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In [1], Dazheng studies Fibonacci matrices, namely matrices M such that every entry of every 
positive power of M is either 0 or plus or minus a Fibonacci number. He gives 40 such four-by-
four matrices. In the following, we give an interpretation of these matrices, from which we give 
simpler proofs of several of his theorems. We also determine all two-by-two Fibonacci matrices. 

Let £ = e2mls be a primitive fifth root of unity. Then £" is a root of the irreducible polynomial 
X4 + X3 + X2 + X + l, so the field Q(Q is a vector space of dimension 4 over Q with basis 
B = {1, Cj, ^2, C3} • The ring of algebraic integers in Q(£) is Z[£]. The units of this ring are of the 
fo rm( -£T^ , 0<m<9, TIGZ, where ^ = (1 + V5)/2 = H^ 2 +C 2 ) -

If a G Q ( ^ ) , then multiplication by a gives a linear transformation of Q(£), regarded as a 
vector space over Q, and hence a matrix M{a) with respect to the basis B. For example, let 
a = 0 = -(C2+<;3). Then 

f ^ - ^ - C 4 = i-i+K+K2, 

<K3 = - M - K . 
Therefore, 

M ( 0 = 
(0 

0 
-1 
-1 

1 
1 
1 
0 

-1 

This is the transpose of the matrix Fl0 of [1]. Similarly, we have the following matrices: 

m&)= i 
- i <n 
- i - i 
0 -1 

0 1 0 0 
M(?f) = 

(0 -1 0 
1 -1 -1 
1 0 -1 

v l 0 0 

0 
-1 
-1 

M(<rv) *A\ -

(0 0 1 0̂ 1 
- 1 0 1 1 
- 1 1 0 0 
- 1 0 1 - 1 

M{<jTl) = 
f-\ 1 0 - ] 

0 0 1 - ] 
- 1 1 0 0 
-1 -1 0 -1 

M(<rV)= 

Mitf1) 

- 1 0 0 
-1 -1 0 
0 -1 -1 
0 0 - 1 

n 
1 
1 
0 

M(£2f1) = 
(Q -1 1 -\\ 

1 - 1 0 0 
0 0 0 - 1 
1. -1 1 - 1 , 

, M(£Y1) = 
'f-\ l - l O 
- 1 0 0 0 
0 0 - 1 1 

.-1 1 -1 Oj 

(\ 0 - 1 \\ 
0 1 - 1 0 
1 0 0 0 
0 1 - 1 1 

M(CYl) = 
(\ -1 1 0\ 
0 0 0 1 
0 - 1 1 0 
1 -1 0 \j 

In the notation of [1], these are the transposes of the matrices F20, FH, F3, F%, F4, Fl6, Fn, F2, 
and Fl5, respectively. Letting F2l_j = -Ft gives a set of 20 matrices corresponding to the numbers 
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±Cm<f>n, 0<m<4, n = ±l. Note that any one of these numbers (often called fundamental units), 
together with - £ , generates the group of units of Z[£]. 

Various properties of the matrices Fi follow immediately from the above. The following four 
propositions can be proved by straightforward calculations, but it is perhaps more interesting to 
see "conceptual" proofs. 

Proposition 1 (= Proposition 4 offlj): Let 1 < i < 20. There exists k such that F~l - Fk. 

Proof: Let Ft correspond to s = ±C"f- Let Fk correspond to s~l = ±Cmfn. Then FtFk 

corresponds to multiplication by e~ls - 1, so FtFk -1... D 

Proposition 2 (= Proposition 5 offlj): Let 1 < i < 20. Then det(^) = 1. 

Proof: The determinant is the norm of the corresponding number (see [3]). It is well known 
that the norm of a unit (of the ring of algebraic integers) is ±1. Since the norm of a number from 
Q(0 can be expressed as a product of two numbers times the product of their complex con-
jugates, the norm must be nonnegative. Therefore, the norm of a unit is 1. Since the numbers 
±^n<j>n are units, the determinants of the corresponding matrices must be 1. • • 

Proposition 3 (= Proposition 6 of[lJ): Let 1 < /, j < 20. Then FjFj =FJFi. 

Proof: Multiplication in Q(£) is commutative; therefore, multiplication of the corresponding 
matrices is commutative. D 

(i i i n 
-1 0 0 0 
0 - 1 0 0 ' 

[o o - l o) 

An easy calculation shows that A is the transpose of M(-^4). Note that the powers of -<^4 give 
all ten tenth roots of unity in Q(Q. 

Proposition 4 (= Proposition 7 of [1]): Let 9X = {Fk \ k = 1, 3, 7,8,10,11,13,14,18,20} and let 
&2 = {Fk | * = 2,4,5,6,9,12,15,16,17,19}. 
(a) Let i = 1 or 2. Given Fh, Fk <E % there exists Fn e 9t such that FhFk = ±Fn

2. 
(h) If Fh G 3\ and Fk G 3F2, then there exists n such that FhFk - An. 
(c) Let/ = 1 or2. If^,/% GS^, then ^10w = ̂ 10w for all WGZ. 

Proof: The matrices in Ŝ  correspond to numbers of the form ±C"<f> and those in 3*2 corre-
spond to numbers of the form ±(£m<f>~1. The properties of the matrices now follow from the form 
of these numbers. D 

We now come to the main theorem. It was proved in [1] by fixing indices 1 < h<20 and 
0</ < 9 and expressing the entries of F™k+1 in terms of Fibonacci numbers of the form ±Fak+b or 
0 for k = 0,1,2,.... This gives the additional information that, for each index h, each Fibonacci 
number occurs in F£ for some n (in fact, this property was included in the definition of a Fibo-
nacci matrix in [1]). With a little more care, this can be deduced from the following proof. 

Define the matrix 

A = 
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Theorem 1 (= Proposition 1 of[lJ): Let 1 < h < 20 and let n be a positive integer. Every entry 
of F£ is either 0 or ±Fm for some Fibonacci number Fm9 where m = n -1, n, or n +1. 

Proof: Fix ?i > 1. For each a mod 5, let 

sM= £ ("X 
/sfl (mod 5) 

Lemma 1: 5g„{a) = ^UCa\^C)n-
Proof: The right side is 

y=oV /̂ /=o 

Since Zf=0 Ch = 0 when £ # 0 (mod 5) and equals 5 when h = 0 (mod 5), the result follows. D 

Lemma 2: For any values of a and h, the difference gn(a)-gn(h) is either 0 or ±i^ for some 
Fibonacci number Fm, where m = n - 1 , w, or w +1. 

flrw/- Using the fact that l + £ = -C~V, l + ̂ 2 = ̂ " 1 , 1 + £ 3 = C V ~ \ and l + £4 = -<V, 
we find that 

5s,(«)-5&(6)=tro,(i+r)" - £<r*'(i+<rr 
— / _ //%\n (/"a+^n 4- f~a~2n _ fb+2n _ f—b—2n\ 

Since a + 2w = 2(fi - 2d) (mod 5), we find that we have the following cases: 

(1) Ca+2n+Ca~2n = £+Cl = fl and C~2a+Cn+2a = C2 + C3 = -0, 
(2) £a+2w + Ca~2n = C2 + C = "^ and ^~2 a + Cw+2a = £+<T* = ^_1, 
(3) Ca+2n+C"-2* = 2 and C~2a + C"+2* = 2. 
Similarly, we have three cases for the terms involving h. 

The coefficient of (-f)n is therefore 0 or one of the following: 
(a) ±(r1-(-^))-±V5, 

.(b) ±(r1-2)==FV5r1, 
(c) ±(-0-2) = Wty. 

The corresponding coefficients of $~n are 0 and +^5, + ̂ 5^ , and +J5$~l, respectively. 
Putting everything together, we find that 5gn(a) -5gn(b) is, up to sign, either 0 or one of the 

following: 

V5((-^-rn)=(-i)"5F„, 
V5((-^r1-r"+1)=(-ir15JF„_„ 
V5((_^ri_r«-i) = ( _ i r i 5 F n + i . 

This proves the lemma. D 
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We can now prove Theorem 1. The matrix Fh
n corresponds to a number of the form 

{±Cn<t>±l)n, which is of the form ±<^(l + £»w or of the form ± ^ ( l + ̂ 2)w. We may ignore the + . 
Consider first Ca(l + Qn. We must multiply this times a power of ^ and then express the 

result as a linear combination of elements of the basis J5. Since the exponent a is already arbitrary, 
we need only show that when we express a number of the form a(\ + Qn in terms of B the coef-
ficients are Fibonacci numbers (up to sign) or 0. By the binomial theorem, we have 

CQ + O" = t("j]CJ+a = i>„('-«)<r=t(Sn(i-a)-g„(4-a))C. 
j=Q\Jy / = o 1=0 

Lemma 2 yields the result in this case. 
Now consider <^(l + ̂ 2)w, which equals 

1L(i)t2j+a = E & ( 3 - 3 a t f [since 2j+a = i (mod 5) =>73=3-3a] 

= i(S,(3» ,-3fl)-«,(2-3a))^. 
1=0 

The result again follows from Lemma 2. D 
The Two-by-Two Case 

Theorem 2: Let M be a two-by-two matrix such that each entry of Mn for n = 1,2, 3,... is either 
0 or plus or minus a Fibonacci number. Suppose in addition that not all of the entries of Mn are 
bounded as n —> 00. Then ±M is a power of one of the following matrices: 

(0 ± 1 W 1 ± 1 W 2 ±1) (-1 ±1) 
{±1 i )> [±\ o)> [+\ -\y \+\ 2)-

Remark: It is well known, and will follow from the proof of the theorem, that 

and that 

From the point of view used above, the first matrix arises from multiplication by <j> with respect to 
the basis {1, (/)} of Q(V5), and the second matrix arises from multiplication by (f> with respect to 
the basis {l,</>2}. 

Proof: We start with the following. 

Lemma 3: Suppose an, n - 1,2,..., is a sequence of nonzero integers such that each an is plus or 
minus a Fibonacci number and such that X = lim an+l I an exists. Then X is of the form ±<j>r for 
some integer r > 0. If the sequence an is unbounded, r > 1. 

Proof: Let aw = ± i ^ . The limit 2 cannot be of absolute value less than 1 since the an are 
integers. Clearly, X = ±l is equivalent to the boundedness of a„, so henceforth assume the 
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sequence an is unbounded. It follows easily that limF^ =oo? hence X\mmn = oo. Therefore, 
l i m i ^ / ^ = l / V 5 , s o 

lA|=lim m"+l
m <j)m^-mn =lim^»+i-^. 

Since the powers of <f> are discrete in the positive reals, mn+l-mn must eventually be constant, say 
r. Since mn-^co> r > 1. This proves the lemma. D 

Since the elements of the powers of a matrix satisfy a second-order recursion, we need the 
following result. Recall that we can define Fibonacci numbers for negative indices by F_n = 

Lemma 4: Let aha2,... be an unbounded sequence of integers satisfying a second-order linear 
recursion with constant coefficients: an+2 - uan+l+van. Suppose each an is either 0 or ±Fm for 
some Fibonacci numbers F . Then there are integers r and s (possibly negative) and a choice 
8 - ±1 of sign, independent of n, such that an - SFrn+s for all n (we allow Fibonacci numbers with 
negative indices; see above). 

Remark: This result follows, for example, from work of van der Poorten (see the remarks at the 
end of this article). However, it seems reasonable to give a self-contained proof. 

Proof: We have not assumed that the coefficients u, v of the recursion are rational numbers, 
so we first show that this must be the case. The recursion shows that each vector (an+l, an) is a 
linear combination of (a2,aj) and (a3,a2). Suppose detfj j l = 0. If a{=0, then a2 = 0, so 
an - 0 for all n, contrary to our assumptions. Therefore, assume ax ^ o. Then all these vectors 
are multiples of (a2, ax), which implies that 

for all n>\. Therefore, \an\ ->oo (otherwise l ^ / a j < 1 and the sequence is bounded) and 
an+\lan I= a2 Ia\- Since \an \ is a Fibonacci number [it cannot be 0 by (1)], Lemma 3 implies that 
a2lax~ ±<t>r for some r > 1. Since all positive powers of ^ are irrational, this is impossible. This 
contradiction shows that the determinant is nonzero. 

Since 

2)(" 
and the matrix is invertible, the rationality of ax, a2, a3, a4 implies that u and v are rational. 

Remark: The recursion an+2 = 7mn+l + (4-27r)an, which is satisfied by the rational numbers 
an - 2W, shows that the rationality of the numbers an is not sufficient to guarantee that u, v are 
rational. 

Let a and fi be the two roots of X2 - uX - v. If a * ft, then there are constants A and B 
such that an- Aan + Bf3n. There are several cases to consider, depending on the relative 
magnitudes of a and p. 
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Casel. \a\ > \fi\ 
If A = 0, we can replace the pair (a, /?) by (fi, 0) in the following argument (and eventually 

conclude that A ^ 0). Therefore, assume A & 0, so lim an+l/an = a. Since the sequence is un-
bounded, \a\ > 1, so an * 0 for all sufficiently large «, and each a„ is plus or minus a Fibonacci 
number. By Lemma 3, a-±(j>r for some r > l . Therefore, a is irrational, so the polynomial 
X2 - uX - v is irreducible in Q[X]. Since J3 is also a root, it must be the conjugate ±(-$)~r of 
a. 

Let a - sign(a), so a - a<j>r. Let 5n be the sign of an. Note that 

A = lim -

This implies that <5W = sign(>4)<jw for w sufficiently large. Also, an - SnFm , so 

Therefore, 
dT" V5 

A = lim ̂ Sna-n(j>mn-nr = s i g ^ l i m ^ 

Since the powers of ^ are discrete, eventually /ww - wr must stabilize: there exists 5 G Z such that 
mn-nr -s for all sufficiently large n. This also yields A = ±</>s 145. Since the terms with ™̂ 
cancel in the equation 

^ T +*(o( -0 - r ) " = «„ = « „ = sign(^)a"Fra+J 

_ Slgn(^4)q- /Arn+s _ f_A-lyn+s\ 

it follows that B - -sign(A)(-<f>)~s IV5. We have proved that an - ±(±l)nFrrj+s. By changing the 
signs of r, s if necessary, we can absorb the (+l)w. This yields the result of the lemma in Case 1. 

It remains to show that the other cases do not occur. 
Case 2. a--p 

In this case, u = a+/3 = 0, so the recursion is an+2 -van. Since the sequence is assumed to 
be unbounded, |v| > 1 and some a * 0. Therefore, a +2k+21a^+ik = v2 e Q. Since the numbers 
anQ+2k - an^lk a r e nonzero, they are Fibonacci numbers up to sign. Lemma 3 implies that v2 - <jf 
for some r > 1. This is impossible. 
Case 3. a = /? 

In this case, an- Aan + Bnan. Hence, an * 0 for sufficiently large n, and lim an+l/an = a. 
By Lemma 3, a = ±(/>r for some r > 1. Since a = u 12 e Q, this is impossible. 

Cme 4. a = /3, a * ft 
Since an = Aan+Ban^ Q for all n, we must have B=A. Write A = Reiy and a = pew. 

Then 

an = Rpnein9Mr +Rpne~in0-ir = 2Rpncos(n0 + y). 
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Suppose first that 012K £ Q. By a theorem of Weyl (see [2], Theorem 445), the sequence of 
fractional parts of ndlln is uniformly distributed in the interval [0,1]. In particular, there is a 
sequence of integers nf such that nfi I 2K + {0 + 2y) I 4K -kt is very small for some integers kf, 
and the limit is 0 as i -» oo. Therefore, cos{nt0 + y) is very close to cos(2^t;. -0/2) = cos(-0/ 2) 
and cos((n+l)0 + p) is very close to cos(0/2) = cos(-0/2). Therefore, lima„.+11an = p. 
Lemma 3 shows that p-f for some r > 0. But v = afi = p2 , so ^2r e Q>, which implies r = 0. 
Therefore, the sequence an is bounded, contrary to assumption. 

Now suppose that 0/2K = WIz G Q , where w,z-eZ. Choose . j % such that an * 0. Then 
a«o+(fc+i)z / a«0+fe - Pz for £ = 0,1,2,.... Lemma 3 implies that pz = (jf for some r > 0. Therefore, 
^2r = p2z = vz G Q, so r - 0, which is impossible. 

It is easy to see that Cases 1-4 exhaust all possibilities for a, /?. This concludes the proof of 
Lemma 4. D 

Corollary: Suppose A,B, a,/? are complex numbers such that for each n>\ the number an = 
Aan+B(5n is either 0 or plus or minus a Fibonacci number, and such that the sequence an is 
unbounded. Then there are integers r > 1 and s such that (assume \a | > |/?|) 

a = ±f, P = ±(-<t>Tr 

and 

Proof: This is a restatement of what was proved above, combined with the fact that the 
sequence an uniquely determines the numbers A,B,a,J3.D 

We can now prove Theorem 2. Suppose the matrix Mis as in the statement of the theorem, 
and let a,fi be the roots of the characteristic polynomial ofM The case a = ft corresponds to 
Case 3 in the proof of Lemma 4, and the reasoning below shows that it cannot occur, so we 
assume a ^ ft. Then M is diagonalizable, so there are complex numbers a, b, c, and d with 
ad = bc^0 such that 

w _ _ ! _ ( * b\(a 0\(d -b M~ad-bc{c d){0 ft){-e a 
Therefore, 

Mn = ada"-bcftn -ab{an - ft") 
ed(a"-ft") adftn-bean ad-bc\ 

We assume \a\ > \ft\. By the Corollary, 

for some integer r. Since not all entries are bounded, r > 1. If ad = 0 then be * 0; looking at 
the first entry in the matrix yields /T e Z for all w, which is impossible. Similarly, be * 0. By the 
Corollary, 

-4*C = ±-C and - ^ - = Ti ad-be 4S ad-be V5 
for some integer 5. Therefore, 
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ad be 
be - S ad-be ad-

SO 5=±1,±2. 
Consider the upper right corner of Mn. Since ab^O, the only possibility allowed by the 

Corollary is ab I {ad -bc) = ±l/j5. Similarly, cd I {ad - be) - ±1 / V5. Therefore, ab = ±cd. 
Since the matrix (l/

Q
a jjO commutes with (<% ®\ we can replace the matrix (a

c %\ with 
(a

c jYl/
0

a ^ l and, therefore, assume a = d = l. This makes the calculations simpler. We now 
have the following equations (the choices of signs are independent): 

1 _ ad/{ad-be) 
be b = ±c, {-<j)2)\ s = ±l ,±2. bcl {ad-bc) 

Since a,/3 G Q ( V 5 ) , the diagonalizing matrix (a
c %\ may be assumed to have entries in Q(V5). 

Therefore, the case b = c, s=±l and the case b = -e, s = ±2 cannot occur. Checking all solu-
tions in the remaining cases and substituting into the formula for M shows that ±M is the r* 
power of one of the matrices in the statement of the theorem. The same calculation yields that 
each entry of the powers of the matrices in the theorem is plus or minus a Fibonacci number. This 
completes the proof of Theorem 2. • 

In [1], the problem is posed to find all four-by-four Fibonacci matrices. This can be attacked 
by the above method. One difficulty is proving the analog of Lemma 4 for fourth-order recur-
rences. A result of van der Poorten ([4], pp. 514-15) says that if an infinite sequence of elements 
{ho,h, •••} chosen from the members of a nondegenerate (i.e., no ratio of characteristic roots of 
the recurrence is a root of unity) recurrent sequence {a0, ah...} again forms a recurrent sequence, 
then there is an integer d > 0, and a set R of integers r with 0 < r <d, such that for all h we have 
bh = a^+hd and rh e R is periodic mod d. Since the entries in the powers of a matrix form a recur-
rent sequence, and the Fibonacci numbers form a nondegenerate sequence, this result applies, and 
we find that the eigenvalues of the matrix must be roots of unity times powers of </>. This reduces 
the problem to the consideration of several cases for the characteristic roots. 

The other difficulty is the calculation involving the matrix (° %\, since it must be replaced by 
a four-by-four matrix. The calculations are probably possible, but surely would be more difficult. 

To conclude, we give a few more four-by-four Fibonacci matrices. They are not as good 
examples as Fh...,F2o since they all have powers that are reducible. However, they indicate vari-
ous possibilities that can arise. They were chosen using the fact that their eigenvalues must be 
roots of unity times powers of (j>. 

Let 
M = 

(0 
0 
0 
1 

0 
0 
1 
1 

0 
- 1 
1 
0 

-I) 
- 1 
0 j 
1 

This is obtained by considering multiplication by C,<j> on the basis ({1, ^,.£ £#}. 
almost reducible in the sense that 

^3 5 0 0^ 
M5 = 

This matrix is 

5 
0 
0 

8 
0 
0 

0 
3 
5 

0 
5 
8 
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This of course can be predicted from the fact that (^) 5 = (j>5 

2. The matrix 
(0 0 1 \\ 

0 
- 1 
1 

0 
- 1 
2 

- 1 
1 
0 

- 2 
0 
1 

is obtained from multiplication by 0 on the basis {1, (f1, £ £<f>2}. The fifth power of this matrix is 
reducible. 

3. The matrix (0 
0 
0 
1 

0 
0 
1 
1 

0 
-1 
0 

-1 

- 1 
-1 
-1 

is obtained from multiplication by £3$ on the basis { l , ^ , ' ^ , ^ } o f Q(^^3)> where £3 is a 
primitive third root of unity. The third power of this matrix is reducible. 

4. The matrix -
(o o i 0 

0 0 - 1 2 
-1 -1 0 0 1 

v l 2 0 0) 
is obtained from multiplication by i<f> on the basis {1, <j>y /', i<j>) of Q(^, /'). More generally, any Fibo-
nacci matrix tensored with a permutation matrix, in this case f\ XX will give a Fibonacci matrix. 
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