GENERALIZED BRACKET FUNCTION INVERSE PAIRS

Temba Shonhiwa

Department of Mathematics, The University of Zimbabwe
PO Box MP 167, Mt. Pleasant, Harare, Zimbabwe
e-mail: temba@maths.uz.ac.zw
(Submitted September 1997-Final Revision December 1997)
The aim of this paper is to prove the existence of inverse pairs for a certain class of numbertheoretic functions. An application of the result is also illustrated. The motivation comes from the study of functions such as

$$
C_{k}(n)=\sum_{\substack{a_{1}+\cdots+a_{k}=n \\ a_{i} \geq 1}} 1 \quad \text { and } \quad R_{k}(n)=\sum_{\substack{a_{1}+\ldots+a_{k}=n \\\left(a_{1}, \ldots, a_{k}\right)=1}} 1 .
$$

Gould [1] showed that $C_{k}(n)=\sum_{d \mid n} R_{k}(d)$ and that $R_{k}(n)$ has an inverse. In [5] a pair of functions similarly related is also studied and similar results obtained.

We start our investigation by giving the following theorem due to Gould [2].
Theorem 1 (The Bracket Function Transform): Define

$$
\begin{align*}
& S(n)=\sum_{k=1}^{n}\left[\frac{n}{k}\right] A_{k}=\sum_{j=1}^{n} \sum_{d \mid j} A_{d}, \tag{1}\\
& A(x)=\sum_{n=1}^{\infty} x^{n} A_{n}, \tag{2}
\end{align*}
$$

and

$$
\begin{equation*}
S(x)=\sum_{n=1}^{\infty} x^{n} S_{n} . \tag{3}
\end{equation*}
$$

Then

$$
\begin{equation*}
S(x)=\frac{1}{1-x} \sum_{n=1}^{\infty} A_{n} \frac{x^{n}}{1-x^{n}} . \tag{4}
\end{equation*}
$$

From this it follows that

$$
\begin{equation*}
(1-x) S(x)=\sum_{n=1}^{\infty} x^{n} S_{n}-\sum_{n=1}^{\infty} x^{n+1} S_{n}=\sum_{n=1}^{\infty}\left(S_{n}-S_{n-1}\right) x^{n}, \text { where } S_{0}=0 . \tag{5}
\end{equation*}
$$

That is

$$
\sum_{n=1}^{\infty}\left(S_{n}-S_{n-1}\right) x^{n}=\sum_{n=1}^{\infty} A_{n} \frac{x^{n}}{\left(1-x^{n}\right)},
$$

a result equivalent to

$$
\begin{equation*}
S_{n}-S_{n-1}=\sum_{d \mid n} A_{d} \quad \text { (see Hardy \& Wright [4], p. 257). } \tag{6}
\end{equation*}
$$

But relation (6), in turn, implies that

$$
\begin{equation*}
A(n)=\sum_{d \mid n}(S(d)-S(d-1)) \mu\left(\frac{n}{d}\right) . \tag{7}
\end{equation*}
$$

A result also obtained by Gould [2], albeit through an entirely different argument. For completeness, we also include here Gould's [2] elegant formulation of the above result.

Theorem 2:

$$
a(n, k)=\sum_{j=1}^{n}\left[\frac{n}{j}\right] b(j, k)=\sum_{j=1}^{n} \sum_{d \mid j} b(d, k)
$$

if and only if

$$
b(n, k)=\sum_{d \mid n}(a(d, k)-a(d-1, k)) \mu\left(\frac{n}{d}\right)
$$

We now prove our next result.
Lemma 3: Define

$$
H(x)=\sum_{n=1}^{\infty} x^{n} H_{n}, \text { where } H_{n}=\sum_{d \mid n} A_{d}
$$

Then

$$
\begin{equation*}
S(x)=\frac{H(x)}{1-x} \tag{8}
\end{equation*}
$$

Proof:

$$
\begin{aligned}
S(x) & =\sum_{n=1}^{\infty} S_{n} x^{n}=\sum_{n=1}^{\infty} x^{n} \sum_{j=1}^{n} \sum_{d \mid j} A_{d}=\sum_{n=1}^{\infty} x^{n} \sum_{j=1}^{n} H_{j} \\
& =\sum_{j=1}^{\infty} H_{j} \sum_{n=j}^{\infty} x^{n}=\sum_{j=1}^{\infty} H_{j} x^{j} \sum_{n=j}^{\infty} x^{n-j}=\frac{H(x)}{1-x},|x|<1 .
\end{aligned}
$$

Next, we prove our main result.
Theorem 4: Define

$$
\begin{aligned}
& H(n, k)=\sum_{d \mid n} A(d, k) \\
& S(n, k)=\sum_{j=k}^{n}\left[\frac{n}{j}\right] A(j, k)=\sum_{j=k}^{n} \sum_{d \mid j} A(d, k), \text { and } \\
& B(n, k)=\left[\frac{n}{k}\right]-\sum_{j=k}^{n-1} S(n, j) B(j, k)
\end{aligned}
$$

where $A(n, k)=B(n, k)=0$ if $n<k$ and $A(k, k)=B(k, k)=1$.
Then the functions $A(n, k)$ and $B(n, k)$ satisfy the orthogonality relations

$$
\sum_{j=k}^{n} A(j, k) B(n, j)=\delta_{k}^{n} \text { and } \sum_{j=k}^{n} B(j, k) A(n, j)=\delta_{k}^{n}, \text { where } \delta_{k}^{n}= \begin{cases}1, & \text { if } n=k \\ 0, & \text { otherwise }\end{cases}
$$

Proof: Consider

$$
\sum_{n=1}^{\infty} B(n, k) x^{n}=\sum_{n=1}^{\infty}\left[\frac{n}{k}\right] x^{n}-\sum_{n=1}^{\infty} x^{n} \sum_{j=k}^{n-1} S(n, j) B(j, k)
$$

$$
=\frac{x^{k}}{(1-x)\left(1-x^{k}\right)}+\sum_{j=k}^{\infty} B(j, k) x^{j}-\sum_{n=k}^{\infty} x^{n} \sum_{j=k}^{n} S(n, j) B(j, k),
$$

since $S(k, k)=1$ by hypothesis.
That is,

$$
\begin{equation*}
\sum_{n=k}^{\infty} x^{n} \sum_{j=k}^{n} S(n, j) B(j, k)=\frac{x^{k}}{(1-x)\left(1-x^{k}\right)} \tag{9}
\end{equation*}
$$

or

$$
\begin{equation*}
\sum_{j=k}^{\infty} B(j, k) \sum_{n=j}^{\infty} x^{n} S(n, j)=\sum_{j=k}^{\infty} B(j, k) S(x)=\frac{x^{k}}{(1-x)\left(1-x^{k}\right)} \tag{10}
\end{equation*}
$$

From the last equality in (10) and Theorem 1, we have

$$
\sum_{j=k}^{\infty} B(j, k) \sum_{n=j}^{\infty} A(n, j) \frac{x^{n}}{1-x^{n}}=\sum_{n=k}^{\infty} \sum_{j=k}^{n} B(j, k) A(n, j) \frac{x^{n}}{1-x^{n}}=\frac{x^{k}}{1-x^{k}},
$$

from which it follows that

$$
\sum_{j=k}^{n} B(j, k) A(n, j)=\delta_{k}^{n}
$$

Also, from $H(n, k)=\sum_{d \mid n} A(d, k)$, Theorem 1, and Lemma 3, we have that

$$
\sum_{n=1}^{\infty} A(n, k) \frac{x^{n}}{1-x^{n}}=\sum_{n=1}^{\infty} H(n, k) x^{n},
$$

and, hence, that

$$
\sum_{n=1}^{\infty} A(n, k) \frac{x^{n}}{(1-x)\left(1-x^{n}\right)}=\frac{H(x)}{1-x} .
$$

We may now use relation (9) and rewrite this last equation in the form

$$
\sum_{n=1}^{\infty} A(n, k) \sum_{i=n}^{\infty} x^{i} \sum_{j=n}^{i} S(i, j) B(j, n)=\sum_{n=1}^{\infty} S(n, k) x^{n},
$$

that is,

$$
\begin{aligned}
\sum_{j=1}^{\infty} \sum_{n=1}^{j} B(j, n) A(n, k) \sum_{i=j}^{\infty} x^{i} S(i, j) & =\sum_{j=1}^{\infty} \sum_{i=j}^{\infty} x^{i} S(i, j) \sum_{n=1}^{j} B(j, n) A(n, k) \\
& =\sum_{n=1}^{\infty} S(n, k) x^{n},
\end{aligned}
$$

which implies that $\sum_{n=1}^{j} B(j, n) A(n, k)=\delta_{k}^{j}$, and, hence, the result $\sum_{j=1}^{n} A(j, k) B(n, j)=\delta_{k}^{n}$.
Theorem 4, in turn, implies the following result.
Theorem 5: For any ordered pair of functions $\langle f(n, k), g(n, k)\rangle$, the following holds:

$$
f(n, k)=\sum_{j=k}^{n} g(n, j) A(j, k) \text { if and only if } g(n, k)=\sum_{j=k}^{n} f(n, j) B(j, k),
$$

where $A(n, k)$ and $B(n, k)$ are as defined in Theorem 4.
Of interest are the function pairs $\langle f(n, k), g(n, k)\rangle$ satisfying Theorem 5. One such class may be obtained from the following result.

Theorem 6: Let

$$
g(n, k)=\left\{\begin{array}{ll}
h(n, k), & \text { if } k / n, \\
0, & \text { otherwise },
\end{array} \text { and } f(n, k)=\sum_{d \mid n} h(n, d) A(d, k)\right.
$$

Then $\langle f(n, k), g(n, k)\rangle$ satisfies Theorem 5, where $h(n, k)$ is any number-theoretic function.
Proof: If $f(n, k)=\sum_{d \mid n} h(n, d) A(d, k)$, then

$$
\begin{aligned}
g(n, k) & =\sum_{j=k}^{n} \sum_{d \mid n} h(n, d) A(d, j) B(j, k)=\sum_{j=k}^{n} \sum_{d=j}^{d \mid n} h(n, d) A(d, j) B(j, k) \\
& =\sum_{\substack{d=k \\
d \mid n}}^{n} \sum_{j=k}^{d} h(n, d) A(d, j ;) B(j, k)=\sum_{\substack{d=k \\
d \mid n}}^{n} h(n, d) \delta_{k}^{d} \\
& = \begin{cases}h(n, k), & \text { if } k / n, \\
0, & \text { otherwise } .\end{cases}
\end{aligned}
$$

The converse is trivial.
Similarly, it may be shown that the functions

$$
f(n, k)= \begin{cases}h(n, k), & \text { if } k / n \\ 0, & \text { otherwise }\end{cases}
$$

and

$$
g(n, k)=\sum_{d \mid n} h(n, d) B(d, k)
$$

satisfy Theorem 5 .
As an application, we shall consider some of the results in [5]. There it was established that

$$
\begin{equation*}
\binom{n}{k}=\sum_{d \mid n} T_{k}^{d}(d), \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
T_{k}^{n}(n)=\sum_{\substack{1 \leq a_{1}, a_{2}<\cdots<a_{k} \leq n \\\left(a_{1}, a_{2}, \ldots, a_{k}, n\right)=1}} 1, n \geq k . \tag{12}
\end{equation*}
$$

It follows from equation (11) that

$$
\begin{equation*}
\sum_{j=k}^{n}\binom{j}{k}=\binom{n+1}{k+1}=\sum_{j=k}^{n} \sum_{d \mid j} T_{k}^{d}(d)=\sum_{j=k}^{n}\left[\frac{n}{j}\right] T_{k}^{j}(j) . \tag{13}
\end{equation*}
$$

Therefore, by Theorem 2,

$$
\begin{equation*}
T_{k}^{n}(n)=\sum_{d \mid n}\left\{\binom{d+1}{k+1}-\binom{d}{k+1}\right\} \mu\left(\frac{n}{d}\right)=\sum_{d \mid n} \mu\left(\frac{n}{d}\right)\binom{n}{k} . \tag{14}
\end{equation*}
$$

Further, if $A(n, k)=T_{k}^{n}(n)$ and $H(n, k)=\sum_{d \mid n} T_{k}^{d}(d)=\binom{n}{k}$, we may also apply Theorem 1 and Lemma 3 to find the equivalent $S(x)$ and $H(x)$.

And, by Theorem 4, the function $T_{k}^{n}(n)$ has an inverse given by

$$
\begin{equation*}
K_{k}(n)=\left[\frac{n}{k}\right]-\sum_{j=k}^{n-1}\binom{n+1}{j+1} K_{k}(j) . \tag{15}
\end{equation*}
$$

Clearly,

$$
K_{k}(k)=\left[\frac{k}{k}\right], \quad K_{k}(k+1)=\binom{k+2}{k+2}\left[\frac{k+1}{k}\right]-\binom{k+2}{k+1}\left[\frac{k}{k}\right],
$$

and

$$
\begin{aligned}
K_{k}(k+2) & =\binom{k+3}{k+3}\left[\frac{k+2}{k}\right]-\binom{k+3}{k+2}\left[\frac{k+1}{k}\right]+\left[\frac{k}{k}\right]\left\{\binom{k+3}{k+2}\binom{k+2}{k+1}-\binom{k+3}{k+1}\right\} \\
& =\binom{k+3}{k+3}\left[\frac{k+2}{k}\right]-\binom{k+3}{k+2}\left[\frac{k+1}{k}\right]+\binom{k+3}{k+1}\left[\frac{k}{k}\right] \\
& =\sum_{j=k}^{k+2}\binom{(k+2)+1}{j+1}\left[\frac{j}{k}\right](-1)^{(k+2)-j} .
\end{aligned}
$$

We may, therefore, generalize and obtain the following explicit form for $K_{k}(n)$.
Theorem 7:

$$
K_{k}(n)=\sum_{j=k}^{n}(-1)^{n-j}\binom{n+1}{j+1}\left[\frac{j}{k}\right] \text { where } K_{k}(n)=0 \text { if } n<k
$$

Proof: We prove the result by induction on n. We shall assume the result holds for $k, k+1$, ..., n and consider

$$
\begin{aligned}
K_{k}(n+1) & =\left[\frac{n+1}{k}\right]-\sum_{j=k}^{n}\binom{n+2}{j+1} K_{k}(j) \\
& =\left[\frac{n+1}{k}\right]-\sum_{j=k}^{n}\binom{n+2}{j+1} \sum_{i=k}^{j}(-1)^{j-i}\binom{j+1}{i+1}\left[\frac{i}{k}\right] \text { by the inductive hypothesis } \\
& =\left[\frac{n+1}{k}\right]-\sum_{i=k}^{n} \sum_{j=i}^{n}(-1)^{j-i}\binom{n+2}{j+1}\binom{j+1}{i+1}\left[\frac{i}{k}\right] \\
& =\left[\frac{n+1}{k}\right]-\sum_{i=k}^{n}\left[\frac{i}{k}\right] \sum_{j=i+1}^{n+2}\binom{n+2}{j}\binom{j}{i+1}(-1)^{j-(i+1)}-\sum_{i=k}^{n}\left[\frac{i}{k}\right]\binom{n+2}{i+1}(-1)^{n-i} \\
& =\sum_{j=k}^{n+1}(-1)^{n+1-j}\binom{n+2}{j+1}\left[\frac{j}{k}\right],
\end{aligned}
$$

where we have used the identity

$$
\sum_{j=i}^{n}(-1)^{j-i}\binom{n}{j}\binom{j}{i}=\delta_{i}^{n} \quad \text { (see Gould [3, (3.119)], p. 36). }
$$

And, from Theorem 5, it follows that

$$
\begin{equation*}
f(n, k)=\sum_{j=k}^{n} g(n, j) T_{k}^{j}(j) \text { if and only if } g(n, k)=\sum_{j=k}^{n} f(n, j) K_{k}(j) . \tag{16}
\end{equation*}
$$

The functions

$$
f(n, k)=\binom{n+1}{k+1} \text { and } g(n, k)=\left[\frac{n}{k}\right]
$$

are particular cases of this result.
Also, from Theorem 6, we may obtain other such function pairs for given $h(n, k)$; in particular, with $h(n, k)=1$, we obtain the functions

$$
g(n, k)= \begin{cases}1, & \text { if } k / n \\ 0, & \text { otherwise },\end{cases}
$$

and

$$
f(n, k)=\sum_{d \mid n} T_{k}^{d}(d)=\binom{n}{k} .
$$

Further, using the techniques in [6], we may prove the following result.
Theorem 8: Let

$$
f(n, k)=\frac{(-1)^{k}}{k+1}
$$

and

$$
g(n, k)=\sum_{i=k}^{n} \frac{(-1)^{i}}{i+1}\left[\frac{i}{k}\right]\binom{n+1}{i+1} .
$$

Then $\langle f(n, k), g(n, k)\rangle$ satisfies Theorem 5, where $A(n, k)=T_{k}^{n}(n)$ and $B(n, k)=K_{k}(n)$.
Proof: Suppose $f(n, k)=\frac{(-1)^{k}}{k+1}$, then

$$
\begin{aligned}
g(n, k) & =\sum_{j=k}^{n} f(n, j) \sum_{i=k}^{j}(-1)^{j-i}\binom{j+1}{i+1}\left[\frac{i}{k}\right]=\sum_{i=k}^{n}(-1)^{i}\left[\frac{i}{k}\right] \sum_{j=i}^{m} \frac{(-1)^{2 j}}{j+1}\binom{j+1}{i+1} \\
& =\sum_{i=k}^{n} \frac{(-1)^{i}}{i+1}\left[\frac{i}{k}\right] \sum_{j=i}^{n}\binom{j}{i}=\sum_{i+1}^{n} \frac{(-1)^{i}}{i+1}\left[\frac{i}{k}\right]\binom{n+1}{i+1} .
\end{aligned}
$$

Conversely, assuming this form for $g(n, k)$, we obtain that

$$
\begin{aligned}
f(n, k) & =\sum_{j=k}^{n} \sum_{i=j}^{n} \frac{(-1)^{i}}{i+1}\left[\frac{i}{j}\right]\binom{n+1}{i+1} T_{k}^{j}(j)=\sum_{i=k}^{n} \frac{(-1)^{i}}{i+1}\binom{n+1}{i+1} \sum_{j=k}^{i}\left[\frac{i}{j}\right] T_{k}^{j}(j) \\
& =\sum_{i=k}^{n} \frac{(-1)^{i}}{i+1}\binom{n+1}{i+1}\binom{i+1}{k+1}=\frac{1}{k+1} \sum_{i=k}^{n}(-1)^{i}\binom{n+1}{i+1}\binom{i}{k}
\end{aligned}
$$

from equation (13). We now use the relation

$$
\sum_{j=i}^{n}\binom{j}{i}=\binom{n+1}{i+1} \quad(\text { see Gould }[3,(1.52)])
$$

to obtain that

$$
\begin{aligned}
\sum_{i=k}^{n}(-1)^{i}\binom{n+1}{i+1}\binom{i}{k} & =\sum_{i=k}^{n}(-1)^{i}\binom{i}{k} \sum_{j=i}^{n}\binom{j}{i} \\
& =\sum_{j=k}^{n}(-1)^{k} \sum_{i=k}^{j}(-1)^{k-i}\binom{j}{i}\binom{i}{k}=(-1)^{k}
\end{aligned}
$$

and, hence, the result.
Clearly, many more such function pairs can be found by use of the right Binomial Identities. And, as in [6], generalizations of such functions are also possible.

ACKNOWLEDGMENT

The author is most grateful for the anonymous referee's insightful comments which improved the presentation of this paper.

REFERENCES

1. H. W. Gould. "Binomial Coefficients, the Bracket Function, and Compositions with Relatively Prime Summands." The Fibonacci Quarterly 2.4 (1964):241-60.
2. H. W. Gould. "A Bracket Function Transform and Its Inverse." The Fibonacci Quarterly 32.2 (1994):176-79.
3. H. W. Gould. Combinatorial Identities. Published by the author. Morgantown, West Virginia, 1972.
4. G. H. Hardy \& E. M. Wright. An Introduction to the Theory of Numbers. 5th ed. London: Clarendon Press, 1979.
5. T. Shonhiwa. "A Generalization of the Euler and Jordan Totient Functions." To appear in The Fibonacci Quarterly.
6. T. Shonhiwa. "Investigations in Number Theoretic Functions." Ph.D. Dissertation, West Virginia University, Morgantown, West Virginia, 1996.
AMS Classification Numbers: 11A25, 11B65
