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Problem section does not insist on original problems, we do ask that proposers inform us of the 
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BASIC FORMULAS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

^ + 2 = ^ + 1 + ^ , , ^ 0 = 0 , ^ = 1 ; 
A?+2 ~ A i + i + Ai> L 0 = 2 , L X - i. 

Also, a = (l + V5)/2 , /? = ( l - V 5 ) / 2 , F„ = (an-0")/ JT, and Ln = a"+j8". 

PROBLEMS PROPOSED IN THIS ISSUE 

B-884 Proposed by M N. Deshpande, Aurangabad, India 
Find an integer k such that the expression 
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is a constant independent ofn. 

B-885 Proposed by A, J. Starn, Winsum, The Netherlands 
For n > 0, evaluate 

B-886 Proposed by Peter J. Ferraro, Roselle Park, NJ 
For n>9, show that 

B-887 Proposed by A. J. Siam, Winsum, The Netherlands 
Show that 
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B-888 Proposed by A. Arya, J. Fellingham, and D. Schroeder, Ohio State University, OH, 
and J. Glover, Carnegie Mellon University, PA 

For n > 1, let An - [a, .] denote the symmetric matrix with atJ = j +1 and atj = min[j, j] for 
all integers / and j with i*j. 

(a) Find the determinant of An. 
(b) Find the inverse of An. 

SOLUTIONS 
nth Derivative 

B-865 Proposed hy Alexandra Lupas, University Lucian Blaga, Sibiu, Romania 
(Vol 36, no. 5, November 1998) 

Let f(x) = (x2+4)"~1/2, where wis a positive integer. Let 

5V J dxn 

Express g(l) in terms of Fibonacci and/or Lucas numbers. 

Solution by Richard Andre-Jeannin, Cosnes etRomain, France 
It is known (Theorem 2 from [1]) that 

From this, we get 

Ln(x) = 2-^Jxr74g(x). 

(2»)!4 
8W 2V5»!' 

Reference 
1. Richard Andre-Jeannin. "Differential Properties of a General Class of Polynomials." The 

Fibonacci Quarterly 33.5 (1995):453-458. 
Solutions also received by Paul S. Bruckman, H.-J. Seiffert, and the proposer. 

Divisibility by 25 

B-866 Proposed by the editor 
(Vol 37, no. 1, February 1999) 

For n an integer, show that LSn+4+Ll2n+6 is always divisible by 25. 

Solution 1 by Pentti Haukkanen, University of Tampere, Tampere, Finland 
It is known [1, (17b)] that 

Therefore, 

It is well known that a\b => Fa \Fb. Therefore, 5\Fl0n+5 and, further, 

25\5Fl0n+5F2n+l OI* 25IA2n+6 + 4«+4-
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Reference 
1. S. Vajda. Fibonacci & Lucas Numbers, and the Golden Section. Chichester: Ellis Horwood 

Ltd, 1989. 

Solution 2 by Calvin T. Long, Northern Arizona University, Flagstaff, AZ 
More generally, we show that Lr + Lr+2s is divisible by 25 if and only if 5 \s or 5 \r + s. If we 

then take r = &n + 4 and s = In +1, we have r + s = 1 On + 5 and the above result follows. 
It is well known (see, e.g., [1], p. 222) that 

T . T _i5F
s
Fr+s for ^ odd, 

. ^ + ^ + 2 , \LsLr+s forseven. 

Since 5\Ln for any n and 5\Fn if and only if 5|w, it follows that 25|Zr +Lr+S if and only if 5\s or 
5\r + s. 

Reference 
1. C.Long. "On a Fibonacci Arithmetical Trick." The Fibonacci Quarterly 23.3 (1985):221-31. 
Seiffert showed that L^ = (-1)*_1(5&2 - 2) (mod 25). 

Solutions also received by Richard Andre-Jeannin, Brian D. Beasley, Paul S. Bruckman, 
Kathleen E. Lewis, Steve Scarborough, H.-J. Seiffert, Indulis Strazdins, and the proposer 

1999 Beiongs 

B-867 Proposed by the editor 
(Vol 37, no. 1, February 1999) 

Find small positive integers a and b so that 1999 is a member of the sequence (un), defined by 
u0 = 0, ux = 1, un - aun_x +bun_2 for n > 1. 

Solution by Brian D. Beasley, Presbyterian College, Clinton, SC 
Since u2 = a and u3=a2 +b, we may find a and b so that a2 +b = 1999. The solution in 

positive integers that yields the largest a and hence the smallest b is (a, b) = (44, 63). Such solu-
tions range from (44, 63) and (43,150) to (1,1998). 

We note that since 1999 is prime and u4 = a(a2 + 2b), the only way to achieve u4 = 1999 is to 
take (a, b) = (1,999). Also, since u5 = a4 + 3a2h + h2, achieving u5 = 1999 would force a4 < 1999 
or a G {1, 2, 3,4, 5, 6}, none of which produces an integer value for b. 

Solutions also received by Indulis Strazdins and the proposer. 

Congruence Mod 25 

B-868 Based on a proposal by Richard Andre-Jeannin, Longwy, France 
(Vol 37, no. 1, February 1999) 

Find an integer a > 1 such that, for all integers w, Fan = aFn (mod 25). 

Solution 1 by Pentti Haukkanen, University of Tampere, Finland 
Note that F25 = 75025 is divisible by 25. By the well-known property c\b => Fc \Fb, we have 

25\{Fan-aFn) when a = 25k. 
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Solution 2 by Brian D. Beasley, Presbyterian College, Clinton, SC 
We use induction to show that a = 9 is a solution. 
For n = 0, F0 = 9F0 = 0. For n = 1, F9 = 34 = 9 = 9FX (mod 25). Given « > 2, we assume 

^9(n-\) = 9Fn_x (mod 25) and F9^n_2) = 9i^_2 (mod 25). For /? an integer, it is straightforward to 
verify the identity Fn = l6Fn_9+Fn_n. Then 

-675FW_1 + 9(FM_1+Fn_2)-9FW (mod25). 

Solution 3 (and generalization) by Richard Andre-Jeannin, Longwy, France 
We shall prove that Fan = aFn (mod 25) for all integers n if and only if a = 0 (mod 25) or 

a = r (mod 20), where r e {1,5,9}. 
First, if a = 0 (mod 25), it is well known that Fan = 0 (mod 25) and the two members are 

divisible by 25. 
Assuming now that a is not divisible by 25, and putting n = 1 and n = 2 in the relation 

i^, s ai^ (mod 25), we get that 
[Fa=a (mod 25), 
[FaLa = F2a=aF2=a = Fa (mod25). 

From the last relation, we get that Fa(La-l) = 0 (mod 25), and thus that La = 1 (mod 5) (recall 
that Fa is divisible by 25 only if a is divisible by 25). It is not hard to prove that the last rela-
tion holds if and only if a = l (mod 4) or, equivalently, if and only if a = 2Qk+r, where 
r €0,5,9,13,17}. 

We now need the following lemma. 
Lemma: F20lc+r = 20* + r (mod 25) only if r e {1,5,9}. 

Proof: The sequence Xk - F2Qk+r satisfies the recurrence relation 

*k = ^.^k-x-^)2°Xk_2 = \S\21Xk_l-Xk_2^2Xk_l-Xk_2 (mod25). 

Any sequence of the form (ck + d) is another solution of the recurrence 

From this, we see that, for every integer k, F20k+r = (F20+r - Fr)k + Fr (mod 25), since the two 
members satisfy the same recurrence and take the same value for k - 0 and for k - 1. Thus, we 
have to see that F20+r -Fr=20 (mod 25) and that Fr=r (mod 25). 

It is readily proven that 4 is the period (mod 25) of the sequence Zr = F20+r - Fr and that 
Zr = 20 (mod 25) if and only if r = 1 (mod 4) and, particularly, for r e {1, 5, 9,13,17}. On the 
other hand, we have Fr=r (mod 25) for r = 1,5,9 when Fl3 = 8 (mod 25) and Fl7 = 22 (mod 
25). This concludes the proof of the lemma. 

Now, we have to distinguish two cases. Assuming first that r = 1 or r = 9, we see that 20 is 
the period of the sequence Ln (mod 25) and that L20lc+r = 1 (mod 25) for r = 1 and r = 9. Now 
the sequence Yn - î 2o£+7> satisfies the recurrence 

Yn = W ^ - i " (-l)m+rrn-2 - Yn_x + Yn_2 (mod 25), 
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since r is odd. Thus, the two sequences Y„ and (20k +r)Fn satisfy the same recurrence and they 
take the same value (mod 25) for n = 0 and for n = 1 (by the lemma). We deduce from this that 
F(20k+r)n - (20£ +r)Fn (mod 25) for every integer n. 

Finally, assuming that r = 5, we see that L2Qk+5 = 1 (mod 5) [since 20k+ 5 = 1 (mod 4)] and 
that the sequence Un = F^20k+5^n / 5 is a sequence of integers, since 5 divides 20^ + 5. Now, the 
sequence U„ satisfies the recurrence 

U„ = i W - i - ( - l ) m + 5 ^ -2 - U„_, + U„_2 (mod 5). 
Thus, the two sequences U„ and (4k + X)Fn satisfy the same recurrence mod (5), and they take the 
same values (mod 5) for w = 0andw = l, since, by the lemma, we can write F20k+515 = 4k +1 
(mod 5). We deduce from this that, for every integer w, F(20k+5)n 15 = (4k + \)Fn (mod 5) and thus 
that î 2o*+5)n = (20^ + 5)Fn (mod 25). This concludes the proof 

Another Generalization of B-868 
Consider the general recurrence W„ - PWn_x-QWn_2 with the solutions U„ (£/0 = 0, Ux = 1) 

and Vn (V0 = 2, Vx = P). The sequence of integers 

satisfies the recurrence 
X„ = VpXn-\-QpXn_2. 

lip is an odd prime, it is well known that Vp = P (mod p) and that Qp = Q (mod /?). From this, 
we see that 

X^PX^-QX^^oAp). 

Reasoning as in the solution of the problem, we get that, for every integer n\ 

-j^^Un (mod/?) or that Upn - UPU„ (mod pUp). 

Solutions also received by H.-J. Seiffert and Indulis Stmzdins. 

A Polynomial for F 

B-869 Based on a communication by Larry Taylor, Rego Park, NY 
(Vol 37, no. 1, February 1999) 

Find a polynomial f(x) such that, for all integers n, 2nFn = f(n) (mod 5). 
Solution by Indulis Stmzdins, Riga Technical University, Riga, Latvia 

For n = 0,1,2,3,4 (mod 5), the period of 2nFn is (0,2,4,1,3), which coincides with the 
period of 2w. Hence, f(x) - (5m + 2)x for any integer m. 
Seiffert showed that, for n a nonnegative integer, 

2nFn^~ (5n2 -15w +16) (mod 50). 

Solutions also received by Richard Andre-Jeannim, Brian D. Beasley, Don Redmond, H.-J. 
Seiffert, and the proposer. 
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Trigonometric Diophantine Equation 
B-870 Proposed by Richard Andre- Jeannin, Longwy, France 

(Vol 37, no. 1, February 1999) 
Solve the equation 

tan-1 y - tan-1 x = tan-1 

x+y 
in nonnegative integers x and y, expressing your answer in terms of Fibonacci and/or Lucas 
numbers. 
Solution by the proposer 

Let 0 = tm~l y-tm~lx. It is clear that -nl2<0<nl2y since x and y are nonnegative. 
Thus, the original equation is equivalent to 

x+y l + xy 

which can be written as y2 - x2 - 1 + xy or 

(2y-x)2-5x2=4. (1) 
It is well known that the nonnegative solutions of the Diophantine equation Y2 - 5X2 - 4 are 
given by X-Fln and Y = Lln. From this, we see that the solutions of (1) are given by x = F2n 
and y = (F2n + L2„)/2 = F2n+l. 

Solutions also received by Charles K Cook, H.-J. Seiffert, andlndulis Strazdins. 
Errata: In the solution to problem B-864 (August 1999), in the line after display (2), insert "and 
n- j " at the end of the line. In the next display after display (2), "since Qa = 1" should read 
-since & s i - . 
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