PARTIAL FIBONACCI AND LUCAS NUMBERS

Indulis Strazdins
Riga Technical University, Riga LV-1658, Latvia
(Submitted September 1997)

0. INTRODUCTION

The well-known Lucas formula

$$
\begin{equation*}
F_{n+1}=\sum_{r=0}^{\lfloor n / 2\rfloor}\binom{n-r}{r} \tag{1}
\end{equation*}
$$

connects the Fibonacci numbers with binomial coefficients. Our interest is to find out what kind of numbers are obtained by taking every number r in (1) from a fixed residue class modulo m $(m=2,3, \ldots)$. As a result, a new family of sequences is introduced: the partial, or $1 / m$-Fibonacci numbers. We give here a primary description of these numbers and their generating functions. By a similar construction, partial Lucas, Pell, and other specialized Fibonacci-type sequences can be obtained. Properties of these number systems will be explained in many respects.

1. THE BASIC RECURSION

Given a modulo $m(m=1,2,3, \ldots)$, we define the (m, k)-Fibonacci numbers as follows:

$$
\begin{equation*}
F_{n+1}^{(m, k)}=\sum_{r=0}^{\ell}\binom{n-m r-k}{m r+k} \quad(k=0,1, \ldots, m-1) \tag{2}
\end{equation*}
$$

where $\ell=\lfloor(n-2 k) / 2 m\rfloor ; n=2 k, 2 k+1, \ldots$. For $n=1, \ldots, 2 k, F_{n}^{(m, k)}=0(k>0)$. Irrespective of the value of k or even of m, these numbers may be called $1 / m$-Fibonacci numbers or partial Fibonacci numbers. For every natural n, according to (1),

$$
\begin{equation*}
\sum_{k=0}^{m-1} F_{n}^{(m, k)}=F_{n}=F_{n}^{(1,0)} \tag{3}
\end{equation*}
$$

For $n \leq 2 m$, there is $F_{n}^{(m, k)}=\binom{n-k-1}{k}$ for all k. We usually disregard (except in $\S 4$) the all-zero case $n=0$.

Theorem 1: For every m, the sequence $\left\{F_{n}^{(m, k)}\right\}$ is the difference sequence of $\left\{F_{n}^{(m, k+1)}\right\}$ over k in cyclic order, i.e.,

$$
\begin{array}{ll}
F_{n+1}^{(m, k)}=F_{n+3}^{(m, k+1)}-F_{n+2}^{(m, k+1)} & (k<m-1) \tag{4}\\
F_{n+1}^{(m, m-1)}=F_{n+3}^{(m, 0)}-F_{n+2}^{(m, 0)} & (k=m-1)
\end{array}
$$

Proof: As $\binom{n-1}{k-1}=\binom{n}{k}-\binom{n-1}{k}$, for the $r^{\text {th }}$ summand in (2) there obviously is

$$
\begin{aligned}
& \binom{n-m r-k}{m r+k}=\binom{n+2-m r-k-1}{m r+k+1}-\binom{n+1-m r-k-1}{m r+k+1}(k<m-1) \\
& \binom{n-m r-m+1}{m r+m-1}=\binom{n+2-m(r+1)}{m(r+1)}-\binom{n+1-m(r+1)}{m(r+1)} \quad(k=m-1)
\end{aligned}
$$

In the last case, for $r=0$ the right side is

$$
\binom{n+2}{0}-\binom{n+1}{0}=0 .
$$

Thus, all m sequences $\left\{F_{n}^{(m, k)}\right\}$ form a cyclic set with respect to the difference operator Δ_{2} (see [3]).

Theorem 2: For every m and k, the recurrence

$$
\begin{equation*}
F_{n}^{(m, k)}=\sum_{s=0}^{m}(-1)^{s}\binom{m}{s} F_{n+2 m-s}^{(m, k)} \tag{5}
\end{equation*}
$$

of order $2 m$ holds.
Proof: From (4), with n instead of $n+1$, by consecutive forward substitutions

$$
F_{n}^{(m, k+1)} \rightarrow F_{n}^{(m, k)}(k<m-1), \quad F_{n}^{(m, 0)} \rightarrow F_{n}^{(m, m-1)}
$$

and with $k=0$ instead of $k=m$ for the transition step (addition modulo m), we have

$$
\begin{aligned}
F_{n}^{(m, k)} & =F_{n+4}^{(m, k+2)}-2 F_{n+3}^{(m, k+2)}+F_{n+2}^{(m, k+2)} \\
& =F_{n+6}^{(m, k+3)}-3 F_{n+5}^{(m+k+3)}+3 F_{n+4}^{(m, k+3)}-F_{n+3}^{(m, k+3)}=\cdots,
\end{aligned}
$$

so that (5) follows after $m-1$ steps. This can be proved easily by induction.

2. FIBONACCI CYCLOTOMIC POLYNOMIALS

From the recurrence (5), we obtain the characteristic polynomial

$$
\begin{equation*}
\sum_{s=0}^{m}(-1)^{s}\binom{m}{s} x^{2 m-s}-1=\left(x^{2}-x\right)^{m}-1=p_{m}(x) \tag{6}
\end{equation*}
$$

of degree $2 m$. The polynomials (6) can be called Fibonacci cyclotomic polynomials, as the substitution $u=x(x-1)$ turns them into the classical cyclotomic polynomials (see [4]). Hence, they admit the following factorization over \mathbb{C} :

$$
\begin{equation*}
p_{m}(x)=\prod_{j=0}^{m-1}\left(x^{2}-x-\varepsilon^{j}\right) \tag{7}
\end{equation*}
$$

where $\varepsilon^{j}=\cos \frac{2 \pi j}{m}+i \sin \frac{2 \pi j}{m}$ are the values of $\sqrt[m]{1}$. The factor $x^{2}-x-1$ (for $j=0$) whose zeros are $\alpha=\frac{1}{2}(1+\sqrt{5}), \beta=1-\alpha$, is present in all $p_{m}(x)$. The quotient polynomial

$$
\begin{equation*}
q_{m}(x)=\frac{p_{m}(x)}{x^{2}-x-1}=\sum_{j=0}^{m-1}\left(x^{2}-x\right)^{j} \tag{8}
\end{equation*}
$$

has the first m lower terms $(-1)^{h} F_{h+1} x^{h}(h=0,1, \ldots, m-1)$ and its (pairwise conjugate) zeros are

$$
\begin{align*}
\zeta_{j}, \bar{\zeta}_{j} & =\frac{1}{2}\left(1 \pm \sqrt{1+4 \varepsilon_{j}}\right) ; \\
\left|\zeta_{j}\right| & =\sqrt{17+8 \cos \frac{2 \pi j}{m}} \quad(j=1,2, \ldots, m-1) . \tag{9}
\end{align*}
$$

Examples:

$$
\begin{aligned}
q_{1}(x) & =1 ; \quad q_{2}(x)=x^{2}-x+1 ; \quad q_{3}(x)=x^{4}-2 x^{3}+2 x^{2}-x+1 ; \\
q_{4}(x) & =x^{6}-3 x^{5}+4 x^{4}-3 x^{3}+2 x^{2}-x+1=q_{2}(x)\left(x^{4}-2 x^{3}+x^{2}+1\right) ; \\
q_{5}(x) & =x^{8}-4 x^{7}+7 x^{6}-7 x^{5}+5 x^{4}-3 x^{3}+2 x^{2}-x+1 ; \\
q_{6}(x) & =x^{10}-5 x^{9}+11 x^{8}-14 x^{7}+12 x^{6}-8 x^{5}+5 x^{4}-3 x^{3}+2 x^{2}-x+1 \\
& =q_{2}(x) q_{3}(x)\left(x^{4}-2 x^{3}+x+1\right) .
\end{aligned}
$$

The final factorization to quadratic trinomials over \mathbb{R} is more difficult:

$$
\begin{aligned}
& q_{3}(x)=\left(x^{2}-(1+A) x+M\right)\left(x^{2}-(1-A) x+1 / M\right), \\
& \frac{q_{4}(x)}{q_{2}(x)}=\left(x^{2}-(1+B) x+N\right)\left(x^{2}-(1-B) x+1 / N\right),
\end{aligned}
$$

where

$$
\begin{array}{ll}
A=\sqrt{\frac{1}{2}(\sqrt{13}-1)}, & M=\frac{1}{4}(\sqrt{13}+1+\sqrt{2(\sqrt{13}-1)}) \\
B=\sqrt{\frac{1}{2}(\sqrt{17}+1)}, & N=\frac{1}{4}(\sqrt{17}+1+\sqrt{2(\sqrt{17}+1)})
\end{array}
$$

Solutions of the equation $q_{m}(x)=0$ for $m \leq 6$ involve radicals $\sqrt{3}, \sqrt{5}, \sqrt{13}, \sqrt{17}$, and $\sqrt{21}$.

3. GENERATING FUNCTIONS

Theorem 3: The generating function of the sequence $\left\{F_{n}^{(m, k)}\right\}$,

$$
\begin{equation*}
f^{(m, k)}(x)=\sum_{n=2 k}^{\infty} F_{n+1}^{(m, k)} x^{n}=\frac{x^{2 k}(1-x)^{m-k-1}}{r_{m}(x)}, \tag{10}
\end{equation*}
$$

where

$$
r_{m}(x)=x^{2 m} p_{m}(1 / x)=(1-x)^{m}-x^{2 m} .
$$

Proof: In the case $k=m-1$,

$$
\begin{equation*}
f^{(m, m-1)}(x)=\frac{x^{2 m-2}}{r_{m}(x)}, \tag{11}
\end{equation*}
$$

i.e., the series $\sum_{n=0}^{\infty} F_{2 m+n+1}^{(m, m-1)} x^{n}$ with shifted coefficient sequence (with $F_{2 m+1}^{(m, m-1)}=1$ being the first one) is the inverse for $r_{m}(x)$:

$$
\frac{1}{x^{2 m-2}} f^{(m, m-1)}(x) r_{m}(x)=1,
$$

as can be seen from the convolution formulas (see [2], [3])

$$
\sum_{j=0}^{\ell}(-1)^{j}\binom{m}{j}\binom{m+\ell-j-1}{m-1}= \begin{cases}1 & (\ell=0), \\ 0 & (\ell=1, \ldots, m) .\end{cases}
$$

Further, it follows from (4) that

$$
\begin{equation*}
f^{(m, k)}(x)=\frac{1-x}{x^{2}} f^{(m, k+1)}(x) \quad(k=0,1, \ldots, m-2) . \tag{12}
\end{equation*}
$$

From this, we obtain (10). In particular,

$$
\begin{equation*}
f^{(m, 0)}(x)=\frac{(1-x)^{m-1}}{r_{m}(x)} . \tag{13}
\end{equation*}
$$

Now we can verify the identity (3) in terms of generating functions. Indeed,

$$
r_{m}(x)=\left(1-x-x^{2}\right) s_{m}(x),
$$

where

$$
s_{m}(x)=x^{2 m} q_{m}(1 / x)=\sum_{k=0}^{m-1} x^{2 k}(1-x)^{m-k-1}
$$

is exactly the sum of numerators in (10) over all k. Hence,

$$
\sum_{k=0}^{m-1} f^{(m, k)}(x)=\frac{1}{1-x-x^{2}}=\sum_{n=0}^{\infty} F_{n+1} x^{n}=f(x) .
$$

4. EXPLICIT EXPRESSIONS: $\boldsymbol{m}=\mathbf{2}$

In some simplest cases, it is possible to express the numbers $F_{n}^{(m, k)}$ directly as functions of n, thus giving generalizations of the Binet formula

$$
\begin{equation*}
F_{n}=\frac{1}{\sqrt{5}}\left(\alpha^{n}-\beta^{n}\right) . \tag{14}
\end{equation*}
$$

For $m=2$, denote

$$
F_{n}^{(2,0)}=\sum_{r=0}^{\lfloor(n-1) / 4\rfloor}\binom{n-1-2 r}{2 r}=E_{n}
$$

and

$$
F_{n}^{(2,1)}=\sum_{r=0}^{\lfloor(n-3) / 4\rfloor}\binom{n-2-2 r}{2 r+1}=D_{n}
$$

(the even and odd semi-Fibonacci numbers). Then, from (6) and (7), the characteristic equation

$$
p_{2}(x) \equiv\left(x^{2}-x-1\right)\left(x^{2}-x+1\right)=0
$$

is obtained, whose roots are $\alpha, \beta=1-\alpha$, and $\varepsilon, \bar{\varepsilon}=\frac{1}{2}(1 \pm i \sqrt{3})$. As $\varepsilon^{6}=1$, there is

$$
\varepsilon^{2}=\varepsilon-1, \quad \varepsilon^{3}=-1, \quad \varepsilon^{4}=-\varepsilon, \quad \varepsilon^{5}=1-\varepsilon=\bar{\varepsilon} .
$$

Using the (extended) initial conditions $E_{0}=D_{0}=D_{1}=D_{2}=0$ and $E_{1}=E_{2}=E_{3}=D_{3}=1$ in the general solution

$$
E_{n}, D_{n}=A \alpha^{n}+B(1-\alpha)^{n}+C \varepsilon^{n}+D(1-\varepsilon)^{n},
$$

we obtain for both E_{n} and D_{n},

$$
A=-B=\frac{2 \alpha-1}{10}=\frac{1}{2(2 \alpha-1)}=\frac{1}{2 \sqrt{5}},
$$

and for E_{n} and D_{n}, respectively (instead of C and D),

$$
C^{\prime}=-D^{\prime}=\frac{1}{2(2 \varepsilon-1)} \text { and } C^{\prime \prime}=-D^{\prime \prime}=-\frac{1}{2(2 \varepsilon-1)}
$$

Hence,

$$
\begin{equation*}
E_{n}, D_{n}=\frac{1}{2(2 \alpha-1)}\left(\alpha^{n}-(1-\alpha)^{n}\right) \pm \frac{1}{2(2 \varepsilon-1)}\left(\varepsilon^{n}-(1-\varepsilon)^{n}\right) \tag{15}
\end{equation*}
$$

and, in accordance to (3), $E_{n}+D_{n}=F_{n}$. The first summand in (15) is exactly $F_{n} / 2$, whereas the differences

$$
\delta_{n}=E_{n}-D_{n}=\sum_{r=0}^{\lfloor(n-1) / 2\rfloor}(-1)^{r}\binom{n-r-1}{r}=\frac{1}{2 \varepsilon-1}\left(\varepsilon^{n}-(1-\varepsilon)^{n}\right)
$$

form a periodic sequence ($0,1,1,0,-1,-1$) modulo 6. (See also [1].)
The generating functions (11) and (13) are

$$
f^{(2,0)}(x)=\sum_{n=0}^{\infty} E_{n+1} x^{n}=(1-x) / r_{2}(x)=e(x)
$$

and

$$
f^{(2,1)}(x)=\sum_{n=0}^{\infty} D_{n+1} x^{n}=x^{2} / r_{2}(x)=d(x),
$$

where $r_{2}(x)=\left(1-x-x^{2}\right)\left(1-x+x^{2}\right)$. Then

$$
\begin{aligned}
& e(x)+d(x)=\frac{1}{1-x-x^{2}}=f(x), \\
& e(x)-d(x)=\frac{1}{1-x+x^{2}}=\sum_{n=0}^{\infty}\left(x-x^{2}\right)^{n}=1+x-x^{3}-x^{4}+x^{6}+x^{7}-\cdots .
\end{aligned}
$$

5. PARTIAL LUCAS NUMBERS

Next we apply our approach to the Lucas numbers

$$
\begin{equation*}
L_{n}=F_{n-1}+F_{n+1}=1+\sum_{r=1}^{\lfloor(n-1) / 2\rfloor}\left(\binom{n-r-1}{r-1}+\binom{n-r}{r}\right) . \tag{16}
\end{equation*}
$$

Then a definition of the (m, k)-Lucas numbers, parallel to (2), is

$$
\begin{equation*}
L_{n+1}^{(m, k)}=1+\sum_{r=0}^{\ell}\left(\binom{n-m r-k}{m r+k}+\binom{n-m r-k+1}{m r+k+1}\right)(k=0,1, \ldots, m-1), \tag{17}
\end{equation*}
$$

where $\ell=\lfloor(n-2 k) / 2 m\rfloor ; n=2 k, 2 k+1, \ldots$. For $n=0,1, \ldots, 2 k, L_{n}^{(m, k)}=0(k>0)$, and $L_{0}^{(m, 0)}=2$, $L_{0}^{(m, k)}=0(k>0)$. The formula

$$
\begin{equation*}
\sum_{k=0}^{m-1} L_{n}^{(m, k)}=L_{n}=L_{n}^{(1,0)} \tag{18}
\end{equation*}
$$

corresponds to (3).

The numbers $L_{n}^{(m, k)}$ satisfy conditions analogous to (4) and, consequently, also the basic recursion (5). The particular solutions differ from the previous Fibonacci case only because of another initial conditions. Thus, for $m=2$ (the semi-Lucas numbers), we obtain, instead of (15),

$$
\begin{equation*}
L_{n}^{(2,0)}, L_{n}^{(2,1)}=\frac{1}{2} L_{n} \pm \frac{1}{2}\left(\varepsilon^{n}+(1-\varepsilon)^{n}\right) . \tag{19}
\end{equation*}
$$

The differences $\delta_{n}^{\prime}=L_{n}^{(2,0)}-L_{n}^{(2,1)}$ form a periodic sequence ($2,1,-1,-2,-1,1$) modulo 6. The generating functions are

$$
\ell^{(2,0)}(x)=\sum_{n=0}^{\infty} L_{n+1}^{(2,0)} x^{n}=\frac{2-3 x+x^{2}}{r_{2}(x)}
$$

and

$$
\ell^{(2,1)}(x)=\sum_{n=0}^{\infty} L_{n+1}^{(2,1)} x^{n}=\frac{2 x^{2}-x^{3}}{r_{2}(x)},
$$

and their sum (18) is

$$
\frac{2-x}{1-x-x^{2}}=\sum_{n=0}^{\infty} L_{n+1} x^{n}=\ell(x) .
$$

The general formula that corresponds to (10) here is

$$
\begin{equation*}
\ell^{(m, k)}(x)=\sum_{n=2 k}^{\infty} L_{n+1}^{(m, k)} x^{n}=\frac{x^{2 k}(1-x)^{m-k-1}(2-x)}{r_{m}(x)} . \tag{20}
\end{equation*}
$$

6. NUMERICAL RESULTS

We give the values of $F_{n}^{(m, k)}$ and $L_{n}^{(m, k)}$ for $m \leq 4$ in Tables 1 and 2 below. For the negative subscripts (in Table 1), formulas (4) were used.

7. SOME PROPERTIES

We mention here without proof the following appealing properties of $F_{n}^{(m, k)}$ and $L_{n}^{(m, k)}$, discovered after short observations:

1) $\quad F_{-n}^{(m, k)}=(-1)^{n+1} F_{n}^{(m, k \ominus r)}$;
2) $L_{-n}^{(m, k)}=(-1)^{n} L_{n}^{(m, k \ominus r)} \quad(n=m q+r>0, r=0,1, \ldots, m-1)$,
where \ominus is subtraction modulo m;
3) $L_{n}^{(m, k)}=F_{n-1}^{(m, k \ominus 1)}+F_{n+1}^{(m, k)}$;
4) $L_{n}^{(m, k)}=F_{n+2}^{(m, k)}-F_{n-2}^{(m, k \oplus(m-2))}$,
where \oplus is addition modulo m;
5) $\sum_{j=1}^{n} F_{j}^{(m, k)}= \begin{cases}F_{n+2}^{(m, k+1)} & (k=0,1, \ldots, m-2), \\ F_{n+2}^{(m, 0)}-1 & (k=m-1) ;\end{cases}$
6) $\sum_{j=1}^{n} L_{j}^{(m, k)}= \begin{cases}L_{n+1}^{(m, 1)}-2 & (k=0) ; \\ L_{n+2}^{(m+1)} & (k=1, \ldots, m-2), \\ L_{n+2}^{(m, 0)}-1 & (k=m-1) .\end{cases}$

These examples reveal a remarkable variety of repetition patterns, including the "rotation" (twisting) phenomenon. The usual Fibonacci-type formulas are obtained by summation over all k.

TABLE 1. Numbers $\boldsymbol{F}_{\boldsymbol{n}}^{(\boldsymbol{m}, \boldsymbol{k})}$

n	F_{n}	$m=2$			$m=3$			$m=4$			
		$k=0$	1		$k=0$	1	2	$k=0$	1	2	3
-10	-55	-27	-28	1	-13	-21	-21	-21	-20	-6	-8
-9	34	17	17	0	11	8	15	7	15	10	2
-8	-21	-11	-10	-1	-10	-5	-6	-1	-6	-10	-4
-7	13	6	7	-1	5	6	2	1	1	5	6
-6	-8	-4	-4	0	-1	-4	-3	-3	0	-1	-4
-5	5	3	2	1	1	1	3	3	1	0	1
-4	-3	-1	-2	1	-2	0	-1	-1	-2	0	0
-3	2	1	1	0	1	1	0	0	1	1	0
-2	-1	-1	0	-1	0	-1	0	0	0	-1	0
-1	1	0	1	-1	0	0	1	0	0	0	1
0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	0	1	1	0	0	1	0	0	0
2	1	1	0	1	1	0	0	1	0	0	0
3	2	1	1	0	1	1	0	1	1	0	0
4	3	1	2	-1	1	2	0	1	2	0	0
5	5	2	3	-1	1	3	1	1	3	1	0
6	8	4	4	0	1	4	3	1	4	3	0
7	13	7	6	1	2	5	6	1	5	6	1
8	21	11	10	1	5	6	10	1	6	10	4
9	34	17	17	0	11	8	15	2	7	15	10
10	55	27	28	-1	21	13	21	6	8	21	20
11	89	44	45	-1	36	24	29	16	10	28	35
12	144	72	72	0	57	45	42	36	16	36	56
13	233	117	116	1	86	81	66	71	32	46	84
14	377	189	188	1	128	138	111	127	68	62	120
15	610	305	305	0	194	224	192	211	139	94	166
16	987	493	494	-1	305	352	330	331	266	162	228
17	1597	798	799	-1	497	546	554	497	477	301	322

[AUG.

TABLE 2. Numbers $L_{n}^{(m, k)}$

n	F_{n}	$m=2$		δ_{n}^{\prime}	$m=3$			$m=4$			
		$k=0$	1		$k=0$	1	2	$k=0$	1	2	3
0	2	2	0	2	2	0	0	2	0	0	0
1	1	1	0	1	1	0	0	1	0	0	0
2	3	1	2	-1	1	2	0	1	2	0	0
3	4	1	3	-2	1	3	0	1	3	0	0
4	7	3	4	-1	1	4	2	1	4	2	0
5	11	6	5	1	1	5	5	1	5	5	0
6	18	10	8	2	3	6	9	1	6	9	2
7	29	15	14	1	8	7	14	1	7	14	7
8	47	23	24	-1	17	10	20	3	8	20	16
9	76	37	39	-2	31	18	27	10	9	27	30
10	123	61	62	-1	51	35	37	26	12	35	50
11	199	100	99	1	78	66	55	56	22	44	77
12	322	162	160	2	115	117	90	106	48	56	112
13	521	261	260	1	170	195	156	183	104	78	156
14	843	421	422	-1	260	310	273	295	210	126	212
15	1364	681	683	-2	416	480	468	451	393	230	290

ACKNOWLEDGMENTS

The author was supported in part by the Science Council of Latvia, Grant No. 96.0196. He also wishes to thank Dr. Valdemars Linis for valuable discussions.

REFERENCES

1. P. Filipponi. Problem B-828, The Fibonacci Quarterly 35.2 (1997):181; Solution, The Fibonacci Quarterly 36.1 (1998):87-88.
2. H. W. Gould. Combinatorial Identities. Morgantown: West Virginia University, 1972.
3. J. Riordan. Combinatorial Identities. New York: John Wiley, 1968.
4. B. L. van der Waerden. Algebra I. Berlin: Springer-Verlag, 1971.

AMS Classification Numbers: 11B39, 05A15, 12D05

