = ax = 1 and at - 0 for all 1* > 2, then the sequence {y„}„ GZ defined by 
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\F„ n>\, 
y„ = \o n = 0, 

[(-1)"+1F„ n<-\, 

is also such an example, where {Fn}™=l is the usual Fibonacci sequence. 

4. EXAMPLES 

In this section we give some examples that will help us to understand general phenomena. 

Example 4.1: Let b and a be positive real numbers and consider the sequence {a7-}^0 defined by 
af = bal. Then it is not difficult to see that q = b + a, l^=lbm = alb, g0 = 1, gx = b, and that 
Sn+i = ^Sn f°r all 7i> 1. Thus, we see that l im^^g n lq n exists and is equal to blq-bl{b + a) = 
(l + E ^ U O - 1 . This shows that, even if condition (3.4.1) is not satisfied, the conclusion of 
Proposition 3.4 holds in this case. In fact, condition (3.4.1) is equivalent to alb<\ in this 
example. (When alb<\, choose r > 1 with r -1 < b I a < (r -1)2 and set R - a~l and 
S = (ray1. Then condition (3.4.1) is satisfied.) 

Example 4.2: We consider the sequence {a,.}*^ defined by a0 - 0 and at =ba* for / > 1 for some 
positive real numbers b and a, which is a slight modification of Example 4.1. It is easy to see that 
q = (a + ̂ a2+4ba)ll, Z ^ A = ba/(q-a)2 = b(b-(q-a))~l > 1, g0 = l, gl = 0,mdgn+l = 
agn+bag^ forn>l. Set^n=grH.l: Then we see that %_x = 1, ^0 = 0, and ^wfl = a^„+a^lf_1 

(n > 0), where a'0 - amida[-ba. Note that the number associated with the finite sequence 
{a'0, a[} as in Lemma 2.3 coincides with the number q associated with {ay}z*0. Since conditions 
(2.1), (2.3.1), and (3.4.1) are satisfied for the sequence {â , a{}, we see that ]imn_>o0^n/qn exists 
and is equal to qbal (q2 +ba) by Theorem 3.10. Thus, we see that X\mn_^mgn Iqn exists and is 
equal to ba/(q2 +ba). (This can also be obtained by a direct computation as in the previous 
example.) Note that we always have TZ=\ K - HP ~ (S ~ a))~l > 1 anc^ ^ ^ (^ + ^Z=\K)~l = 

bal'(q2 +ba). In other words, although condition (3.4.1) is not satisfied, the conclusion of 
Proposition 3.4 holds in this case. 

Example 43: We consider the sequence {at}f=0 defined by at -aal -hhft1 for some positive real 
numbers a,b,a, and/?. Then we see that q>a,p and that q2-(a+/3 + a + b)q + (ba + aj3 + 
aj3) = 0. Furthermore, we see that #0 = 1, g1=a+b, g2 = (a + h) +(aa + gj3), and gf «+i 

(a+fi + a + b)gn -(ba + ap + afJ)gn_x for n > 2. Therefore, we have gn - Aqn + Brn (n >. 1) for 
some real numbers A and 5, where r is the solution of the equation r 2 - ( a + / ? + a + d)r + 
(ba + aj3 + a(3) = 0 with r ^ q. Since \r\< q, we see that hmn_>O0gn/qn exists and is equal to A. 
The value of A can be calculated by using gl and g2. After tedious but elementary computations, 
we see that A = (l + aa/(q-a)2 +b/31'(1-P)2)'1 = (l + Z ^ i O " 1 - N o t e t h a t t h e v a I u e ^L\K 
can be greater than 1. For example, for (a, fi, a, b) = (1,1/2,1,1), the sum is smaller than 1 while, 
for (a, /?, a, b) = (3,1,1,1), it is greater than 1. 

Example 4.4: Consider the sequence {at }* 0 with at = ll (i +1)!. Note that, for this sequence, we 
have h(x) - (ex -1) / x and e(x) - ex - 1 . Hence, the radius of convergence R is equal to oo. In 
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this case, we can easily check that q = (log 2)"1. Hence, we have e'(q~l)~2< 2(log 2)"1 = 2g, 
which implies that the condition in Lemma 3.3 is satisfied by Remark 3.6. Thus, by an easy 
calculation, we see that the sequence { g „ C behaves like (log2)"<"+1)/2 when n goes to oo. 
More generally, the sequence {yn}^x behaves like 6(log2)"w, where 

Problem 4.5: For an oo-generalized Fibonacci sequence, the function H(z) - z~lh(z~l)-l seems 
to be the analog to the characteristic polynomial in the finite case. This raises the question as to a 
possible analog to Binet-type formulas for the finite case (see [3] and [2, Th. 1], for example). If 
H{z) has finitely many zeros, Examples 4.1 through 4.3 seem to suggest that Binet-type formulas 
hold as in the finite case. If H(z) has infinitely many zeros, as in Example 4.4, then will there be a 
Binet-type formula that is an infinite series involving powers of the zeros? 
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