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1. INTRODUCTION 

There are many rational termed convergent series in analysis that sum to an irrational number. 
One well-known example can be found via the Taylor expansion of the exponential function, 
where in particular the base of the natural logarithm is represented as an infinite sum of the 
reciprocals of n\. The irrationality of e can be deduced directly from this series via an argument of 
Euler's (see [2]). In recent times, a number of authors [3], [4] have noted that other irrational 
valued series may be constructed by replacing n\ in the series for e by the product vxv2. ..vw, where 
{vw} is a strictly monotone increasing sequence of positive integers. However, in such cases, one 
needed to impose the additional assumption that n\v$>2...vn for each n. In this paper we shall 
demonstrate that irrational valued series may similarly be constructed from the terms of a general-
ized Fibonacci sequence, which are generated via the recurrence relation 

where P, Q e Z with |P|> 1, \Q\ = 1, and U0 = 0, Ux = 1. The goal here is to establish the most 
general result possible by focusing attention on the following factorial-like expression 

I(n) = UkUk+l->Uk+m, 

where k eN\{0} and / :N—»N is an arbitrary strictly monotone increasing function. Such an 
expression will naturally reduce to the type of products considered above when k = l and 
f(n) = n-l. One advantage in dealing with the sequence {Un} is that we no longer need to 
impose the previous divisibility assumption, as this can be avoided by exploiting a fundamental 
property of generalized Fibonacci sequences that concerns the occurrence of a given prime factor 
in the sequence {£/„}. Unfortunately, the application of this property together with the argument 
used will require us to restrict the values of the ordered pairs (P, Q) to those prescribed above. 
To prove the desired result, we will employ here (as in [3]) an argument similar to that used by 
Euler in establishing the irrationality of e. However, before reaching this point, it will be neces-
sary in Section 2 to acquaint ourselves with a few preliminary results, beginning with the afore-
mentioned property of generalized Fibonacci sequences. 

2* MAIN RESULT 

In establishing the irrationality of the series in question, we shall need to invoke within our 
argument the following technical result: For any given m G N \ { 0 } , there exists a positive integer 
N(m) > 0 such that m \ I(n) whenever n > N(m). This result, which holds irrespectively of the 
choice of k and f(n)9 can be deduced directly from a divisibility property of generalized Fibonacci 
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sequences. In order to state this property succinctly, we shall employ a number-theoretic function 
Xrs(n) as introduced in [1], which is defined below. 

Let rs and r + s be the roots of any quadratic equation of the form x2 - ux + v = 0, where u 
and v are integers. Noting by the Symmetric Function Theorem that (r - s)p~~l is an integer for an 
odd prime/?, define the symbol (-^) by the congruence 

(r-sy-^^f^ modp, 

where it is understood that (^r) is the residue of least absolute value; whence {^f) = 0, +1, or -1 
according as (r - s)p~l is divisible hyp, is a quadratic residue of/?, or is a quadratic non-residue of 
/?. In the case p = 2, the symbol (•—•) is defined by: 

1 if rs is even, 
if rs is odd and r + s is even, 
if rs and r+s axe both odd. 

Now, if n- PilP22 "mPkk> where pl>p2, -,Pk a r e the different prime factors of n, define the 
functional value of Xrs(n) as the least common multiple of the numbers 

Pi . r,s 1 = 1,2,... ,*. 

The important divisibility property that appeared as Theorem XIII in [1] can now be stated as 
follows. 

Theorem 2.1: Suppose {£/„} is a generalized Fibonacci sequence generated with respect to the 
relatively prime pair (P, Q). If the number n = p?lp%2 •••/£*, where px, p2, . . . ,f t are the differ-
ent prime factors of n, is relatively prime to rs = Q and if X - Xrs{ri), then Ux=0 mod n. 

It is clear from Theorem 2.1, when {UJ is generated with respect to the relatively prime pair 
(P, Q) with |2I = 1, that given any m eN\{0} the sequence contains an element divisible by m. 
This fact does not allow us automatically to deduce the above technical result, since the product 
I(n) in certain cases may never contain the term Ux [i.e., when Xg(m) <k]. To deal with situa-
tions such as these, observe first from the above definition of Xr< that 

XQ{n)>Prl . r^s 
*-, Pi 

>rf'-\p,-\]>tf>-x. 

Now, if given any positive integer t that contains a prime factor pt >k with a7 >2, then 
X(J^m) > Z?/*'"1 >pt>k. So, provided that (tin, Q) = l, the product I(ri) will contain, for n large, 
a term divisible by tm, namely xQ(tm)- Thus, we can guarantee in the present case, as \Q\= 1, that 
I(n) is divisible by m for suitably chosen n. Indeed, if one formally sets 

t(m) = min {t e N\ {0}: XQ(tm) >k), 

then it is clear that m \ I(n) for n > N(m), where 

N(m) = min{n eN\ {0} | f(n) + k> XQ(t(m)m)}. 
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Having established the required divisibility property of /(«), we now need only introduce two 
further preliminary results before reaching the main theorem of this section. Both of these results 
will be used throughout the main argument of Theorem 2.2. 

Lemma 2.1: Suppose / : N -» N is a strictly monotone increasing function, then for all r, m G N , 
we have f(m+r)-f(m) >r. 

Proof: Due to the strict monotonicity of/, it is clear that f(m+i)-f(rn+i-l)>l for 
J = 1, 2, ...,r. Adding these r inequalities together and noting that the left-hand side is a tele-
scoping sum equal to f(m+r)-f(r), one deduces the desired inequality. D 

Lemma 2.2: Suppose {£/„} is a generalized Fibonacci sequence generated with respect to the 
relatively prime pair (P, Q), where \P\> 1 and \Q\ = 1. Then the terms \Un| form a strictly mono-
tone increasing sequence of integers. 

Proof: We argue using induction. Clearly \U2\-\Ul\ = \P\-l>0. Now suppose the result 
holds for an integer n = m>l, that is, \Um\> \Um_11. Now, by an application of the reverse tri-
angle inequality, observe that 

V^inUJ^PUn-QU^HUJ 

= (\P\-\)\Um\-\Um_l\>0, 

noting here that the final inequality follows from the inductive assumption and the fact that 
\P\ - 1 > 1. Consequently, the result holds for n = m + l. • 

Remark 2.1: With the above restrictions placed on the values of the ordered pairs (P, 0 , it is 
clear from Lemma 2.2 that I(ri) ̂  0 for n > 1. Thus, the terms of the series in question are well 
defined. 

Theorem 2.2: Let {an} be a bounded sequence of integers with the property that an ^ 0 for 
infinitely many n. Suppose further that {Un} is a generalized Fibonacci sequence generated with 
respect to the relatively prime pair (P, Q), where |P | > 1 and \Q\ = 1. If I(n) = UkUk+l...Uk+f^, 
where k e N\ {0} and / : N -» N is a strictly monotone increasing function, then the resulting 
series J^=\Ctn II{ri) converges to an irrational sum. 

Proof: We first establish convergence of the series. Observe that by setting r - n -1 for 
»eN\{0} and m- 1 in Lemma 2.1, we have f{n) >n-1+/(1) > n - 1 . If k ^ 1, then each of 
the f(n) + l terms in the product |/(w)| are by Lemma 2.2 greater than or equal to \U2\ = \P\. 
Thus, |/(w)| > |P| / ( w ) + 1>|Pr, while, if k = l we have \I(n)\ = |C/2ll^3l-l^+/(i,)l ^ \p\f(n) * 
|P|W_1. In any case, we have |aj/|/(w)| < D/\P\n~l, where D is the upper bound for {an}\ 
consequently, the series is absolutely convergent. 

Suppose now, to the contrary, that the sum of the series is a rational number given by AIB, 
where A,BGZ with B^O. By the above technical result, there exists an N(\B\)>0, with 
B\I(m) whenever m>NQB\). Choose m>N(\B\) such that D + l< \Uk+f(m)+l\ and consider 
the following equality, 
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«,*i-wljh-Uffi-c. • 0 ) 

Since by definition I(n)\I(m) for n<m, it is clear that C E Z . We now determine upper and 
lower bounds for | C |. First, note that the modulus of I(m) I I(ri) for n > m +1 in the series on the 
right of (1) is given by 

I(m) 
I(m + r) = (\U> k+f(m)+l •Ut k+f(m+r )ir1, 

where r = 1,2,.... Now, by Lemma 2.2, each of the f(m+r)-f(m) terms in the denominator of 
the above expression are in modulus greater than or equal to \Uk+f^+l |, so by Lemma 2.1, 

Wk+f(m)+\"'Uk+f(m+r)\ - \^k+f(m)+l\ - Wk+f{m)+l\ • W 

Hence, using the triangle inequality and (2), we have 

my 
|C| = 2> m+rI(m+r) r=l 

^1 
I(m+r) 

D D 
^x\Ut k+f(m)+l I \ut k+f(m)+l - 1 <1, 

noting here that the last inequality follows from our initial choice of m. To obtain a lower bound 
for \C\ set p- min{« > w + 1 :a„ *• 0} so |ap | > . Then, by an application of the triangle and 
reverse triangle inequality, observe that 

\C\ = 
I(m) 

§ V r I(P+r) an 
m 
up) I« I(m) 

-YD 

p+r I(p+r) 

Km) 
I (p + r) 

= J. 

Clearly, from the definition, p>m + \>m, thus, as in (2), we have for each r > 1, 

HP) 
I (P + r) 

Consequently, 

\C\>J = Hm) 
HP) 

1-I.D 

- (\Uk+f(p)+l ' 

< L _ _ 
\Uk+f(p)+l\ 

HP) 

•u, k+f(p+r) ,)\rl 

< 
\u> k+f(m)+l I 

I(P+r) 
Hm) 
HP) 

Hm) 
HP) 

i -S D 

1-

r=l|f4+/(m)+ll 

D 1 
\Uk+f(m)+\\~^\ 

>o, 

where again the last inequality follows from the initial choice of m. Therefore, we have produced 
a C G Z such that 0 < \C\ < 1, this obvious contradiction implies that the original assumption is 
false. Hence, the sum of the series in question is irrational. • 
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Remark 2.2: It was noted in [1] that no simple analog of Theorem 2.1 exists for the sequence of 
generalized Lucas numbers; thus, the above argument cannot readily be extended to establish a 
similar result involving these number sequences. 

We now consider a simple consequence of Theorem 2.2. 

Corollary 2.1: The base of the natural logarithm e is a nonalgebraic number of degree two. 

Proof: Suppose that there exist a,b,c e Z with a & 0 such that ae2 + be + c = 0; then 

ae + ce'1 --b. (3) 

Now set (P, 0 = (2,1), k = 1, and/(/i) = /t in Theorem 2.2. If a„=a + c(-l)"+1 we deduce, as 
UM = 7i, that 

°0 ^ 00 1 CO / i \ 7 7 + l 
-1 £^§(^§p5T*-2 ) ' 

is an irrational number. Consequently, the number on the left of (3) is also irrational while the 
number on the right is clearly rational This obvious contradiction thus establishes the above 
result. D 

In view of Theorem. 2.2, one may suspect that a similar result may hold for such factorial-like 
expressions as I(n) = U^riy"U^n)+k, where i e N and / : N - » N \ { 0 } is a strictly monotone 
increasing function. At present, the author has been unable to supply an argument establishing, or 

. a counterexample refuting, this conjecture. However, in the case of f(n) = 2n and k = 0, the 
author has been able to verify the irrationality of the series sum by direct calculation. To conclude, 
we now outline the derivation of the sum of these series. 

Proposition 2.1: Suppose {Un} is a generalized Fibonacci sequence generated with respect to the 
relatively prime pair (P, 0 , where P > 1, Q = - 1 ; then 

Y 1 ^ P 2 + 4 - W P 2 + 4 
La TJ OP 
w=l U2" 

Proof: Consider the following telescoping sum 

^ xr A ( i y _^ = y _J i 

La 1 2n+l LJ I 1 2" i v2"+ 1 

„=i i-x n=i \i-x • i-x 
1 1 1-x2 i- •X 

If |x| > 1, then the above partial sums tend to a finite limit given by 
^ V 2 " 1 

,=i 1-x2 1-x2 

Now C/w = (aw - pn) I {a- P), where a and fi are the roots of x2 - Px -1 = 0. Consequently, as 
afi - - 1 , we have, for |/?| > 1, 

1 Y 1 = Y 1 =f P2" = l 

a-fi£iUr ^a2"-/?2" hl-P2n+X W 
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By setting a = (P--JP2 +4)12 and /3={P + ̂ P2 +4)12 in the above (noting that | a | < l and 
\P\>\) one obtains the desired sum. Note here that the irrationality of the series sum follows 
from the presence of the term ^P2 + 4, since P2 + 4 is never a perfect square for \P\ > 1. • 
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NEW PROBLEM WEB SITE 
Readers of The Fibonacci Quarterly will be pleased to know that many of its problems 

can now be searched electronically (at no charge) on the World Wide Web at 

http://problems.math.umr.edu 
Over 23,000 problems from 42 journals and 22 contests are referenced by the site, 

which was developed by Stanley Rabinowitz's MathPro Press. Ample hosting space for 
the site was generously provided by the Department of Mathematics and Statistics at the 
University of Mirrouri-Rolla, through Leon M. Hall, Chair. 

Problem statements are included in most cases, along with proposers, solvers (whose 
solutions were published), and other relevant bibliographic information. Difficulty and 
subject matter vary widely; almost any mathematical topic can be found. 

The site is being operated on a volunteer basis. Anyone who can donate journal issues 
or their time is encouraged to do so. For further information, write to: 

Mr. Mark Brown 
Director of Operations, MathPro Press 
P.O. Box 44024 
Baltimore, MD 21236 
bowron@mathpropress.com (e-mail) 
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