PARTIAL FIBONACCI AND LUCAS NUMBERS

Indulis Strazdins

Riga Technical University, Riga LV-1658, Latvia (Submitted September 1997)

0. INTRODUCTION

The well-known Lucas formula

$$F_{n+1} = \sum_{r=0}^{\lfloor n/2 \rfloor} \binom{n-r}{r}$$
(1)

connects the Fibonacci numbers with binomial coefficients. Our interest is to find out what kind of numbers are obtained by taking every number r in (1) from a fixed residue class modulo m(m = 2, 3, ...). As a result, a new family of sequences is introduced: the partial, or 1/m-Fibonacci numbers. We give here a primary description of these numbers and their generating functions. By a similar construction, partial Lucas, Pell, and other specialized Fibonacci-type sequences can be obtained. Properties of these number systems will be explained in many respects.

1. THE BASIC RECURSION

Given a modulo m (m = 1, 2, 3, ...), we define the (m, k)-Fibonacci numbers as follows:

$$F_{n+1}^{(m,k)} = \sum_{r=0}^{\ell} \binom{n-mr-k}{mr+k} \quad (k=0,1,\ldots,m-1),$$
(2)

where $\ell = \lfloor (n-2k)/2m \rfloor$; n = 2k, 2k+1, ... For n = 1, ..., 2k, $F_n^{(m,k)} = 0$ (k > 0). Irrespective of the value of k or even of m, these numbers may be called 1/m-Fibonacci numbers or partial Fibonacci numbers. For every natural n, according to (1),

$$\sum_{k=0}^{m-1} F_n^{(m,k)} = F_n = F_n^{(1,0)}.$$
(3)

For $n \le 2m$, there is $F_n^{(m,k)} = \binom{n-k-1}{k}$ for all k. We usually disregard (except in §4) the all-zero case n = 0.

Theorem 1: For every *m*, the sequence $\{F_n^{(m,k)}\}$ is the difference sequence of $\{F_n^{(m,k+1)}\}$ over *k* in cyclic order, i.e.,

$$F_{n+1}^{(m,k)} = F_{n+3}^{(m,k+1)} - F_{n+2}^{(m,k+1)} \quad (k < m-1),$$

$$F_{n+1}^{(m,m-1)} = F_{n+3}^{(m,0)} - F_{n+2}^{(m,0)} \quad (k = m-1).$$
(4)

Proof: As $\binom{n-1}{k-1} = \binom{n}{k} - \binom{n-1}{k}$, for the *r*th summand in (2) there obviously is

$$\binom{n-mr-k}{mr+k} = \binom{n+2-mr-k-1}{mr+k+1} - \binom{n+1-mr-k-1}{mr+k+1} \quad (k < m-1),$$
$$\binom{n-mr-m+1}{mr+m-1} = \binom{n+2-m(r+1)}{m(r+1)} - \binom{n+1-m(r+1)}{m(r+1)} \quad (k = m-1).$$

AUG.

In the last case, for r = 0 the right side is

$$\binom{n+2}{0} - \binom{n+1}{0} = 0. \quad \Box$$

Thus, all *m* sequences $\{F_n^{(m,k)}\}$ form a cyclic set with respect to the difference operator Δ_2 (see [3]).

Theorem 2: For every *m* and *k*, the recurrence

$$F_n^{(m,k)} = \sum_{s=0}^m (-1)^s \binom{m}{s} F_{n+2m-s}^{(m,k)}$$
(5)

of order 2m holds.

Proof: From (4), with n instead of n+1, by consecutive forward substitutions

$$F_n^{(m,k+1)} \to F_n^{(m,k)} \ (k < m-1), \quad F_n^{(m,0)} \to F_n^{(m,m-1)},$$

and with k = 0 instead of k = m for the transition step (addition modulo m), we have

$$\begin{split} F_n^{(m,k)} &= F_{n+4}^{(m,k+2)} - 2F_{n+3}^{(m,k+2)} + F_{n+2}^{(m,k+2)} \\ &= F_{n+6}^{(m,k+3)} - 3F_{n+5}^{(m,k+3)} + 3F_{n+4}^{(m,k+3)} - F_{n+3}^{(m,k+3)} = \cdots, \end{split}$$

so that (5) follows after m-1 steps. This can be proved easily by induction. \Box

2. FIBONACCI CYCLOTOMIC POLYNOMIALS

From the recurrence (5), we obtain the characteristic polynomial

$$\sum_{s=0}^{m} (-1)^{s} {m \choose s} x^{2m-s} - 1 = (x^{2} - x)^{m} - 1 = p_{m}(x)$$
(6)

of degree 2*m*. The polynomials (6) can be called *Fibonacci cyclotomic polynomials*, as the substitution u = x(x-1) turns them into the classical cyclotomic polynomials (see [4]). Hence, they admit the following factorization over \mathbb{C} :

$$p_m(x) = \prod_{j=0}^{m-1} (x^2 - x - \varepsilon^j),$$
 (7)

where $\varepsilon^j = \cos\frac{2\pi j}{m} + i \sin\frac{2\pi j}{m}$ are the values of $\sqrt[m]{1}$. The factor $x^2 - x - 1$ (for j = 0) whose zeros are $\alpha = \frac{1}{2}(1+\sqrt{5})$, $\beta = 1-\alpha$, is present in all $p_m(x)$. The quotient polynomial

$$q_m(x) = \frac{p_m(x)}{x^2 - x - 1} = \sum_{j=0}^{m-1} (x^2 - x)^j$$
(8)

has the first *m* lower terms $(-1)^h F_{h+1} x^h$ (h = 0, 1, ..., m-1) and its (pairwise conjugate) zeros are

$$\zeta_{j}, \overline{\zeta}_{j} = \frac{1}{2} \left(1 \pm \sqrt{1 + 4\varepsilon_{j}} \right);$$

$$\left| \zeta_{j} \right| = \sqrt{17 + 8\cos\frac{2\pi j}{m}} \quad (j = 1, 2, ..., m - 1).$$
(9)

1999]

PARTIAL FIBONACCI AND LUCAS NUMBERS

Examples:

$$\begin{aligned} q_1(x) &= 1; \quad q_2(x) = x^2 - x + 1; \quad q_3(x) = x^4 - 2x^3 + 2x^2 - x + 1; \\ q_4(x) &= x^6 - 3x^5 + 4x^4 - 3x^3 + 2x^2 - x + 1 = q_2(x)(x^4 - 2x^3 + x^2 + 1); \\ q_5(x) &= x^8 - 4x^7 + 7x^6 - 7x^5 + 5x^4 - 3x^3 + 2x^2 - x + 1; \\ q_6(x) &= x^{10} - 5x^9 + 11x^8 - 14x^7 + 12x^6 - 8x^5 + 5x^4 - 3x^3 + 2x^2 - x + 1 \\ &= q_2(x)q_3(x)(x^4 - 2x^3 + x + 1). \end{aligned}$$

The final factorization to quadratic trinomials over \mathbb{R} is more difficult:

$$q_3(x) = (x^2 - (1+A)x + M)(x^2 - (1-A)x + 1/M),$$

$$\frac{q_4(x)}{q_2(x)} = (x^2 - (1+B)x + N)(x^2 - (1-B)x + 1/N),$$

where

$$A = \sqrt{\frac{1}{2}(\sqrt{13} - 1)}, \qquad M = \frac{1}{4}(\sqrt{13} + 1 + \sqrt{2}(\sqrt{13} - 1));$$
$$B = \sqrt{\frac{1}{2}(\sqrt{17} + 1)}, \qquad N = \frac{1}{4}(\sqrt{17} + 1 + \sqrt{2}(\sqrt{17} + 1)).$$

Solutions of the equation $q_m(x) = 0$ for $m \le 6$ involve radicals $\sqrt{3}, \sqrt{5}, \sqrt{13}, \sqrt{17}$, and $\sqrt{21}$.

3. GENERATING FUNCTIONS

Theorem 3: The generating function of the sequence $\{F_n^{(m,k)}\}$,

$$f^{(m,k)}(x) = \sum_{n=2k}^{\infty} F_{n+1}^{(m,k)} x^n = \frac{x^{2k} (1-x)^{m-k-1}}{r_m(x)},$$
(10)

where

$$r_m(x) = x^{2m} p_m(1/x) = (1-x)^m - x^{2m}.$$

Proof: In the case k = m - 1,

$$f^{(m,m-1)}(x) = \frac{x^{2m-2}}{r_m(x)},\tag{11}$$

i.e., the series $\sum_{n=0}^{\infty} F_{2m+n+1}^{(m,m-1)} x^n$ with shifted coefficient sequence (with $F_{2m+1}^{(m,m-1)} = 1$ being the first one) is the inverse for $r_m(x)$:

J

$$\frac{1}{x^{2m-2}}f^{(m,m-1)}(x)r_m(x) = 1,$$

as can be seen from the convolution formulas (see [2], [3])

$$\sum_{j=0}^{\ell} (-1)^{j} \binom{m}{j} \binom{m+\ell-j-1}{m-1} = \begin{cases} 1 & (\ell=0), \\ 0 & (\ell=1,\dots,m). \end{cases}$$

Further, it follows from (4) that

[AUG.

$$f^{(m,k)}(x) = \frac{1-x}{x^2} f^{(m,k+1)}(x) \quad (k = 0, 1, ..., m-2).$$
(12)

From this, we obtain (10). In particular,

$$f^{(m,0)}(x) = \frac{(1-x)^{m-1}}{r_m(x)}. \quad \Box$$
(13)

Now we can verify the identity (3) in terms of generating functions. Indeed,

$$r_m(x) = (1 - x - x^2)s_m(x),$$

where

$$s_m(x) = x^{2m}q_m(1/x) = \sum_{k=0}^{m-1} x^{2k}(1-x)^{m-k-1}$$

is exactly the sum of numerators in (10) over all k. Hence,

$$\sum_{k=0}^{m-1} f^{(m,k)}(x) = \frac{1}{1-x-x^2} = \sum_{n=0}^{\infty} F_{n+1}x^n = f(x).$$

4. EXPLICIT EXPRESSIONS: m = 2

In some simplest cases, it is possible to express the numbers $F_n^{(m,k)}$ directly as functions of *n*, thus giving generalizations of the Binet formula

$$F_n = \frac{1}{\sqrt{5}} (\alpha^n - \beta^n). \tag{14}$$

For m = 2, denote

$$F_n^{(2,0)} = \sum_{r=0}^{\lfloor (n-1)/4 \rfloor} {\binom{n-1-2r}{2r}} = E_n$$

and

$$F_n^{(2,1)} = \sum_{r=0}^{\lfloor (n-3)/4 \rfloor} \binom{n-2-2r}{2r+1} = D_n$$

(the even and odd semi-Fibonacci numbers). Then, from (6) and (7), the characteristic equation

$$p_2(x) \equiv (x^2 - x - 1)(x^2 - x + 1) = 0$$

is obtained, whose roots are α , $\beta = 1 - \alpha$, and ε , $\overline{\varepsilon} = \frac{1}{2}(1 \pm i\sqrt{3})$. As $\varepsilon^6 = 1$, there is

 $\varepsilon^2 = \varepsilon - 1, \quad \varepsilon^3 = -1, \quad \varepsilon^4 = -\varepsilon, \quad \varepsilon^5 = 1 - \varepsilon = \overline{\varepsilon}.$

Using the (extended) initial conditions $E_0 = D_0 = D_1 = D_2 = 0$ and $E_1 = E_2 = E_3 = D_3 = 1$ in the general solution

$$E_n, D_n = A\alpha^n + B(1-\alpha)^n + C\varepsilon^n + D(1-\varepsilon)^n,$$

we obtain for both E_n and D_n ,

$$A = -B = \frac{2\alpha - 1}{10} = \frac{1}{2(2\alpha - 1)} = \frac{1}{2\sqrt{5}},$$

1999]

and for E_n and D_n , respectively (instead of C and D),

$$C' = -D' = \frac{1}{2(2\varepsilon - 1)}$$
 and $C'' = -D'' = -\frac{1}{2(2\varepsilon - 1)}$.

Hence,

$$E_n, D_n = \frac{1}{2(2\alpha - 1)} (\alpha^n - (1 - \alpha)^n) \pm \frac{1}{2(2\varepsilon - 1)} (\varepsilon^n - (1 - \varepsilon)^n),$$
(15)

and, in accordance to (3), $E_n + D_n = F_n$. The first summand in (15) is exactly $F_n/2$, whereas the differences

$$\delta_n = E_n - D_n = \sum_{r=0}^{\lfloor (n-1)/2 \rfloor} (-1)^r \binom{n-r-1}{r} = \frac{1}{2\varepsilon - 1} (\varepsilon^n - (1-\varepsilon)^n)$$

form a periodic sequence (0, 1, 1, 0, -1, -1) modulo 6. (See also [1].)

The generating functions (11) and (13) are

$$f^{(2,0)}(x) = \sum_{n=0}^{\infty} E_{n+1} x^n = (1-x) / r_2(x) = e(x)$$

and

$$f^{(2,1)}(x) = \sum_{n=0}^{\infty} D_{n+1} x^n = x^2 / r_2(x) = d(x),$$

where $r_2(x) = (1 - x - x^2)(1 - x + x^2)$. Then

$$e(x) + d(x) = \frac{1}{1 - x - x^2} = f(x),$$

$$e(x) - d(x) = \frac{1}{1 - x + x^2} = \sum_{n=0}^{\infty} (x - x^2)^n = 1 + x - x^3 - x^4 + x^6 + x^7 - \cdots$$

5. PARTIAL LUCAS NUMBERS

Next we apply our approach to the Lucas numbers

$$L_{n} = F_{n-1} + F_{n+1} = 1 + \sum_{r=1}^{\lfloor (n-1)/2 \rfloor} \left(\binom{n-r-1}{r-1} + \binom{n-r}{r} \right).$$
(16)

Then a definition of the (m, k)-Lucas numbers, parallel to (2), is

$$L_{n+1}^{(m,k)} = 1 + \sum_{r=0}^{\ell} \left(\binom{n-mr-k}{mr+k} + \binom{n-mr-k+1}{mr+k+1} \right) \quad (k=0,1,\dots,m-1),$$
(17)

where $\ell = \lfloor (n-2k)/2m \rfloor$; n = 2k, 2k+1,... For n = 0, 1, ..., 2k, $L_n^{(m,k)} = 0$ (k > 0), and $L_0^{(m,0)} = 2$, $L_0^{(m,k)} = 0$ (k > 0). The formula

$$\sum_{k=0}^{m-1} L_n^{(m,k)} = L_n = L_n^{(1,0)}$$
(18)

corresponds to (3).

1

AUG.

The numbers $L_n^{(m,k)}$ satisfy conditions analogous to (4) and, consequently, also the basic recursion (5). The particular solutions differ from the previous Fibonacci case only because of another initial conditions. Thus, for m = 2 (the *semi-Lucas numbers*), we obtain, instead of (15),

$$L_n^{(2,0)}, \ L_n^{(2,1)} = \frac{1}{2}L_n \pm \frac{1}{2}(\varepsilon^n + (1-\varepsilon)^n).$$
(19)

The differences $\delta'_n = L_n^{(2,0)} - L_n^{(2,1)}$ form a periodic sequence (2, 1, -1, -2, -1, 1) modulo 6. The generating functions are

$$\ell^{(2,0)}(x) = \sum_{n=0}^{\infty} L_{n+1}^{(2,0)} x^n = \frac{2 - 3x + x^2}{r_2(x)}$$

and

$$\ell^{(2,1)}(x) = \sum_{n=0}^{\infty} L_{n+1}^{(2,1)} x^n = \frac{2x^2 - x^3}{r_2(x)},$$

and their sum (18) is

$$\frac{2-x}{1-x-x^2} = \sum_{n=0}^{\infty} L_{n+1} x^n = \ell(x).$$

The general formula that corresponds to (10) here is

$$\ell^{(m,k)}(x) = \sum_{n=2k}^{\infty} L_{n+1}^{(m,k)} x^n = \frac{x^{2k} (1-x)^{m-k-1} (2-x)}{r_m(x)}.$$
(20)

6. NUMERICAL RESULTS

We give the values of $F_n^{(m,k)}$ and $L_n^{(m,k)}$ for $m \le 4$ in Tables 1 and 2 below. For the negative subscripts (in Table 1), formulas (4) were used.

7. SOME PROPERTIES

We mention here without proof the following appealing properties of $F_n^{(m,k)}$ and $L_n^{(m,k)}$, discovered after short observations:

1)
$$F_{-n}^{(m,k)} = (-1)^{n+1} F_n^{(m,k \ominus r)}$$
; (21)

2)
$$L_{-n}^{(m,k)} = (-1)^n L_n^{(m,k \odot r)}$$
 $(n = mq + r > 0, r = 0, 1, ..., m - 1),$ (22)

where \ominus is subtraction modulo *m*;

3)
$$L_n^{(m,k)} = F_{n-1}^{(m,k\,\Theta 1)} + F_{n+1}^{(m,k)};$$
 (23)

4)
$$L_n^{(m,k)} = F_{n+2}^{(m,k)} - F_{n-2}^{(m,k\oplus(m-2))},$$
 (24)

where \oplus is addition modulo *m*;

5)
$$\sum_{j=1}^{n} F_{j}^{(m,k)} = \begin{cases} F_{n+2}^{(m,k+1)} & (k = 0, 1, ..., m-2), \\ F_{n+2}^{(m,0)} - 1 & (k = m-1); \end{cases}$$
(25)

6)
$$\sum_{j=1}^{n} L_{j}^{(m,k)} = \begin{cases} L_{n+2}^{(m,1)} - 2 & (k=0); \\ L_{n+2}^{(m,k+1)} & (k=1,...,m-2), \\ L_{n+2}^{(m,0)} - 1 & (k=m-1). \end{cases}$$
(26)

1999]

These examples reveal a remarkable variety of repetition patterns, including the "rotation" (twisting) phenomenon. The usual Fibonacci-type formulas are obtained by summation over all k.

n	F _n	$m=2$ δ		δ_n		<i>m</i> = 3		<i>m</i> = 4			
		k = 0	1	O_n	k = 0	1	2	k = 0	1	2	3
-10	-55	-27	-28	1	-13	-21	-21	-21	-20	-6	-8
-9	34	17	17	0	11	8	15	7	15	10	2
-8	-21	-11	-10	-1	-10	-5	-6	-1	-6	-10	-4
-7	13	6	7	-1	5	6	2	1	1	5	6
6	-8	4	-4	0	-1	-4	-3	-3	0	-1	-4
-5	5	3	2	1	1	1	3	3	1	0	1
-4	-3	-1	-2	1	-2	0	-1	-1	-2	0	0
-3	2	1	1	0	1 -	1	0	0	1	1	0
-2	-1	-1	0	-1	0	-1	0	0	0	-1	0
-1	1	0	1	-1	0	0	1	0	0	0	1
0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	0	1	1	0	0	1	0	0	0
2	1	1	0	1	1	0	0	1	0	0	0
3	2	1	1	0	1	1	0	1	1	0	0
4	3	1	2	-1	1	2	0	1	2	0	0
5	5	2	3	-1	1	3	1	1	3	1	0
6	8	4	4	0	1	4	3	1	4	3	0
7	13	- 7	6	1	2	5	6	1	5	6	1
8	21	11	10	1	5	6	10	1	6	10	4
9	34	17	17	0	11	8	15	2	7	15	10
10	55	27	28	-1	21	13	21	6	8	21	20
11	89	44	45	-1	36	24	29	16	10	28	35
12	144	72	72	0	57	45	42	36	16	36	56
13	233	117	116	1	86	81	66	71	32	46	84
14	377	189	188	1	128	138	111	127	68	62	120
15	610	305	305	0	194	224	192	211	139	94	166
16	987	493	494	-1	305	352	330	331	266	162	228
17	1597	798	799	-1	497	546	554	497	477	301	322

TABLE 1. Numbers $F_n^{(m,k)}$

246

Ċ

n	F _n	$m=2$ δ'_n		m = 3			<i>m</i> = 4				
		<i>k</i> = 0	1	<i>U</i> _n	k = 0	1	2	k = 0	1	2	3
0	2	2	0	2	2	0	0	2	0	0	0
1	1	1	0	1	1	0	0	1	0	0	0
2	3	1	2	-1	1	2	0	1	2	0	0
3	4	1	3	-2	1	3	0	1	3	0	0
4	7	3	4	-1	1	4	2	1	4	2	. 0
5	11	6	5	1	1	5	5	1	5	5	0
6	18	10	8	2	3	6	9	1	6	9	2
7	29	15	14	1	8	7	14	1	7	14	7
8	47	23	24	-1	17	10	20	3	8	20	16
9	76	37	39	-2	31	18	27	10	9	27	30
10	123	61	62	-1	51	35	37	26	12	35	50
11	199	100	99	1	78	66	55	56	22	44	77
12	322	162	160	2	115	117	90	106	48	56	112
13	521	261	260	1	170	195	156	183	104	78	156
14	843	421	422	-1	260	310	273	295	210	126	212
15	1364	681	683	-2	416	480	468	451	393	230	290

TABLE 2. Numbers $L_n^{(m,k)}$

ACKNOWLEDGMENTS

The author was supported in part by the Science Council of Latvia, Grant No. 96.0196. He also wishes to thank Dr. Valdemars Linis for valuable discussions.

REFERENCES

- 1. P. Filipponi. Problem B-828, *The Fibonacci Quarterly* **35.2** (1997):181; Solution, *The Fibonacci Quarterly* **36.1** (1998):87-88.
- 2. H. W. Gould. Combinatorial Identities. Morgantown: West Virginia University, 1972.
- 3. J. Riordan. Combinatorial Identities. New York: John Wiley, 1968.
- 4. B. L. van der Waerden. Algebra I. Berlin: Springer-Verlag, 1971.

AMS Classification Numbers: 11B39, 05A15, 12D05
