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1. INTRODUCTION 

In two recent articles [2] and [3], Ferri et al. introduced and studied the properties of two 
numerical triangles, which they called DFF and DFZ triangles. However, in a subsequent article, 
Andre-Jeannin [1] showed that the polynomials generated by the rows of these triangles are 
indeed the Morgan-Voyce polynomials Bn{x) and bn(x), whose properties are well known [10] 
and [11]; in fact, the polynomials Bn(x) and bn(x) have been used in the study of electrical net-
works since the 1960s (see, e.g., [8] and [9]). In the same article, Andre-Jeannin introduced a 
generalization of the Morgan-Voyce polynomials by defining the sequence of polynomials 
{i*r)(x)} by the relation 

Pf\x) = (x + 2)P$(x)-P&(xl {n>2\ (la) 
with 

P0
(r)(x) = l and Pl

(r\x) = x+r + l. (lb) 

Subsequently, Horadam [6] defined a closely related sequence of polynomials {Qjf\x)} by the 
relation 

$\x) = (x + 2)Q£l{x)-$}1(x), (»>2), (2a) 
with 

0>r)(x) = 2 and Q^(x) = x+r + 2, (2b) 

and studied some of its properties. 
The purpose of this article is first to generalize the two sequences of polynomials {P}r\x)} 

and {Q^\x)}, and to study some of their properties by first relating them to the parameters of 
electrical one-ports and then using the properties of such one-ports. Later, following Horadam 
[7], we will construct and study some of the properties of a composite polynomial which includes 
the two sets of generalized polynomials introduced in this article. 

2. POLYNOMIALS /*(,)(x) AND Qir)(x) 

Consider the generalized polynomial wn(a, h; x) defined by 
wn(x) = (x + p)wn_1(x)-wn_2(x\ {n>2\ (3a) 

with 
sW0(x) = a and wx(x) = h. (3b) 

We know that the solution of (3a) and (3b) is given by [5]: 

w„(x) = w^U^x) - w^U^ixl (4) 
where 

Un(x) = wn(0,Xx). (5) 
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Hence, we may observe that the modified Morgan-Voyce polynomials, Bn(x), bn(x), C„(x), and 
cn{x), defined in [12], may be written as 

Sn(x) = w„(l, x + p;x) = Un+l(x), (6a) 
b„(x) = wn(l, x + /> - 1 ; x) = Un+l(x) - U„(x) = B^-B^ix), (6b) 
C»(*) = w»(2> x + p;x) = Un+l(x) - U^x) = Sn(x) - Bn_2(x), (6c) 
^(x) = wnO.,x + p + l;x) = Un+1(x) + U„(x) = B„(x)+Bn_l(x). (6d) 

From (6b), (6c), and (6d), we see that 

C„(x) = b„(x) + $_,(*) = c„(x) - ?_,(*). (7) 

Let us now define the following two sets of generalized polynomials P^r\x) and Qff\x) as 
Pn

(r)(x) = wn(\x + p + r-l;x) (8a) 
and 

Hence, from (4), we have 

and 

QP(x) = wn(2,x+p+r; x). (8b) 

P„(r)(x) = Un+l(x)Hr-W„(x) (9a) 

QP(x) = U„+1(x)-U„_l(x) + rU„(x). (9b) 

Using the relations given in (6a)-(6d), the above may be written as 
P}r\x) = bn(x)+rB„_l(x) (10a) 

and 
QP(x) = C„(x)+rB„_1(x)- (10b) 

As a consequence of (10a), (10b), and (7), we also have the relation 

QP(x) = Pn(x)+b„_l(x). (10c) 

It is readily seen that 
pV\x) = b„(x), (l la) 

%*>(*) = Bn(x\ (Hb) 
pV\x) = c„(x\ (lie) 
Qf\x) = Cn{x). (lid) 

It is clear that these results are generalizations of those contained in [1] and [6]. 

3. Pw
(r)(x)9 Qir)(x) AND LADDER ONE-PORTS 

In this article we assume that p>2 andr >0. Consider now the ladder one-port network 
shown in Figure 1(a), which consists only of resistors and inductors, and thus is an RL-network 
(see Appendix A), where the series resistors rx = r2 = r3 - • • • = rn = (p - 2)a Ohms, the inductors 
Lx - L2 = L3 = - • • = Ln = a Henries, and the shunt resistors Rl = R2=R3 = -- = Rn = a Ohms. For 
such a network, the impedance zx of any of the series branches is given by 

zl = (s + p-2)a, (12) 
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where s is the complex frequency variable, while the impedance z2 of any of the shunt branches is 
given by 

z2 = a. (13) 

It is known [9] that the driving point impedance (DPI) Za of such a network is given by 

a 2Bn_M (14) 

where 

w = f, (15) 
Z 2 

and Bn(w) and bn(w) are the Morgan-Voyce polynomials [8]. Hence, 

bn(s+p-2) 
a B^is+p-iy 

However, bn(s+ p-2) = bn{s) and Bn{s+p-2) = Bn(s). Hence, the DPI of the RL-ladder net-
work of Figure 1(a) is given by 

Now consider the rational function P£r+k\s) / P£r\s)9 where k > 0. Then 

/*>(*) to+/-^_I(5) to+r^U*) r 1 f„(5) 
(17) 

Using (16) and (17), we see that P}r+fc\s) I P}r\s) may be realized as the driving point admit-
tance (DP A) Yb of the network shown in Figure 1(b). It is observed that this network also is com-
posed only of resistors and inductors. Thus, P}r+k\s) I P}r\$) can be realized as the DPA of an 
RL-network. 

Now consider the rational function C&r+k\s) I QnrKs)> where again k > 0. Then 

k k B^is) 
From the results given in [9], it is known that the function 

can be realized as the DPI of the RL-ladder network shown in Figure 2(a). Hence, from (18), we 
see that Q„+k){s) I Qir){s) can be realized as the DPA of an RL-network. 

Now consider P„(r+k\s) I Q^(s\ k>0. This may be expressed as 
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L> Ln 
O nCfXP ^L^ f l np ^u q^p y^u 

;R, R^ Rn 
Z a = a ^ L 

Eh-i (s) 

L^ - L 2 - .... — Ln— a Henries 

T!= l2= . . . =% = a(p-2) Ohms 

R 1 = R 2 = ... =Rn= a Ohms 

(a) 

r—> -

V, Yb 

r/k 

Hrrr 

^ l 
-̂ SB" 

_Lbn(s) 
k ~ 

Bh-i (s) 

] 

n - Section 
RL- Ladder 
of Fig.l (a) 

with ot= 4-
1 k 

(b> 

FIGURE 1 

~P(r+k)(s) 
b ~ (T) 

1 Pn %) 

Since both bn(s) I Bn_x{$) and Cn{s) I B^^s) are RL-impedance functions, we see from (19) that 
P}r+k\s)/QJjr\s) is a ratio of two RL4mpedance functions. Therefore, in general, it is only a 
positive real function (see Appendix B) and thus need R, L, and C (capacitors) for its realization 
[13]. 

Using the properties of RL-networks (see Appendix A), we may now draw some conclusions 
regarding the locations of the zeros of Pn

(r)(s) and QJr)($). Since P}r+k\s)/P}r)(s) (k>0) is 
realizable as the DP A of an RL-network, we see that the zeros of P£r\$) are real, simple, and 
negative; further, they interlace with those of ^(r+A:)(s), the zero closest to the origin being that of 
P}r)(s). Similar statements hold with regard to the zeros of Q^r)(s) and Q£*k){s) (k>0), since 
we have shown that (%^k\s) / Qff\s) is also a DPA of an RL-network. In addition, since 
P}r+k)(s)/Q(r)(s) (k>0) is a ratio of two RL-admittance functions, the zeros of P}r+k)(s) and 
Qjf\s) need not interlace; however, their zeros have a very interesting relationship on the 
negative real axis [4]. In this connection, it may be mentioned that the only known result is the 
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one regarding the zeros of P}°\s), P}l\s), P}2\s), and Qj;0\s), since these are the zeros of 
f>n(s), Bn($), cn(s), and Cn(s), respectively. 

Li r1 ID r 2 

o—nnp—i44s-nnp—W- —ncnon—i iHh 

= R, Ro 
R * - . & B -

H» (s) 

2 L^ -L2 - .... - L n - 2 a Henries 

2 r ! = ^ = . . . = r n = 2 a ( p - 2 ) Ohms 

R 1 = R 2 = ... =Rn= 2 a Ohms 

( a ) 

I — ^ -

I 
Vr 1 
*d 

r/k 
4/L4^ 
JWr 

f l 
rr-.^. 
^-j** 

1 Cq(s) 

k Bh-l (s) 

n - Section ! 

RL- Ladder 

of Fig.2 (a) 
with a= 4-

1 k 

(b) 

FIGURE 2 

Q„< r ><s, 

4. THE COMPOSITE POLYNOMIAL J^r'">(jc) 

Following Horadam [7], we now define the composite polynomial R^r'u)(x) by the relation 

^u\x) = (x+p)^l
u\x)-^2

u\x), (»>2), (20a) 
with 

I$r>u)(x) = u and R{r>u)(x) = x + p+r + u~2, 

where r and & are real numbers. It is clear that 
R<,r'l\x) = P^(x), 

3,(r-2)(*) = ®r)(x). 

(20b) 

(21) 
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Using the results of (3a), (3b), (4), and (5), we see that 
%£• u\x) = (x + p+r + u- 2)U„(x) - wC/„_i(x) 

= U„+1(x) + (r - l)U„(x) + (« - \){U„(x) - U„_&)}. 

Using (9a) and (6b), the above relation may be rewritten as 

R(^(X) = p(r)(x)Hu-l)bn_1(X). (22) 

Substituting for b^^x) from (10c), equation (22) reduces to 

j ^ ")(x) = (u- \W(x) - (u - 2)P}r\x). (23a) 

Now using (21), equation (23 a) may also be rewritten as 

^•")(x) = ( i i - l )^- 2 ) (x) - ( t t -2)^- 1 ) (x) . (23b) 

Let us now find the locations of the zeros of R^r,u\x) for r > 0 and u>\. For this purpose, 
we first consider the function E^r+k- u\s) I &£> u\s) for k > 0. Using (22), we may write 

Ify+Wty-Bjr^is) = P}r+k)(s)-P}r\s) = kB^s), using (10a). 

Using (22) and (10a), we get 

$ ' • u\s) h„(s)+rSU*) + (« - 1 ^ ( 5 ) 

r , 1 K(s) .u-1 ^ - I ( J ) ' 

* *£„-!(*) * ^U*) 
From the results given in [9], it is known that the function 

»-l Vife) 
* £„-i(*) 

may be realized as the DPI of the RL-ladder network shown in Figure 3(a), with a = (u-Y)/ k. 
Further, as already mentioned in Section 3, 

can be realized as the DPI of the RL-ladder network shown in Figure 1(a), with a = 1 / k. Hence, 
RJf+k'u)(s)/R^r'"\s) (k>0) may be realized as the DP A of the RL-network shown in Figure 
3(b). 

Again using the properties of RL-networks, we can state that the zeros of R^9U\s) are real, 
simple, and negative; further, the zeros of R^r,u\s) interlace with those of fijf*k'u\s)9 the zero 
closest to the origin being that of R^r,u\s). 

Mow we consider the function M^r+k'u+t)(s)/R(r'u)($), where k > 0 and t > 0. From (22) and 
(10a), we have 
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# 
(r+k, u+t) 

= to + (r + k)B„^(s) + (« + / - l)£„_,(s) 
6„(5)+/-5„_1(5) + ( « - l ) V 1 ( ^ ) 

(/• + *) + IT^TT + (« + ' -1 ) T T ^ T 

'+-J#7+(«-i)!4l 

(25) 

Since bn{s) I Bn_x{s) and bn_x(s) / B„_x(s) are both RL-impedance functions, we see from (25) 
that Rjir+k'u+t)(s)/^u\s) (k>0,t>0) is a ratio of two RL-impedance functions. In view of 
this, as mentioned earlier in Section 3, the zeros of Rff,u\$) and those of Rff+k'u+t\$) (k>0, 
t>0) need not interlace on the negative real axis [4]. 
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Ln-1 rn_! 

V Rn Z e =a M s ) 
Bh-i (s) 
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(a) 

r/k 
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k ELi (S) 

1 

U-l bn-l (S) 
k iL-i(s) 

RL - network 
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with a= 4-k 
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of Fig.3 (a) 

with a= 

~(r+k,u) 
Y f = 3 (5) 

in(f'U) (S) 

(b) 

FIGURE 3 
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5* CONCLUDING REMARKS 

In this article we have generalized the results of Andre-Jeannin [1] and Horadam [6] and [7] 
concerning the sequences Pw

(r)(x), Q^r)(x)? and i^r'w)(x). We have also shown that there exist 
close relationships between these generalized sequences and RL-networks or certain types of 
RLC-networks. Using these relationships and the properties of such networks, results concerning 
the locations of the zeros of these generalized sequences have been derived. In view of similar 
results recently obtained for another pair of polynomials, it is worthwhile exploring such rela-
tionships between polynomial sequences and network functions to derive properties of such 
sequences using the well-known properties of RL, RC, LC, and RLC network functions, and vice-
versa. 

APPENDIX A 
Properties of RL One-Port Networks [14] 

A one-port electrical network is a two-terminal network consisting only of two. kinds of 
elements, namely, resistors and inductors. 

The driving point impedance Z(s) of such an RL network satisfies the following properties: 
(a) .All poles and zeros are simple, and are located on the negative real axis of the s-plane. 
(b) Poles and zeros interlace. 
(c) The lowest critical frequency is a zero which may be located at s - 0. 
(d) The highest critical frequency is a pole which may be at infinity. 
(e) Z(0)<Z(oo). 
Also, the driving point admittance of an RL network satisfies the following properties: 
(a) All poles and zeros are simple, and are located on the negative real axis of the s-plane. 
(b) Poles and zeros interlace. 
(c) The lowest critical frequency is a pole which may be located at s = 0. 
(d) The highest critical frequency is a zero which may be at infinity. 
(e) 7(0) > 7(QO). 

APPENDIX B 
Positive Meal Functions [14] 

A function F(s), s being a complex variable, is said to be a positive real function if it satisfies 
the following two conditions: 

ReF(s)>0 for Res>0 
and 

F(s) is real when s is real, 

where Re T denotes the real part of T. 

A positive real function F(s) can always be realized as the driving point impedance or admit-
tance of a one-port RLC network, that is, a two-terminal network consisting only of resistors, 
inductors, and capacitors. Conversely, the driving point impedance and admittance functions of 
an RLC one-port network are always positive real 
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