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1. INTRODUCTION 

In this paper we study two classes of polynomials: the generalized Jacobsthal polynomials 
{Jn,m(x)} and the generalized Jacobsthal-Lucas polynomials {jn,m(x)} defined, respectively, by 

with J"0,m(x) -"0> Jn,m(x) = ^ n = \2,...,m-1, and 

Jn,m(X) = Jn-lAX) + 2xJn-m,m(Xl W ^ ? C1-2) 

with J0J m(x) = % JWJ m(x) = 1, w = 1,2,..., m - 1 . In this paper we call these polynomials the gener-
alized Jacobsthal polynomials. 

The polynomials Jnf2(x) and Jw,2(x) a r e studied in [4]. 
For m = 2 and x = 1, we get the Jacobsthal numbers {Jnf2Q)} and Jacobsthal-Lucas numbers 

Un,20)1? which are studied in [3]. 
Here we shall prove the list of characteristic properties of the polynomials {J„tm(x)} and 

{Jn,m(x)}' Also, we are going to introduce two classes of polynomials: {F^m(x)} and {f„tm(x)}. 
For m = 2, these polynomials are studied in [4]. Namely, we are going to exhibit some basic 
properties of the polynomials {J„>m(x)}9 {j„im(x)}? {J^m(x)}, and {fn,m(x)}, to generalize the 
properties of the corresponding polynomials in [4]. 

2. POLYNOMIALS J^Jx) ANDj^x) 

Using (1.1) and (1.2), we find the first w + 3-members of the sequences {J„9m(x)} and 
Un,m(x)}5 which are given in Table 1. 

TABLE 1 

n 
0 
1 
2 

n i - 1 
m 

w + 1 
w + 2 
w-f-3 

U) -
0 
1 
1 

1 
1 

1 + 2* ». 
l+4x .» 
l + 6 x ••• 

J«,m(x) '" 
2 
1 
1 

1 
l+4x •" 
1 + 6* ••• 
l+8x - . 
1+lOx ... 
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Using the standard method, we find that the polynomials {JniJx)} have the following gen-
erating function, 

F(X, t)=(\-t- 2xtmy=£ Jn.m{*y*-\ (2. i) 

and the polynomials {Jn,m(x)} have the generating function 
+00 

G(x, t) = (\ + 4xt"'-'){\-t-2xt'»r = SA-W"-1. (2.2) 

From (2.1) and (2.2), we get the following explicit representations: 
[(if-i)/i«] 

•/„«= f ("- 1 l" , - 1 ) *) (^; (23) 

For TW = 2 in (2.3) and (2.4), we get the known polynomials {J„(x)} and OnC*)} ( s e e M), 
respectively. 

We can prove the following theorem. 

Theorem 2.1: The polynomials Jn>m(x) and j„,m(x) satisfy the following equalities, where the 
superscript (k) denotes the &* derivative with respect to x: 

k mix) = J„y m(x)+4xywl_m> m(x); (2.5) 

^l(x) = 4%m(x) + 2kJ(jtJ}m(x) + 2x4ilm(xl k>\, (2.6) 

&x) = Ji%(x) + 4k4^a(x)+4XJ^_m^(xy, (2.7) 

jmx) = ji%m(x)+2kj(i-j}m(x) + 2xj^m(x), k>\; (2.8) 

Z^(*wa.»W = (2/'-1(*+j+i)(*it5)) V r 1 ^ ) ; (2.9) 

g«*)./£U*)=2(f+I+ix"r) J-'r')(*); (210) 

g ^ ( ^ m W = 2 r + 1 ( f^1 ) m^->(x) ; (2.11) 

£ ^ ( » ) = J U ^ : g ) " 1 ; (2i2) 

l A ^ ^ ^ f " 1 (2-13) 

Proof: From Table 1, we can see that (2.5) is true. 
To prove the relations (2.6), (2.7), and (2.8), we will use (1.1), (2.5), and (1.2), respectively. 

Namely, differentiating (1.1), (2.5), and (1.2) k times with respect to x, we obtain equalities (2.6), 
(2.7), and (2.8), respectively. 
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From (2.1), we get 
dkF{x,t) _ 2kk\tmk ^° 

dxk (l-t-2xtmy m\k+l = H4%(x)t"-K 
n=\ 

Since 

we have 

From (2.2), we get 
dsG(x,t) = Ts\(2-t)r-1

 = « (s) ! 
dxs (l-t-2xtm)s+l ti ' ' 

Using (1), we obtain 
dkF(x,t) dsF{x,t) _ 2k+sk\s\tm{k+s) 

dxk ' dxs ~ (l-t-2xtm)k+s+2' 

OX OX w=2 J = 0 

2k+s+l(k + s+1)! k 15! j"**4**1) 
~ 2(k + 5 +1)! / ^ ( l - / - 2x/m)*+*+2 

= *L*L V /(*+*+i)CvVn-i 
2(*+*+i)!r-1£j w'm w " 

By the last equalities, we find 

i^(x)^.«w=(2/^*+*+i)(*r))!-/?»*t,)w. 
which is the desired equality (2.9). 

In a similar way, from 

dkF{x,t) d°G(x,t) __ 2k*'k\s\{2-ty**^ rbvrnand^l 
& fa* - (\-t-2xtm)k+M IDyUJana^j, 

we get (2.10): 
^ w \̂ / \ 2t~m — t^~m 

X4m(*)j^,m(x) = 2 ( ^ + 5 + 1 ) ( t r )* / »^ + I ) ( X ) -

Again, from (2), we get the equality (2.11). Using the recurrence relations 
we can prove equalities (2.12) and (2.13), respectively. 

Corollary 2.1: For m-\, m = 2, and m = 3, we obtain (see [4]): 
Jn,i(x) = Dn(x), j„,i(x) = d„(x), 
J»,2(X) = Jn(X)> Jn.2(x) = Jn(x), 

Jn, 3 (*) = R„(.x), jn> 3(x) = r„(x). 

Corollary 2.2: For 5 = 0 in (2.9) and for k = 0 in (2.10), we have 

± 4%(x)j„„um(x) = &"<-\k+i))-lJ^Hx), 
1=0 

and 
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m _ fl-m 

where Ji%(.x) = J„,m(x). 

3. POLYNOMIALS F„m(jc)AND/„,m(jc) 

First, we are going to introduce the polynomials {F„ m(x)} and {/„,„,(*)} by 

Fn,m(X) = Fn-l,m(X) + 2xFn-m,m(X) + 3> "»»> ( 3 1 ) 

with F0m(x) = 0, F„m(x) = 1, n = 1,2,..., m-1, and 

fn,m(x) = f„-lm(x) + 2xf„_mm(x) + 5, n>m, (3.2) 

with /0>m(X) = 0, f„m(x) = 1, » = 1,2,..., / » -1 . So, by (3.1), we find the first m + 2-members of 
the sequence {F„m(x)}: 

F0, m(X) = 0. Fl, m(x) = l , - , Fm_h m(x) = 1, 

Fm,m(X) = 4> Fm+l,m(X) = 7 + 2X> Fm+2,m(X) = 1 0 + 4 * ' 

By (3.2), we find: 

/o,»W = 0. fl,mix) = 1, ..., /„,_! m{X) = 1, 
/m,m(*) = 6, / m + l m ( x ) = l l + 2x , fm+2,m(x) = l6 + 4x. 

For m = 2, the polynomials {/^>m(x)} and {/„,„,(*)} are studied in [4]. 

Theorem 3.1: The polynomials F„ m(x) and /„,„,(*) have, respectively, the following explicit 
representations: 

^-i+ m,wW = ^-i+m,fflW + 3["fY"~^1 )''>l(2x)''; (3.3) 

/„-i+m,mW = ^-i+m>mW + 5 t " f 1 f " - ^ T 1 ) r > | ( 2 ^ . (3.4) 

Proof: From (1.1) and (3.1)? we see that (3.3) is true for n = 1. Suppose that (3.3) is true 
for w? i.e., 

^-i+m,mw=-/n-1+m(n,w+3lzfn~^1)r)(2xr. 
r=0 V J 

Then 
(x) + 2xF„tm(x) + 3 

[nlm] 

f [(n-m+l)/m] f - , n \ 

+2x j„)ffl(x)+3 x r + 1 _ 7 ; { w - 1 ) r W 
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= 4 ^ W + 3 2. I r+i JO) 

By induction on w, we conclude that (3.3) is true for all n. 
Similarly, we can prove that equality (3.4) is true for all n. 

The polynomials i^2( x ) m^ fn,i(x) a r e studied in [4]. 

Theorem 3.2: The polynomials {F„tm(x)} and {f„tm(x)} satisfy the following relations: 
m-2 

2xF„9m(x) = Jn+^m(x) + 2J^lm(x)-2x^J^i9m(x)-3; (3.5) 

m-2 

2 ^ » W = ^ w W + 4^+1, w(x)-2xX^,./,«W-5- (3.6) 
/=i 

Proof: From (1.1) and (1.2), we see that (3.5) is true for n = 0,1,.... Assume (3.5) is true 
for w = £, i.e., 

in—A 

2xF^ w(x) = 4+ w ? w (x) + 2 J^1? w(x) - 2x X •/*-/, «W ~ 3-
Then 

m-2 

! • 
1=1 

Fk+lAX) = FkAX) + 2xFM~m,m(X) + 3 [% (3-1)] 

_ Jjfc+m, m(X) + 2*4+1, m(X) ~ 2x^/=1 ^k-i,m(X) ~ 3 
2x 

2x 

_ Jk+l+m, m(X) + ^»4+2,m(X) " ^ X ^ /=0 *4+l-?, m(X) ~ 3 
2x 

By induction on «, we conclude that (3.5) is true for all n. In a similar way, we can prove that 
(3.6) is true for all n. 

From (3.5) and (3.6), we get 

f (x\-F M=Jn+hm^~l 

Jn,m\A'/ rn,m\xJ 

For m = 2 in the last equality, we obtain the known equality (6.11) in [4]. 
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