FIBONACCI NUMBERS AND HARMONIC QUADRUPLES

Georg Johann Rieger

Institut für Mathematik, Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
(Submitted September 1997-Final Revision May 1998)
Here, we combine number theory (Fibonacci numbers) and projective geometry (harmonic fourth).

Let the real numbers

$$
\begin{equation*}
A<B<C<D \tag{1}
\end{equation*}
$$

form a harmonic quadruple (see [1], pp. 159-60), i.e.,

$$
\frac{B-C}{B-A}: \frac{D-C}{D-A}(\text { cross ratio })=-1
$$

or

$$
\begin{equation*}
D(2 B-A-C)=B C-2 C A+A B . \tag{2}
\end{equation*}
$$

The number D is also called a harmonic fourth. The affine map $x \mapsto \alpha x+\beta$ with real numbers $\alpha>0$ and β does not change equations (1) and (2). Especially, with $\alpha=2 /(C-A)$ and $\beta=-(C+A) /(C-A)$, we get $A_{1}=-1, C_{1}=1$ and, therefore, $B_{1} D_{1}=1,0<B_{1}<1<D_{1}$. Then, $B_{1}=(2 B-A-C) /(C-A)>0$ implies, from (1), that

$$
\begin{equation*}
2 B>A+C . \tag{3}
\end{equation*}
$$

It is easy to find harmonic quadruples of squares and also of primes like

$$
\begin{array}{ll}
1^{2}<3^{2}<4^{2}<11^{2}, & 1^{2}<11^{2}<15^{2}<41^{2}, \\
3^{2}<11^{2}<13^{2}<17^{2}, & 4^{2}<9^{2}<11^{2}<17^{2},
\end{array}
$$

and

$$
\begin{array}{ll}
3<11<17<59, & 3<23<41<383 \\
5<13<19<61, & 7<19<29<139
\end{array}
$$

also, the number 0 together with any three consecutive terms $(n+2)^{-1},(n+1)^{-1}, n^{-1}$ of the harmonic series form a harmonic quadruple.

Theorem: There are no harmonic quadruples of Fibonacci numbers.
Proof (by contradiction): For integers $2 \leq a<b<c<d$, we replace (1) by

$$
\begin{equation*}
F_{a}<F_{b}<F_{c}<F_{d} \tag{4}
\end{equation*}
$$

and (2) by

$$
\begin{equation*}
F_{d}\left(2 F_{b}-F_{a}-F_{c}\right)=F_{b} F_{c}-2 F_{c} F_{a}+F_{a} F_{b} . \tag{5}
\end{equation*}
$$

By (3), we must have $2 F_{b}>F_{a}+F_{c} \geq 1+F_{c}$ and, hence, $c=b+1$; however, $2 F_{b} \geq 2+F_{b+1}$ or $F_{b-2} \geq 2$ holds exactly for $b \geq 5$. Inequality (3) now says $F_{b-2} \geq 1+F_{a}$. By $b \geq 5$, this is satisfied exactly for $2 \leq a \leq b-3$. Consequently, instead of (5), we have to look at

$$
\begin{equation*}
F_{d}\left(F_{b-2}-F_{a}\right)=F_{b} F_{b+1}-2 F_{a} F_{b+1}+F_{a} F_{b} \tag{6}
\end{equation*}
$$

or

$$
\begin{equation*}
F_{d} F_{b-2}-F_{b} F_{b+1}=F_{a}\left(F_{d}-2 F_{b+1}+F_{b}\right) \tag{7}
\end{equation*}
$$

for $b \geq 5,2 \leq a \leq b-3, d \geq b+2$. We observe that

$$
F_{d}-2 F_{b+1}+F_{b} \geq F_{b+2}-2 F_{b+1}+F_{b}=F_{b-2}>0 .
$$

For $a=2$ and $a=b-3$, we obtain " \geq " and " \leq ", respectively, in (7) and thus in (6). This means

$$
\begin{equation*}
F_{d}\left(F_{b-2}-1\right) \geq F_{b} F_{b+1}-2 F_{b+1}+F_{b}, \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{d} F_{b-4} \leq F_{b} F_{b+1}-2 F_{b-3} F_{b+1}+F_{b-3} F_{b} . \tag{9}
\end{equation*}
$$

But

$$
F_{b} F_{b+1}-2 F_{b+1}+F_{b}+F_{b+3}\left(1-F_{b-2}\right)=2\left(F_{b}+(-1)^{b}\right)>0 \quad(b \geq 3)
$$

and (8) imply $d \geq b+4$. Furthermore,

$$
F_{b+5} F_{b-4}-F_{b} F_{b+1}+2 F_{b-3} F_{b+1}-F_{b-3} F_{b}=\left(18 F_{b}-11 F_{b+1}\right) F_{b+2}>0 \quad(b \geq 5)
$$

and (9) imply $d \leq b+4$. This leaves $d=b+4$.
We found that $b \geq 5$, and $2 \leq a \leq b-3$, and that (4) and (7) can be replaced, respectively, by $F_{a}<F_{b}<F_{b+1}<F_{b+4}$ and

$$
F_{b+4} F_{b-2}-F_{b} F_{b+1}=F_{a}\left(F_{b+4}-2 F_{b+1}+F_{b}\right)
$$

or, equivalently,

$$
\left(F_{a}-12 F_{b}+3 F_{b+1}\right)\left(3 F_{b}+F_{b+1}\right)=-32 F_{b}^{2} .
$$

This implies $\left(3 F_{b}+F_{b+1}\right) \mid 32 F_{b}^{2}$. Since $1=\left(F_{b+1}, F_{b}\right)=\left(3 F_{b}+F_{b+1}, F_{b}\right)$, we obtain

$$
\begin{equation*}
\left(3 F_{b}+F_{b+1}\right) \mid 32 \tag{10}
\end{equation*}
$$

But, $3 F_{5}+F_{6}=23$ and $3 F_{b}+F_{b+1} \geq 37(b \geq 6)$. Hence (10) is impossible.

REFERENCE

1. Oswald Veblen \& John Wesley Young. Projective Geometry. New York-Toronto-London: Blaisdell Publishing Company, 1910, 1938.

AMS Classification Numbers: 11B39, 51M04

