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1. INTRODUCTION 

Let N denote the nonnegative integers, and let P denote the positive integers. Define T: 
2N +1 -» 2N +1 by T(x) = ^ - , where 2J 13x +1 and 2j+l \ 3x +1. The famous 3x +1 Conjecture 
asserts that, for any x e2N+l , there exists I : G N satisfying Tk(x) = 1. Define the least whole 
number k for which Tk(x) = 1 as the total stopping time a(x) of x, and call the sequence of iter-
ates (x, T(x)9 T2(x\...) the trajectory of x. Note that a(x) = oo if the trajectory of x diverges, 
and that cr(l) = 0. Furthermore, if k e P is fixed, and x is the smallest positive odd integer satisfy-
ing Tk{x) = 1, we say that x is minimal of level k. In this paper, we employ a specific partition of 
the positive odd integers to show that if x is minimal of level k > 3, then a(x) = a(2x +1). In 
addition, a set of positive integers satisfying <r(x) = cr(2x +1) is characterized. Using a related 
partition, wre then show that the arithmetic progression (1 mod 16) is a "sufficient set," in other 
words, to prove the 3x + l Conjecture, it suffices to prove it for all x = 1 mod 16. In [4], Korec 
and Znam proved that the arithmetic progressions (a mod pn\ where 2 is a primitive root (mod 
p2) and (a, p) = 1, are sufficient sets; however, this result does not apply when/? is a power of 2. 

A thorough summary of some known results on the 3x + l Conjecture is given in Lagarias [5] 
and Wirschlng [6]. It is important to observe that our formulation of the function T(x) differs 
from that in [3], in which T: P -> P is given by T(x) ~\ if x is even and T(x) = •2^hI is x is odd. 
As a consequence, our total stopping times are different. For example, (j(27) = 41 under our 
formulation, whereas a(27) = 70 in [3]. 

It is the authors hope that the results of this paper, or perhaps the techniques used in proving 
the results, will be useful in computing na(x), which counts the number of positive integers y < x 
such that Tk(y) = a for some nonnegative integer k. The strongest known results along this line 
are given in Applegate and Lagarias [1]. 

2* TOTAL STOPPING TIMES OF MINIMAL NUMBERS 

We begin by constructing a partition of the positive odd integers. For a, A G P , denote the 
arithmetic progression (am + b)^=0 by (am + b). Next, define subsets of 2N +1 as follows: 

Sl={j(22n+lm + 22n"l-ll 

S2 = {j(22n+2m + 22n+l + 2ln -1), 
neP 

S3={J(22n+lm + 22" + 22"-l-l), 

S4=\J(22n+2m + 22"-i). 
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It is easy to verify that [Sh S2, S3, S4] is a partition of 2N +1. We will also need the following 
two preliminary lemmas, both of which follow directly from the definition of T(x). 

Lemma 1: Let x e 2N +1, and let k e N satisfy k < a{x). Then a(Tk(x)) = a(x) - k. 

Lemma 2: Let x e 2N +1 with x ^ 1. Then a(x) - o(4x +1). 

The following two lemmas give total stopping time properties of certain subsets of the posi-
tive integers obtained from our partition. For notational convenience in the upcoming proofs and 
throughout this paper, we write 2j || n (2J exactly divides n) if 2j \ n but 2j+l \ n. 

Lemma 3: If x e Sx u S2 - (1), then <r(x) = a(2x +1). 

Proof: First, consider the case in which x e Sx with x * 1. By the definition of Sl9 x is of the 
form 22n+lm + 22n~l -1. Application of the function 7 yields: 

where 2J || 32""1 • Am + 32""1 - 1 . Note that 32""1 - 1 = 2 mod 4, therefore j = 1. Furthermore, 
r2w"1(2x +1) = 32"-1 • 8m + 32""1 • 2 - 1 . Thus, 4 • T2n~\x) +1 = T2n~\2x +1). Applying Lemma 2, 
we obtain a(T2n-\x)) = a(T2"-l(2x +1)). Hence, by Lemma 1, it follows that <r(x) = a(2x +1). 

Next, consider the case xeS2. By definition of S2, x is of the form 22n+2m + 22n+l + 22" - 1 . 
Application of the function T yields: 

^n(x) = 32n-4m + 32n
;2 + 32n-l^ 

where 2y || 32w • Am + 32n • 2 + 32" - 1 . Since 32w - 1 = 0 mod 4 and 32w • 2 = 2 mod 4, we see that 
7 = 1. Furthermore, 72/2(2x +1) = 32w - 8m + 32w • 4 4- 32w • 2 - 1 . Hence, 4 • r2w(x) +1 = T2n(2x +1). 
Applying Lemma 2 yields a(T2n(x)) = a(T2n(2x + l)), so, using Lemma 1, we conclude that 
<T(X) = <T(2X + 1). D 

Lemma 4: If x e AŜ  U IS4 - (3), then there exists j ; < x satisfying cr^y) = a(x). 

Proof: First, consider the case in which x GS3. By definition of £3, we have x = 22w+1m + 
22w +22""1 - 1 . If /i = l, x = 8m + 5, so choosing j = 2m + l and applying Lemma 2 gives the 
result. If n>l, we can choose y e2N + l satisfying 2 j + l = x. Note that y GS2, SO using a 
computation similar to that in the proof of Lemma 3, we see that 4>T2n~2(y) + l = T2n~2(x). 
Applying Lemmas 2 and 1, we obtain a(y) - a(x). Now consider the case in which x GS4 with 
x ^ 3 . By definition of S4, we have x = 22n+2m + 2 2 n - 1 . Again, choose >> so that 2j/ + l = x. 
Clearly, yeSl9 so again by the proof of Lemma 3, it follows that 4• T2n~l(y) +1 = r2w_1(x). 
Noting that y±\ and applying Lemmas 1 and 2, we obtain o{y) - <r(x). D 

The following result pertaining to total stopping times of minimal numbers can now be 
proved. 

Theorem 1: If x is minimal of level k > 3, then a(x) - a(2x +1). 
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Proof: Let x e 2N +1 be minimal of level k > 3. Note that x * 1 and x * 3. Using the defi-
nition of minimality and Lemma 4, we see that x <£S3^JS4. Therefore x e ^ u ^ , so Lemma 3 
implies that a(x) - a(2x +1). • 

Remark: The arguments in Lemmas 3 and 4 actually show that the appropriate trajectories 
coalesce after a certain number of steps, irrespective of whether or not they converge to 1. This 
is in part due to the fact that if f(x) = 4x +1 and x is odd, then T(f(x)) = T(x). Note also that if 
g(x) = 2x4-1, the relation T(g(x)) = g(T(x)) holds true for x odd. Furthermore, it can be 
demonstrated by straightforward computation that if gatb(x) = ax + b with a-b = 1 and x is of 
the form 2wiw + 2"- 2 - l or 2nm + 2n~l + 2n~2-1 with n>3, then ga,b(Tk(x)) = Tk(ga^b(x)) for 
k <n-3. A study of the interaction of various linear functions ga,b(x) with T(x) under com-
position deserves further exploration. 

3* A SUFFICIENT CONDITION FOR TRUTH OF THE 3x + 1 CONJECTURE 

By use of a similar technique, it can now be demonstrated that to prove the 3x + l Conjec-
ture, it suffices to prove it for all positive x = 1 mod 16. This improves a result given in Cadogan 
[2]. 

Lemma 5: Suppose that for all positive x = 1 mod 8 there exists i e N such that Tk(x) = 1. 
Then, for all x e 2N +1. we can find k e N such that 7* (x) = 1. 

Proof: For 1 = 1,2,3,4, define 3£ = £, n (&w + 7), where [ShS2,S3,S4] is the partition of 
2N +1 used in Lemmas 3 and 4. We repartition the positive odd integers as follows: 

2 N + 1 = (8W + 1)U(16W + 3)W(16W + 11)U(8W + 5 ) U 7 ; ^ ^ W ^ L J 7 ; . 

NOW let x G 2N +1 be given. We can assume that x * 1 and x * 3, as the theorem follows trivi-
ally for these values of x. We examine the following cases: 

Case 1. If xe(8&! + l), by the hypothesis of Lemma 5, there exists k e¥ such that 
7*(x) = l. 

Case 2. Let x e (16m + 3). Then x = 2y +1 for y e (8/w +1). A simple computation shows 
that r2(x) = T2(y). By the hypothesis of Lemma 5, there exists k e¥ such that 7*(y) = l, hence 
7*(x) = l. 

Case 3. Let x e (16/w +11). Then T(x) e (8m 4-1), so the hypothesis of Lemma 5 guarantees 
that there exists k e P satisfying Tk(T(x)) = 1. Thus, Tk+\x) = 1. 

Case 4. Let x e Tx u 7 .̂ If x e 3J, we can write x = 22w+1m + 22""1 - 1 , where n > 2. Then 
r2w-2(x) = 32n-2-8w + 32w-2-2-l, and since 32""2 = 1 mod 8, we see that T2n~2{x) e(8m + l). If 
x GT2, we can write x = 22"+2m + 22M+1+22*-l, where w£2. Then r2w-1(x) = 32w-1-8m + 32"-1 

• 4 + 32""1 - 2 - 1 , which simplifies to ^ ( x ) = 32""1 • 8m + 2(32" -1) +1, and since 32w - 1 = 0 mod 
4, we obtain T2n~l(x) e(8m + l). Invoking our hypothesis yields Tk(x) = 1 for some k. 

CaseS. L e t x e J 3 ^ r 4 . If x G73, thenx is of the form 2 2 n + W2 2 "+2 2 " - 1 - l , where n>2. 
Choose y satisfying 2y +1 = x. By a computation similar to that used in the proof of Lemma 4, 
we see that 4- T2n'2(y) +1 = T2n~2(x), hence T2n~l(y) = T2"-l(x). If n = 2, j e(16m +11), and if 
w>2, )> G2J, so by the proofs of Case 3 and Case 4, respectively, there exists k satisfying 
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7*00 = 1, hence 7*(x) = l. If x eT4, then x is of the form 22n+2m + 22n - 1 , where ?i>2. Le t j 
satisfy 2y +1 = x. Again, 4 • T2""1^) +1 = P^-^x), so T2n(y) = T2n{x). But j e 3J, so by Case 
4, there exists k satisfying Tk(y) = 1, hence 7*(JC) = 1. 

Case 6. Finally, let x e(8w + 5). Define /(w) = 4w +1. Choose the smallest positive^ satis-
fying f(y) = x for n e P. Note that j £(8w + 5), since/(2m + l) = 8??i + 5. I f j ^ l and j ^ 3 , 
we can invoke the previous cases to obtain k satisfying Tk(y) = 1. Since T(f"(y)) = T(y), we 
obtain 7(y) = J(x), and therefore Tk(y) = 7*(x) = 1. If j = 3, then T(fn(yj) = 7(3/) = 7(3) = 5, 
hence T2(fn(y)) = 1, so J2(x) = 1. If y = 1, we have / * ( » = 1 + 4 + ••• +4W = (4W+1 - 1 ) / 3 , hence 
T(fn(y)) = 1, so T(x) = 1. Thus, in all cases, we have displayed k eN for which Tk(x) = 1. D 

According to Lemma 5, the arithmetic progression (8m +1) constitutes a sufficient set. The 
next theorem improves the sufficient set. 

Theorem 2: Suppose that for all positive x = l mod 16, there exists i e N such that Tk(x) = 1. 
Then, for all x e 2N +1, we can find i €N such that Tk(x) = 1. 

Proof: Let x = 8w+1 be given. A straightforward computation yields 
7^ /^ ^m 9x + 7 72w + 16 9w + 2 
7z (64x + 49) = — = —— = — r - ^ - , 

2J 2J 2J~3 

where 2j || 9x + 7, and hence 2-;~31| 9m + 2. Also, 

7fl(x) = 7fl(8ni + l) = - ^ , 

where 2^||9#i + 2. By unique factorization, k=j-3, and hence T2(x) = 72(64x + 49). Since 
64x + 49 is in the arithmetic progression (16wi + l), we can invoke the hypothesis of Theorem 2; 
therefore, there exists k satisfying Tk(T2(x)) = 1. Thus, J*+2(x) = l, and since x was chosen 
arbitrarily from (8/w +1), we can apply Lemma 5 to obtain the result. • 

Further strengthening of the result given in Theorem 2 certainly seems possible. An inter™ 
esting question concerns which progressions of the form (2nm + l) constitute "sufficient sets" 
whose convergence to 1 guarantees the truth of the 3x + l Conjecture. Perhaps it can be proved 
that convergence of the set of numbers of the form {2n +1: n = 1,2,3,...} is sufficient. 

4. OTHER NUMBERS WITH EQUAL TOTAL STOPPING TIMES 

We now characterize an additional set of positive odd integers satisfying cr(x) = cr(2x + l). 
Let Lk={xe2N + l\cr(x) = k}, and define Gx = {fn(x)\n eN} KJ {/*(2x + l) |« G N } , where 
f(w)=4w + l. For convenience, we set Gx_x =0. We inductively define the j * exceptional 
number of level k to be the smallest positive integer Xj satisfying x. ^Lk- U/=0 G^_,. 

Note that for j = 0, Xj is simply the minimal number of level k. Also observe that Lemma 2 
and Theorem 1 tell us that all numbers in G^ are of level k, hence xx is the smallest positive inte-
ger of level k not accounted for by G^, x2 is the smallest positive integer of level k not accounted 
for by GXQ U GXl, and so forth. It turns out that the exceptional numbers share the same total 
stopping time property as the minimal numbers. 
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Theorem 3: Let Xj denote the j * exceptional number of level k with k >2 and x- > 3. Then 
cr(Xj)=cr(2xj+V). 

To prove Theorem 3, we need the following two preliminary lemmas. 

Lemma 6: Let Xj denote the j * exceptional number of level k with k > 2 and x • > 3. Then 
Xj £(16iw + 3)u(8m + 5) 

Proof: Since x0 is minimal of level k with A:>2 and x- >3 , we have x0 £(16m + 3)<u 
(&w + 5), hence the Lemma holds for j - 0. Let j > 1. We prove that x- £(16w + 3) by contra-
diction. If x, e(l&m-3), pick J satisfying 2y + l = x/. Clearly a(y) = o-(x/), hence y Ghk. 
Since j> <x- and x̂  is the smallest number in Lk -UL0G^_,, we see that j eG*^ for some i < 
j - 1 . Hence y = fp(xj) or y = fp(2xt + 1) for some /?eN. Since /?>1 yields j e(8/w + 5), 
which is impossible, we have p = O. Hence j = xt or y = 2xt +1. But y = x,- yields 2xz- +1 = x •, 
so Xj G Gx. with i < j - 1 , contradicting the definition of x.. Hence j = 2xt +1. But j G (8iw +1) 
forces x,. to be even, again a contradiction. If Xj = 8w + 5, then select j = 2iw +1. Since <7Q>) = 
a(Xj) and y<*j, we see that j GGX/ for some i <j-l. But xy- = f(y), hence xy- GGX., contra-
dicting the definition of x̂ -. Hence Xj <£ (&w + 5) D 

Lemma 7: Let 53 and $4 be subsets of 2N + 1 as defined in Section 2. Let x- be the j * excep-
tional number of level A" with k > 2 and x • > 3. Then x • ^ 5 3 u 5 4 . 

Am/* Suppose xy e ^ u ^ . Then x, is of the form 22n¥lm + 22n + 22""1 - 1 or 22"+2m + 
22" - 1 . Furthermore, by Lemma 6, we have n>2. Choosey satisfying 2y +1 = x.. As in the 
proof of Lemma 4, we have a(y) = <J(XJ), therefore, by definition of xjy we must have y eGXj 
for some i < j - 1 . Therefore, y = fp(xt) or y = fp(2xi +1) for some p e N . If p > 1, we have 
J G ( 8 W + 5), hence Xj e(16wi + l l) , which contradicts the fact that S3<uS4 and (l&w + ll) are 
disjoint. Thus p = 0, so either y = xt or y = 2xt +1. But y = xf. yields 2xy +1 = Xj, hence x,- G GXj 
for i < j - 1 , contradicting the definition of x^. Thus, we have y - 2xt +1, so 4x,- + 3 = x7-. 

A simple computation shows that xt must be in S3<uS4. We therefore have proven that Xj G 
S3<u$4 implies there exists xt GS3*US4 with xf- <x/-. Applying a simple induction and using the 
definition of S3 and $4 yields xp G(8w + 5)u(16w-f 3) for some p. But this contradicts Lemma 6, 
hence x̂  G S3 u 5^ is impossible. • 

Proof of Theorem 3: Consider the partition of 2N +1 as defined in the proof of Lemma 5. 
By Lemmas 6 and 7, we see that Xj ^(16#i-f3)u(8/w + 5 ) u ^ u l ^ . Hence Xj e(&w + l)u(16wf + 
H)u2Ju2^. Applying Lemma 3, we obtain a(Xj) = cr(2Xj+l). 0 

Our final theorem enables us to conclude that there exists an exceptional number x. of level k 
for all k > 2 and for all j > 0. 

Theorem 4: For all j > 0 and k > 2, Lk - U/=0 Gx._x * 0. 

Proof: We proceed by induction on j . Since Lk * 0 is well known [3], the result holds true 
for 7 = 0. Now assume Lk -U/=0 GXi_x * 0 for all j<n. We wish to show that Lk -UJL0

 G*,-i ^ 0• 
For all j<n, let xy be the smallest integer in Lk -U/=0Gx._x. Note that the sequence {xy-} is 
strictly increasing, and that Xj £ GXi for i < j - 1 . 
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Consider the number w = 64x„_1 + 49. We first prove that w £Gx. for all i <n-l by contra-
diction. If w GGx. for some i < n - 1 , then w = fp(xi) or w = fp(2xt +1) for some /? e N. Since 
M> G(8#I + 1), we must have p = 0. Therefore, w = x,- or w = 2xt +1, and since the latter contra-
dicts oddness of xi9 we have w = xr But this implies that xn_l < xt, contradicting the fact that 
{Xj} is strictly increasing. Hence w gGx. for all / <n-1. Furthermore, as seen in the proof of 
Theorem 3, we have <J(W) = cr(x/7-i) = k, hence w is in Lk - {J"=0 Gx._x, so Lk- U^o Gxt_{ ^ 0. • 

Remark: An interesting question concerns whether a// numbers x satisfying a(x) = a(2x +1) can 
be identified. The general question of finding all numbers x satisfying a(x) = a(ax-l-b) for arbi-
trary whole numbers a and b looks difficult. Development of functions such as f(w) = 64w + 49 
which satisfy the condition a(x) = cr(f(x)) appears to be a promising approach. 
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