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1. INTRODUCTION 

A colleague of ours who needed to evaluate the computational complexity of certain algo-
rithms for optimal traffic routing on multi-service networks asked us for a closed-form expression 
for the sum of the first N terms of the sequences {Xn} and {Yn} obeying the second-order non-
homogeneous recurrence relations 

Xn = Xn_x + Xn_2 + k (k, X0, and Xx arbitrary) (1.1) 
and 

Yn = Yn-x+Yn-2+" K = 0 ; i ; = l], (1-2) 
respectively. His request led us to investigate the main properties of the more general sequences 
{Tn(h, k; a, b)} (or simply {7̂ } if no misunderstanding can arise) defined as 

Tn = Tn_l + Tn_2+hn + k [T0=a,T1=b], (1.3) 

where h, k, a, and b are arbitrary integers. In doing so, beyond answering the question posed by 
our colleague, we generalize some results established in [1] and [7]. It is worth pointing out that 
Tn can be expressed either as the third-order inhomogeneous recurrence relation 

Tn=2T„_l-T„_3+h (1.4) 
with initial conditions 

T09TX, andr2 = r0 + 7J+2/i + A:, (1.4«j 

or as the fourth-order homogeneous recurrence relation 
T„ = 3T„_l-2T„_2-Tn_3 + T„_4 (1.5) 

with initial conditions given by (1 A*) and the additional condition T3 - T0 + 27J + 5h + 2k. 
As usual, throughout the paper, Fn and Ln will denote the nxh Fibonacci and Lucas number, 

respectively. 
2. CLOSED-FORM EXPRESSION FOR Tn 

The closed-form expression for Tn is, quite obviously, a powerful tool for discovering proper-
ties of these numbers. From the definition (1.3), by using standard methods (e.g., see [4]), we 
found that 

T„ = AF„_1+BF„-h(n + 3)-k (2.1) 
where 

(A = 3h + k + a, ( . 
\B = 4h + k+b. K } 

The reader can immediately check that (2.1) and (2.2) satisfy both the recurrence and the 
initial conditions in (1.3). This fact proves the validity of the above expressions. 

326 [NOV. 



ON THE SEQUENCES Tn = Tn_x + Tn_2 +hn + k 

By using (1.3) or (2.1) and the well-known identity F_n = {-Tf~lFn, the extension of Tn 

through negative values of the subscript n is readily obtained. Namely, we get 

T-n = Tn+2hn-\fh
+l + 2b-a^ J"ev;;>' (2.3) 

n n [(3h + k+a)Ln (n odd). v } 

Observe that the second identity of (2.3) is formally independent of b. 
Special eases: 

rrt(0,O;O,l) = F„, (2.4) 
£(0,0; 2,1) = 4 , (2-5) 
%(P,k;a9b) = Xn (see (1.1) and [1]), (2.6) 
Tn(i, 0; 0, l) = Yn = Fn+4-n-3 (see (1.2) and Seq. 1053 of [5]), (2.7) 
Tn(h,h;h,h) = h(Ln+3-F„_2-n-4), (2.8) 
TMk0,0) = k(Fn+l-l). (2.9) 

3. SOME SPECIAL PROPERTIES OF THE SEQUENCES {TJ 

Here we point out three properties of the sequences {Tn} that seem especially interesting to 
us. Their proofs are given in foil detail. Let us state the following. 
Proposition 1: For an arbitrarily given integer m, we have 

Tn{K k; a, b) = Tn_m{K k+mh; Tm(h, k; a, ft), Tm+l(K k; a, b)). (3.1) 

Proof: Use (2.1) and (2.2) to rewrite the right-hand side of (3.1) as 
[3h + k+Mh + AFm_l + BFm-h(m + 3)-k]FM 

+ [4h +k +mh + AFm +• BFm+l - h(m + 4) - k] Fn_m -h(n-m + 3) -k - mh 
^[AF^ + BFJF^+iAF^B 

= MFm-lF*-m-\ + FmFn-m) + B(FmF
n-m-l + Fm+lFr,-m) " K" + 3) - & 

= AFn_l+BF„-h(n + 3)-k = T„(h,k;a,b) [from I26 of [3] and (2.1)]. D 

Proposition 2: For given integers h, k, a, b, hh and all n, we have 

Tn(h,k;a,b) = Tn(hl,k-(n + 3)s;a + ns,b + (n-l)s), (3.2) 
where s = hl-h. 

Proof: From (2.1), it is patent that identity (3.2) can be obtained by solving the system 

fj4 = 3/i1 + £1+a1, 
1^ = 4*! + ̂ +*!, (3.3) 
[h(n + 3) + k = hx(n + 3) + kv 

Put hx = h + s in (3.3) and use the third equation to obtain kl-k-{n + 3)s. Then use (2.2), 
and replace the above expression for kx in the first two equations of (3.3) to get al=a+ns and 
^ = ft + (fi-l)$. D 

Finally, we observe [see (2.7)] that there exist values of the parameters (/?, k\ a, b) for which 
Tn has the form 
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Tn=Fm+p(n): (3.4) 

where p(n) is a first-degree polynomial in n. Whereas such a problem is put forward: find condi-
tions on {h, k; a, b) for Tn to have the form (3.4). We give the following proposition. 

Proposition 3: For arbitrarily given integers a, b, and s, we have 
TM-i+^~^b-Ls_2--4a;a,b) = Fn+s-n(Fs_l+a-b)-Fs+a. (3.5) 

Proof: From (2.1), (2.2), and I26 of [3], it is evident that (3.4) can be obtained if 

\A = 3h + k+a = Fs, 
[B = 4h + k+b = Fs+l. 

(3.6) 

Subtracting the first equation of (3.6) from the second equation, one obtains 
h = Fs_l+a-b, (3.7) 

and from the first equation, 
k = Fs-3h-a = Fs-3Fs_l-4a + 3h [from(3.7)] 

= 3Z>-4_2-4a. (3.8) 

Expressions (3.7) and (3.8) give the left-hand side of (3.5). Its right-hand side can be 
obtained from (2.1) and (2.2), after some manipulation involving the use of the identities 
3iVi ~ 4-2 = 4 , 4 4 - i " 4-2 = 4+i> and I26 of [3]. D 

Examples: The right-hand side of (2.7) emerges from the choice (a,b,s) = (0,1,4). As a further 
example, the choice (a, b, s) = (10,7,8) yields the numbers 2 (̂16, - 37; 10,7) = 4+8 - 16w-11. 

4. BASIC IDENTITIES INVOLVING THE NUMBERS Tn 

Here we give a brief account of the basic identities involving the numbers Tn. To save space, 
the number of detailed proofs will be kept to a minimum (Subsection 4.2). 

4.1 Results 
Generating function 

By using (2.1), (2.2), and [6, p. 53], we get 

y „ T _ (h + k+a-b)x3-(2h + k + 3a-2b)x2+(3a-h)x-a ' (4 U 
^0

X n" x4-x3-2x2+3x-l .- ' ) 

Observe that, for Tn = Yn [see (1.2)], the numerator on the right-hand side of (4.1) collapses 
to -x . 
Simson formula analog 

= (-l)"C + (/tf* + £ ) ( ^ ^ 

where 
C=A2 + AB-B2 = 5h(h + k + 2a-b) + k(k + 3a-h)+a2+ab-h2. (4.3) 
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From (4.2), (4.3), and (2.7), we see that 

a(Yn) = nFn+l-2Fn + l-(-iy. (4.4) 
Sums and differences 

[4 , [T„ + h(n + 3) + k] - 2[/?(w + 3) + k] (m even), 
Fw K + 2Tn_x + A(3» + 7) + 3*] - 2[h(n + 3) + k] (m odd). Tn+m + T„„m = ,, r „ . „^ . ,.,„.. . m . „ t l „,,.,„ . „ . t l ,_.. , , (4.5) 

[Fm[T„ + 2T„_X + h(3n + 7) + 3£]-2hm {m even), 
7"+m_:?"-'M = {zm[r„+%+3)+/t]-2/?/M (j» odd). ( 4 ' 6 ) 

Duplication formula 
For « even (resp. odd), let m = « in the first (resp. second) identity of (4.5) [resp. (4.6)] to 

obtain 

Observe that (4.7) is formally independent of h. 
Finite sums 

71=0 Z 

From (4.8), (1.1), (1.2), (2.1), and (2.2), we obtain the special identities 
$N(T^X) = fc(FN+3-N-2) + X0FN+l + Xl(FN+2-l) (4.9) 

and 
SN(T=Y) = FN+6-(N2 + 7N + l6)/2, (4.10) 

which answer the questions that gave rise to our study. 
Further, we get the identities: 

JL USATl.il M2 n AT 1 C* hS AT2 V T ATT T h(N3 + 3N2-7N-l5) k(N2-N-4) , _, / / l i n 
2 ^ ^ = ^ 7 ^ + 2 - 4 + 3 - 1 . "—~ 7> l + a + 2h, (4.11) 
«=o J z 

l f ^ V „ = ^ - ^ [ 2 W - 1 ( ^ + 6)-2iV-3]-A:(2Ar-l), (4.12) 

i f ^ ( - i ) w - " 2 " r 2 n = r3„ -hN, (4.i3) 

the last of which generalizes (19) of [7]. 

Convolution (for Tn = Yn) 

±Y„YN_, , * W ^ - W * ' + ' ^ ' + " W + 6 s (4,4) 

-H8.-*Hl~ + »'*X"Z + aW+<* (414') 
where J^(1) denotes the rfi1 term of the Fibonacci first derivative sequence [2]. 
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4.2 Proofs 
Proof of (4.2) (a sketch): From (2.1) and (2.2), after a good deal of calculation involving 

the use of some well-known Fibonacci identities ([3], [6]), one gets 

cr(Tn) = (-iyC+h2
 + A[(hn + k)Fn_4-2hF„_5] + B[(hn + k)Fn_3-2hF„_4] 

= (-iyC+h2 + (hn + k)(AF„_4 + BF„_3)-2h(AFn_5 + BFn_4) 
= (-1)"C + (hn + k) Tn_3 - 2hT„_4 + h2 + (hn + kf - 2h2(n -1) - 2hk, 

whence (4.2) is immediately obtained. • 

Proof of (4.6) (for m even): By using (2.1) and (2.2), rewrite the left-hand side of (4.6) as 
A(F„+m_l - F„_m_!) + B(Fn+m - F„_J - 2hm 

= AL„_xFm + BL„Fm - 2hm (from I24 of [3]) 
= Fm(AL„_y + BL») - 2hm = Fm(AF„_2 + BF„_, + AF„ + BFn+l) - 2hm 
= Fm{Tn_, + Tn+1+2[h(n + 3) + k]}-2hm 
= Fm[T„ + 2T„_1+h(3n + 7) + 3k]-2hm [from (1.3)]. D 

Proofs of (4.8), (4.11), and (4.12): From (4.8) and the recurrence (1.3), write 

«=0 w=0 w=0 
N-l N-2 ( N > 

= yZT„+y£i; + H \H:=Y,(hn + k) 
n=-l n=-2 V »=0 J 

= SN(T)-TN + Tl + SN(T)-TN-TN_1 + T_1 + T2+H, 
whence 

SN(T) = 2TN + TN_, - 27_, - T_2 - h 
= TN + TN+l-h(N + l)-k-(T_1 + T0-k)-H [from (1.3)] 
= TN+2-h(N + 2)-k-h(N + \)-k-(Tl-h-2k)-H 
= TN+2-2h(N + l)-b-H. (4.15) 

Take the meaning of H into account and use (4.15) to obtain (4.8). The identities (4.11) and 
(4.12) can be proved by means of a similar technique. • 

Proof of (4.13) (Hint): 
(i) Identity (4.13) can be proved by means of the technique used by Zhang [7] after replac-

ing (18) of [7] by the identity Tn = 2Tn_x - Tn_3 +h, which can be obtained readily from (1.3). 
(ii) Alternatively, use (2.1) to rewrite the left-hand side of (4.13) as 

(-1)" \4L{^) (-2)"^-, + Bjjfy (-2)"F2„ - f (f) (-2)" [h(2n + 3) + *] j , 

and use the Binet form for Fibonacci numbers along with (3.3) and (3.4) of [2]. • 
Proofs of (4.14) and (4.14f): First, use (2.7) and the Binet form for Fibonacci numbers to 

get 
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Y„YN-„ = (Fn+4 -n- 3)[FN_n+4 + „ - (tf + 3)] 

~5 
_LN+S ( l)"LN_2n+nF^_{N + w ^ _ n F ^ ( 4_16) 

-n2+nN-3FN_„+4+3(N + 3). 

Then, after denoting the left-hand side of (4.14) by CN and letting S[x(ri)]:= T,%=0x(ri) for 
notational convenience, use (4.16) to write 

CN = ±S[LN+S] - \S[(-\)"LN_2 „]+S[nFn+4] - (N + 3)S[F„+4] 

-S[nFN_n+4]-S[n2]+NS[n]-3S[FN_n+4]+3(N + 3)S[l] (4.17) 
! — Ul U j "T OTJ U4 Oe Ug ~T Oj ~ Ug 4" Op. 

By using the Binet forms for Fibonacci and Lucas numbers, the geometric series formula and 
some well-known identities (I: and I40 of [3] inclusive), one obtains the partial results, 

(i) SX = (N + \)LN+%I5, (vi) S6 = N(N + l)(2N + l)/ 6, 
(it) S2=2FN+l/5, (vii) S7 = N2(N + l)/2, 

(iii) S3 = NFN+6-FN+7 +13, (viii) Sg = 3(FN+6-5), 
(iv) S4 = (N + 3)(FN+6 -5), (ix) S9 = 3(N + 3)(N +1), 
(v) S5 = FN+1-5(N + 4) + 7, 

among which (ii) is quite interesting per se. Finally, from (4.17) and (i)-(ix), one finds 
^(N + l)LN+s-2FN+l _ N3 + 1W2 + 131N 

from which, by applying properties of Fibonacci-Lucas sequences, (4.14) can be obtained immedi-
ately. The right-hand side of (4.141) can be found by using (2.5) of [2] to rewrite the first two 
addends on the right-hand side of (4.14) as 

FNI& + CV+8 + V̂+IO ~ 8ZW+8 - 5LN+9) / 5 = FNI% ~ 4(LN+10 + LN+s) /5 

= F(%-4FN+9 (from I9 of [3]). D 

"5. FURTHER WORK 

From (4.14), one may observe that 
Q,:=(nLn+g + F„+l0)/5 (5.1) 

is an integer for all n. In fact, it is immediate to check that Qn obeys the recurrence 

a=Gu+&-2+Jw7 [&=n;a=33]. (5.2) 
This fact suggests the idea of studying properties of the more general sequences {£?„(£)}, 

defined by 

a(*)=a-i(*)+a-2(*)+^ [&(*)=«; ac*)=*L (5.3) 
the elements of which have the closed-form expression 

Qn(k) = aFn_l+hFn + (nLn+k+l-Lk+2Fn)/5. (5.4) 
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Much more generally, one might investigate properties of the sequences {R„}, defined by 

Rn^K-i+Rn-i+f* [Ro = a-Rx=bl (5.5) 

where fn is any integer-valued function of n. This study will be the aim of a future paper. For 
the time being, we confine ourselves to showing a compact form for R^. Namely, we get 

Rn = aFn_l+bFrj^frFn_rH. (5.6) 
r=2 

Observe that, as special cases, Rn = Q„(k) (resp. Tn) for /„ = Fn+k (resp. hn + k). It can be 
noted that letting fn = hn + k in (5.6) yields the expression 

^ = Tn=aFn_l+bFn+h(Ln+2-n-3)+k(F^ (5.7) 

which can be proved easily to be an equivalent form for (2.1). As further special cases, we urge 
the interested reader to prove that, if fn = Xn, then 

R„ = (a-l)Fn_l + (b-X-l)Fn+
A

 X2 "x^i- ( 5 8 ) 

whereas, if /„ = F„ (resp. L„) and (a, b) = (0,1), then 

^ = Qn(0) = "L"+1 + 2F" = (p + 1)Z,"+1" F"+l = /%j (5.9) 

(see (5.4) and [2]), and 
R„ = nF„+1, (5.10) 

respectively. 
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