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1. INTRODUCTION 

Consider the partition of the natural number n given by 
n = nl+n2 + ->+ns, (I) 

where s > 1 and nl>n2>'">ns. The Young diagram of this partition consists of the nodes 
(f, j), where l<i<s, and for each fixed i, 1 < j < nt. The rightmost node in row i, namely (i,«,.), 
is called a hand. The lowest node in a given column is called a foot. At least one node, namely 
($, ns) is both a hand and a foot. 

A hand (/,«;•) and a foot (k,j)- may be connected by what is known as a hook as follows. 
Let an arm consist of the nodes (/, m) such that j < m < ni; let a leg consist of the nodes (h, j) 
such that i <h<k. The hook is the union of all nodes in*the arm and leg. The corresponding 
hook number (or hook length) is the number of nodes in the hook, namely ni - j + k - i +1. 

Let the integer t>2. We say that a partition is Pcore if none of the hook numbers are divis-
ible by t. Note that /-core partitions arise in the representation theory of the symmetric group (see 
[5]); such partitions have also been used to provide new proofs of some well-known results of 
Ramianujan (see [1]). Let ct(n) denote the number of/-core partitions of n. It is well known that 

f l if n = jjn(m + l\ 
0 otherwise. 

If n = ~m(m +1), then the unique 2-core partition of n is given by 

W = /II + (WI-1) + ( / I I -2 ) + - - - + 2 + 1. (II) 

Recently, Granville and Ono [2] have shown that if t > 4, then ct(n) > 0 for all n. 
In this note, we completely characterize 3-core partitions. We show that they are linked to 

the quadratic form x2 + 3y2. As a result, we obtain an independent- derivation of Granville and 
Ono's formula for c3(n) (see [2]). Finally, we derive recurrences that permit the evaluation of 
c4(n) ajid c5(n). Note that whereas the formula for c5(n) given by Garvan et al. [1] requires the 
canonical factorization of w +1, our method for computing c5(n) does not. We also tabulate these 
three functions, as well as some related functions, in the ranges 1 < n < 100 and 1 < n < 50. 

2* PRELIMINARIES 

Let the integer n > 0, let the integer t>2,letp denote an odd prime, and let x be a complex 
variable with |x |<l . 
Definition 1: Let ct(n) denote the number of/-core partitions of n. 

Definition 2: Let bt(ri) denote the number of partitions of n such that no part is divisible by t. 
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n* - •*• * T w / x (Legendre symbol if/? fa, Definition 3: Let (a //?) = < 
[0 ifp|a. 

Definition^ Let E(n) = ±n(3n-1). 

Lemma: 

(1) f^cMx" = f\(\-xt"yli\-x"); 
71=0 «=1 

p; X*r(»K=f[0-O/(i-^); 

p; 6 ( («)=/K»)+I(-I)*0<«-«E(*))+P(»-^(-*))) ; 
Ar>l 

ft) f[(\-x»? = ±{-\?{2k + \)x^-
n=l A:=0 

(5) If .71 = 4 (mod 5), then p(n) = 0 (mod 5). 

Remarks: The identities (1) and (2) are well known (see [1], [2], and [7]). Note that (3) follows 
from (2), (4) is due to Jacobi, and (5) is due to Ramanujan. 
Notation: Suppose that a partition of n has r distinct parts and that the summand nt occurs kt 
times, where 1 < i < r. Then we occasionally write 

r 

Theorem 1: Conjugate partitions have the same hook numbers. 
Proof: If n > 1, consider the map that sends each partition of n to its conjugate. Thus, hands 

are interchanged with feet, arms with legs, and hooks with hooks having the same hook numbers. 

\p{n) ifw<f, 
Theorem 2: cf(n) = i 

1/KO-f Xn = t. 
Proof: We define cf(0) = p(0) = 1. If 1 < « < / - 1 , then each hook in a partition of n has 

length at most / - 1 , so every partition of n is /-core, so ct(n) = p{n). Now let n = t. Each parti-
tion t = (t- j)V, where 0 < j < t -1, has a /-hook and thus is not /-core. On the other hand, if the 
least part in a partition of t is strictly between 1 and t, then each hook number is at most / - 1 , so 
the partition is /-core. Therefore, ct(t) = p(t) - 1 . 

% 3-COME PARTITIONS 

By means of Theorems 3 through 8 below, we characterize all 3-core partitions. 

Theorem 3: Each of the following partitions is 3-core: 
(a) n = 2m(2m-2)(2m-4)-'(4)(2); (c) n = m2(m-l)2 . . .2212; 
(b) n = (2m-l)(2m-3)(2m-S)...(3)(l); (d) n = m(m-l)2(m-2)2..,22l2. 
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Proof: Since the partitions in (c) and (d) are the conjugates of those in (a) and (b), it 
suffices, by virtue of Theorem 1, to prove (a) and (b). We first prove (a) by induction on m. The 
statement is true by Theorem 2 when m = l. Let n' = (2m + 2)(2m)(2m - 2).. . (4)(2). If we omit 
the first row or the first two columns in the Young diagram for nf, we obtain the Young diagram 
for n. Therefore, by the induction hypothesis, it suffices to show that all hooks from the new 
hand, namely (1,2m+ 2), to the feet in the last row, namely (/w + 1,1) and (wi + 1,2), have hook 
numbers not divisible by 3. These hook numbers are 3/w + 2 and 3/w + l, respectively, so we are 
done. 

We sketch the proof of (b), which is similar. Again, the statement is true for m-\ by 
Theorem 2. Let n" = (2m + l)(2m -1) . . . (3)(1). We need only note that the hook from the new 
hand, namely (1,2m +1), to the lowest foot, namely (m +1,1), has hook number = 3/w +1. 

Theorem. 4: Let r>\ and m>\. Then each of the following partitions is 3-core: 
(a) n = (m-h2r)(m + 2r-2)...(m + 2)m2(m-l)2 ...2212; 
(b) n = (m-h2r-l)(m + 2r-3)...(m-hl)m2(m~l)2...22l2. 

Proof: For (a), look at the corresponding Young diagram. By Theorem 3, any hook that 
occurs entirely in the first r rows or in the last 2m rows has length not divisible by 3. Therefore, it 
suffices to consider hooks from a hand in the first r rows to a foot in the last 2m rows. Such 
a hand has coordinates (i,m + 2r + 2~2i), where l<i<r; such a foot has coordinates (r + 2j, 
m + \-j), where \<j<m. The corresponding hook has length 3(r-i + j) + 2, so we are done. 

The proof for (b) is similar. A hand from the first r rows has coordinates (/, m + 2r + l-2i), 
where \<i<r. Again, a foot from the last 2m rows has coordinates (r + 2j,m + \-j), where 
1 < j < m, so the corresponding hook has length 3(r - / + j) +1. 

Theorem. 5: Let n-r\ + r^ + • - + ns be a 3-core partition of n, where s>\. Then the following 
must hold: 

(a) ns<2. 
(b) I f«>3, then s> 2. 
(c) rtj -ni+l < 2 for all i such that 1 < i < s-1. 
(d) Each part occurs at most twice. 
(e) If ni+l = nt, then either (i) 1 <i < s - 2 and ni+2 = nj+l-1 or (ii) i = s-l and ns_x = 1. 
(f) If ni+l = nt -1, then 1 < i < s-2 and nj+2 = ni+l. 

Proof: A partition such that any of (a) through (f) fails to hold has a hook of length 3. 

Theorem 6: c3(n) is the number of distinct ways that n can be represented in the form 

n = r(r + m + k) + m(m + l), 

where k = 0 or 1, r>0 ,m>0, and rm>0. For each such representation, the corresponding 
3-core partition of n is given by 

n = (m + 2r + k-l)(m + 2r + k-3) ...(m + k + l)m2(m-T)2 . . .2212. 

Proof: The conclusion follows from Theorems 4 and 5, and from the hypothesis. 
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Remark: Note that m is the number of parts that occur twice, while r is the number of parts that 
occur once. 

Theorem 7: n has a self-conjugate 3-core partition iff there exists r>\ such that n = 3(3r + 2). 
If such a self-conjugate 3-core partition of r exists, then it is unique. 

Proof: If n has a self-conjugate 3-core partition, then the number of parts must equal the 
largest part. Therefore, by Theorem 6, we must have r + 2m = m + 2r + k-l, with k, m, and r as 
in the hypothesis of Theorem 6. Thus, m = r + k-l. If A = 0, then n = r(2r-1) +r(r-1) = 
r(3r - 2); if k = 1, then n = r(2r +1) + r(r +1) = r(3r + 2). Conversely, the partitions 

n = (3r-2)(3r-4)...(r + 2)(r(r-l)2(r-2)2...l2 

a n d „ „ * • „ 
^ = 3r(3r»2). . . (r-f2)r2(r-l)2(r-2)2 . . . l 2 

are 3-core by Theorem 4, and are self-conjugate. Uniqueness follows from the fact that n has at 
most a single representation, n - r(3r ±2). 

Jl(mod2) if/i = r(3r±2), 
Corollary 1: c3(n) = < 

[0 (mod 2) otherwise. 
Proof: This follows from Theorems 1 and 7. 

Corollary 2: c3(n) changes parity infinitely often as n tends to infinity. 

Proof: This follows from Corollary 1. 

Theorem 8: c3(n) is the number of solutions of the equation x2 + 3 j 2 = 12« + 4 such that x > 1 
and j>[/f1/2]if/?>G. 

Proof: By Theorem 6, each 3-core partition of/? corresponds to a solution of 
71 = r(r + m + k) + m{m +1), 

where £ = 0 or 1, r >0, /w>0, and/vw>0. Let v = /w + £, so v>0. Then n = r(r+v) + v(y±X), 
so that 12/i + 4 = (3v ± 2)2 + 3(v + 2r)2. Let x = 3v + 2(-1)* and y = v + 2r. This yields 

x2 + 3 j 2 ^ 12/1 + 4. 

If v = 0, then m = k = 0, so x = 2. If v > 1, thenx > 3v-2 > 1. Thus, in all cases, x > 1. Now 
suppose that y < [nV2\ Since y = v + 2r and r > 0, this implies that v < [/?1/2], so v< [/i1/2]-1. 
Since j < [«1/2]? we must have x>3/i1/2, that is, 3v±2>3/i1/2, hence v>w1/2-- | . This implies 
that w1/2-[w1/2]<-}, an impossibility. Thus, y> [w1/2]. Conversely, suppose that x2 + 3 j 2 = 
12/1 + 4, where x > 1 andy > [w1/2]. Since 3|x, we may let x = 3v + 2(-l)^, where v is an integer 
and k = 0 or 1. Since x = j = v (mod 2), we may let y = v -:•• 2r, where r is an integer. 

If £ = 0, then v = (x - 2) / 3, so v > -™. Since v is an integer, we have v > 0. If k = 1, then 
v = (x + 2) /3 , so v> 1. Let/w = v - £ . In either case, we have /w> 0. Since y > [/i1/2], we have 
x2 < 12/i - 3[>1/2]2 + 4, that is, x2 < 9« + 3(w - [w1/2]2) + 4. But w - [/i1/2]2 < 2[/i1/2], so we have 
x2<9/i + 6[/i1/2] + 4. Hence x2 < (3«1/2 +1)2 + 3, so that x<((3/i1/2 + l)2 + 3)1/2, which implies 
x<3/i1 /2+l. 
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If k = 0, we have 3v + 2<3nm + 1, hence v<nm -±. Now r = ±(y-v), so 
r > l ( [ « 1 / 2 ] - » 1 / 2

+ i ) > i ( - f ) = - l . 

If k = 1, we have 3v - 2 < 3«1/2 +1, hence v < nm + l,v< [nm] +1. Thus, 

r>l([»1 / 2 ]-[«1 / 2 ]- l ) , 

that is, r > - y. In either case, since r is an integer, we must have r > 0. 
Finally, if we let x = 3v ± 2 and y - v + 2r, and substitute into x2 + 3 j 2 = 12w + 4, then, after 

simplifying, we obtain 
« = v(v±l) + r(> + v). 

If k = 0, then v = w, so 

If A: = 1, then v = m +1, so 

Thus, w e have 

n = w(m +1) + r (r + m). 

n = /w(/w +1)+r(r + /W +1). 

w = /W(TW +1) + r(r + w + k). 

Since « > 0, we must have rm > 0. 

Lemma 1: Consider the equation 
x2 + 3y2 = \2n + 4. (*) 

The number of solutions of (*) such that \y \ > [nl/2] is 4a(3n +1), where a(ri) = H{(d/3):d\n}. 
(Here we are following the notation of [2].) 

Proof: Let 12??+ 4 = 2krn, where k > 2 and 2\m. According to [4] (p. 308, Ex. 3), if j is 
the number of solutions of (*), then j = 6a(3n +1). We must show that if f is the number of 
solutions of (*) such that \y\ > [w1/2], then f = 4a(3n +1). 

Suppose that x = a, y = 6 is a solution of (*). Let ty = exp(2^f / 3). Passing to Q(a>), we 
have 

(a + b«f^)(a-hJ^3) = l2n + 4. 

Let zx = (a + h) + 2ba> = a+ftV^. Then ^(z^ = a2 + 3ft2 = 12w + 4. However, g(o>) has 6 units, 
namely, ±1, ±G>, ±G)2, SO we obtain additional solutions of (*) corresponding to 

z2 = a)zh z3 = 0) zh z4 = -zh z5 = -z2, z6 = -z3. 

Now z2 = -2h + (a-b)o) and z3 - (b - a) - (a + 6)cy, so it suffices to show that if \y \ < [nl/2], then 
\x±y\ > 2[nl/2]. By hypothesis, we have |x|2 +3\y\2=l2n + 4, so 

|x|2=12^ + 4-3|>y|2>12«-3[^/2]2-f4>9^ + 4. 

Thus|x|>3fi1/2. Now 

|x±j; | > |x| - \y\ > 3nl/2- [nm] > 2\nl,\ 

so we are done. 
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Theorem 9: ^(n) = a(3n + l) = S{(rf/3) :d|(3w + l)}. 

Proof: This follows from Theorem 8 and Lemma 1, omitting solutions of (8) such that 
x < 0 or y < 0. 

Remark: An alternate proof of Theorem 9, based on the theory of modular forms, was given in 
[2]. 

Theorem 10: If there exists k > 1 such that In = 22k~l -1 (mod 22k), then c,(w) = 0. 

Proof: By Theorem 8 and [4] (p. 308, Ex. 3), we have c3(n) = 0 if \2n + 4 = 22*+V where 
& > 1 and 2/JII. That is, c,(/t) = 0 if 3n = 22k~l - 1 (mod 22*) for some k > 1. 

Corollary 3: (^{n) = 0 if w = 3 (mod 4), w = 13 (mod 16), w = 53 (mod 64), etc. 

Proof: This follows from Theorem 10. 

Theorem 11: (^{n) is unbounded as n tends to infinity. 

Proof: Let n = (7k~l-l)/3. 7hm ^(n) = a(7k~l) = k. Since £ is arbitrary, we are done. 

Table 1 below lists (^{n) for all n such that 1 < n < 100. 

TABLE 1 
n c3(n) n c^iri) n (^(n) n c^Qi) 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

1 
2 
0 
2 
1 
2 
0 
1 
2 
2 
0 
2 
0 
2 
0 
3 
2 
0 
0 
2 
1 
2 
0 
2 
2 

26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

2 
0 
0 
0 
4 
0 
2 
1 
2 
0 
2 
2 
0 
0 
1 
2 
2 
0 
4 
0 
2 
0 
0 
2 
2 

51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 

0 
2 
0 
0 
0 
3 
2 
2 
0 
2 
0 
0 
0 
2 
3 
2 
0 
0 
2 
2 
0 
4 
0 
2 
0 

16 
11 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 

2 
0 
0 
0 
2 
2 
4 
0 
0 
1 
4 
0 
0 
2 
2 
0 
2 
0 
2 
0 
1 
2 
0 
0 
4 
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4. 4-CORE PARTITIONS 

This subject has recently been explored in some detail (see [3] and [8]). The following 
theorem permits the evaluation of c4(ri). 

Theorem 12: c4(n) = £ (l)*(2Jfc + T)b4(n- 2k(k +1)). 

Proof: Equation (1) implies 

£ c4(n)xn = f [ (1 - x4nf I (1 - xn) 
w = l 

= n o - x4") / a - x^na - x4")3 
n=l n=l 

=fx*4(»)x«Yn(i-x4")3 

n=0 

\n=0 n=l 

by (2). Let 

Then (4) implies 

gM = 
\{~l)m{2m +1) if n = 2wi(/w +1), 
0 otherwise. 

f>4(#i)*" = (£^(/i)x»Yf>4(/i)x"l 

= l[lUn-k)g<{k)\x". 

Matching coefficients of like powers of x, we get 
oo 

C4(n)=Y*b4(n-k)g4(k)> 
k=Q 

from which the conclusion follows. 

5. 5-CORE PARTITIONS 

Garvan, Kim, and Stanton [1] have shown that 

<*(")= X (d/S) 71 + 1 

d\{n+l) 

In order to use this formula, one needs to know the divisors (or, equivalently, the canonical 
factorization) of w + 1. We now present an alternative method of computing c5(n) that does not 
require factorization. 

Theorem 13: Let 

/,(/!) = b5(n) + X (-lf(b5(n - 5E(k))+b5(n - 5E(-k))). 
k>\ 
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Then 

^ ) = Z H y ( 2 7 + l)/5(/t-57C/ + l)/2). 

Proof: Equation (1) implies 

]T c5(n)xn = fl (1 - JC5W)5 / (1 - xn) 
«=0 n=l 

= f[(l-x5w)2/(l-xw)f[(l-jc5"): 

Now 

3 

n o - ^5w)2 / (i - *w) ^ n o - *5w) / o - x")Ti(i -x5n) 
«=1 n=l n=l 

by (2) and the definition of f5(n). Also, by (4), we have 

«=1 n=0 

where 

Thus, we have-

_ j(-l)*(2* + 1) if n = 5k(k +1)/ 2, 
[o otherwise. 

S^K=f s/5(»)*" Yift(»)*"l 

Matching coefficients of like powers of x, we obtain 

n 

A:=0 

from which the conclusion follows. 
Table 2 below lists b4(n\ c4(ri), b5{n\ f5(n\ and c5(n) for each n such that 1 < « < 50. 

Our final theorem is inspired by examination of Table 2. 
Theorem 16: If n = 4 (mod 5), then A5(̂ ) = /5(w) = c5(w) = 0 (mod 5). 

Proof: By virtue of Theorem 15 and the definition of f5(n), it suffices to show that h5(n) = 0 
(mod 5) when n = 4 (mod 5). This follows from (3) and (5). 
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n 
l 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

Un) 
1 
2 
3 
4 
6 
9 
12 
16 
22 
29 
38 
50 
64 
82 
105 
132 
166 
208 
258 
320 
395 
484 
592 
722 
876 
1060 
1280 
1539 
1846 
2210 
2636 
3138 
3728 
4416 
5222 
6163 
7256 
8528 
10006 
11716 
13696 
15986 
18624 
21666 
25169 
29190 
33808 
39104 
45164 
52098 

TABLE 2 

cM 
i 
2 
3 
1 
3 
3 
3 
4 
4 
2 
2 
7 
3 
5 
6 
2 
4 
7 
3 
4 
7 
5 
8 
5 
4 
4 
8 
5 
6 
7 
2 
9 
11 
3 
8 
9 
4 
6 
5 
7 
5 
14 
7 
4 
10 
5 
10 
11 
3 
9 

b5(n) 
l 
2 
3 
5 
6 
10 
13 
19 
25 
34 
44 
60 
76 
100 
127 
164 
205 
262 
325 
409 
505 
628 
769 
950 
1156 
1414 
1713 
2081 
2505 
3026 
3625 
4352 
5192 
6200 
7364 
8756 
10357 
12258 
14450 
17034 
20006 
23500 
27510 
32200 
37582 
43846 
51022 
59353 
68875 
79888 

fs(n) 
l 
2 
3 
5 
5 
9 
11 
16 
20 
27 
33 
45 
54 
70 
87 
110 
132 
167 
200 
248 
297 
363 
431 
525 
621 
746 
882 
1053 
1235 
1467 
1716 
2024 
2361 
2770 
3217 
3762 
4354 
5064 
5850 
6777 
7799 
9009 
10341 
11900 
13627 
15633 
17583 
20430 
23275 
26555 

q$(") 

1 
2 
3 
5 
2 
6 
5 
7 
5 
12 
6 
12 
6 
10 
11 
16 
7 
20 
15 
12 
12 
22 
10 
25 
12 
20 
18 
30 
10 
32 
21 
24 
16 
30 
21 
36 
20 
24 
25 
42 
12 
42 
36 
35 
22 
46 
22 
43 
25 
32 
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NEW PROBLEM WEB SITE 
Readers of The Fibonacci Quarterly will be pleased to know that many of its problems can now 

be searched electronically (at no charge) on the World Wide Web at 

http://problems.math.umr.edu 

Over 23,000 problems from 42 journals and 22 contests are referenced by the site, which was 
developed by Stanley Rabinowitz's MathPro Press. Ample hosting space for the site was 
generously provided by the Department of Mathematics and Statistics at the University of 
Mirrouri-Rolla, through Leon M. Hall, Chair. 

Problem statements are included in most cases, along with proposers, solvers (whose solutions 
were published), and other relevant bibliographic information. Difficulty and subject matter vary 
widely; almost any mathematical topic can be found. 

The site is being operated on a volunteer basis. Anyone who can donate journal issues or their 
time is encouraged to do so. For further information, write to: 

Mr. Mark Bowron 
Director of Operations, MathPro Press 
P.O. Box 44024 
Baltimore, MD 21236 
bowron@mathpropress.com (e-mail) 
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