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1. INTRODUCTION

Consider sequences of integers {U,},_, defined by U, =aU,_, +bU,_, for all integers n>2,
where U, =0, U, =1, a and b are given integers. We call these sequences generalized Fibonacci
sequences with parameters a and b. In the case where a = b =1, the sequence {U,},., is called
the Fibonacci sequence, and we denote its terms by Fy, F, ....

The polynomial f(x) = x> —ax—b with discriminant D =a? +4b is called the characteristic
polynomial of the sequence {U,}._,. Suppose that f(x)=0 has two distinct solutions o and 3.
Then we can express U, in the Binet form,

_a"-p
Un b m— .

This and its relative V, = a” + 8" are known as Lucas functions as well and have a rich history.
Please see the pioneering work of the late D. Lehmer [2] for more detail. Let p be a prime
number. If x = g satisfies the congruence f(x)=x*>-ax—b =0 (mod p), then by setting W, =1,
W, =g, and W, =aW,_, +bW,_,, we have that W = g” (mod p). We have given particular atten-
tion to those cases having the longest possible cycles, i.e., the number g being a primitive root
modulo p; these are the most important cases in practical applications of the theory. We call g
a generalized Fibonacci primitive root modulo p with parameters a and b if g is a root of
x?> —ax—b =0 (mod p) and g is a primitive root modulo p. In particular, in the case a=b =1, we
call g a Fibonacci primitive root.

Fibonacci primitive roots modulo p have an extensive literature (see, e.g., [1], [3], [4], [7],
[8], and [9]). For generalized Fibonacci primitive roots modulo p, R. A. Mollin [5] dealt with the
case a =1 and B. M. Phong [6] dealt with the case b=+1. Mollin's work was the first to intro-
duce the notion of a generalized Fibonacci primitive root based upon the pioneering work of the
last D. Shanks [8]. In this paper we consider even more general cases, i.e., with arbitrary a and b.
Our main theorem generalizes the results of Mollin and Phong.

2. NOTATIONS AND PRELIMINARY RESULTS

Let {U,}_, be the generalized Fibonacci sequence with parameters a and 5. In this section
we always suppose that b is relatively prime to m and suppose that x*> —ax—5b=0 (mod m) has
two distinct solutions modulo m.

For convenience, we introduce some notations:

(1) Let  be an integer relatively prime to m. Denote ord, () the least positive integer x
such that a* =1 (mod m).
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(2) k(m) is called the period of the sequence {U,} ., modulo m if it is the smallest positive
integer for which U,y =0 (mod m) and Uy,,y,; =1 (mod m).

(3) [x, y] is the least common multiple of x and y.

(4) For an odd prime p, (#/p) denotes the Legendre symbol; i.e., (8/p) =1 if and only if
»? = B (mod p) is solvable.

We now state some elementary results that will be useful later.

Suppose that a and S are distinct solutions to x> —ax—b=0 (mod m). Let /=[ord,(a),
ord,(B)]. Since af = -b (mod m), we have that 1= (af)' = (=b)! (mod m). This implies that

ord,,(-) [[ord, (@), ord,,(B)].
By a similar argument, we have that

ord,, () |[ord,,(~b), ord,(8)]

and

ord,,(f) |[ord, (@), ord,,(-b)].

In particular, if ord,,(-b) |ord,,(@), then ord,,(B) |ord,(a) and vice versa. We have the follow-
ing lemma.

Lemma 2.1: Let a and f be the two distinct solutions to x> —ax—5 =0 (mod m). Suppose that
ord,(-b)|ord, (). Then we have ord,(f)|ord, (). Furthermore, ord,(f) = ord,(a) if and
only if ord,,(-b) | ord,, ().

Lemma 2.2: Let a and S be the two distinct solutions to x? —ax—b =0 (mod m) and let k(m)
be the period of the generalized Fibonacci sequence with parameters a and & modulo m. Then

k(m) = [ord,,(@), ord,,(B)]-
Proof: Since a and 3 are the two distinct solutions to x* —ax —b =0 (mod m),
a"=aa" +ba"?* (modm) and B"=af"'+bB"? (mod m).

Consider the sequence {4}, where 4,—baU, ,+a*U, . Since {4,}=, and {a"};, both
satisfy the same recurrence relation modulo m and 4, = @?, 4;=a® (mod m). Therefore, we
have that 4, = " (mod m) for all n>2. Thus, " =balU,_,+ a*U,_, (mod m) and, similarly, we
have B =bpU,_,+ f?U,_, (mod m). This tells us that if k(m) is the period of the generalized
Fibonacci sequence modulo m then

a" ™2 = b,y + @?Uy g (mod m).
Hence, ord,,(a) | k(m) and ord,,(f) | k(m). On the other hand, consider the Binet form
U, = “—ag% (mod m).

Let /=[ord,(a),ord,(8)]. @' -p =0 (mod m) and @' - f"*' = a - B (mod m). This implies
that U, = 0 (mod m) and U, = 1 (mod m). Thus, k(m)|[ord, (@), ord,(B)]. O
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3. GENERALIZED FIBONACCI PRIMITIVE ROOTS MODULO p

The conditions for the existence of Fibonacci primitive roots modulo p and their properties
were studied by several authors. In this section we will generalize their results to generalized
Fibonacci primitive roots. Again {U, } ., is the generalized Fibonacci sequence with parameters a
and b. For completeness, we begin with special cases. Since the argument is quite straight-
forward, we omit the proofs.

Proposition 3.1: Let p be an odd prime and let {U,},_, be the generalized Fibonacci sequence
with parameters a and b.

(1) Suppose that p|b but pla. Then there exists a generalized Fibonacci primitive root for
{U,} o modulo p if and only if z = p is the least integer greater than 1 such that U, =1 (mod p).
Moreover, in this case, a is the unique generalized Fibonacci primitive root for {U, },_, modulo p.
(2) Suppose that p|a® +4b. Then there exists a generalized Fibonacci primitive root for {U,}2,
modulo p if and only if k(p) = p(p—1). Moreover, in this case, @ =a/2 (mod p) is the unique
generalized Fibonacci primitive root for {U, },._, modulo p.

For the remainder of this section we assume that p is an odd prime with (D/p) =1, where
D=a?+4b and plb.

In the Fibonacci case, {F,} , possesses a Fibonacci primitive root modulo p if and only if the
period of {F,},., modulo p equals p—1 (for results on Fibonacci primitive roots, we refer to [6]).
This is not always true for generalized Fibonacci primitive roots. We have the following example.
Example: Let a=1,b=2,and p=7. {U,}n=1{0,1,1,3,54,0,1,...} (mod 7). The period of
{U,}>, modulo pis p—1. x=2 and 6 (mod 7) are distinct roots to x*~x—2=0 (mod 7) but
neither 2 nor 6 is a primitive root modulo 7. Hence, there is no generalized Fibonacci primitive
root modulo 7 for {U,},_, with parameters 1 and 2.

However, by Lemma 2.2, there is no generalized Fibonacci primitive root modulo p if
k(p)=p-1.

Lemma 3.2: Let o and B be two distinct roots of x? —ax—b=0 (mod p). Then there exists a
generalized Fibonacci primitive root modulo p for {U,};._, with parameters a and b if and only if
k(p) = p—1 and either ord,(-b) |ord () or ord,(-b)|ord ().

Proof: Suppose that « is a primitive root modulo p. Then ord,(-b) |ord,,(a) by Euler's
theorem, and k(p) = p—1 by Lemma 2.2. Conversely, suppose that ord,(-b)|ord,(a). Then
ord ,(f) |ord (&) by Lemma 2.1, and hence k(p) = ord (@) by Lemma 2.2. By the assumption,
k(p) = p—1, and our proof is complete. O

Theorem 3.3: Suppose that ord,(-b) = q, where g is a prime power of 1. Then there exists a
generalized Fibonacci root modulo p for {U,},, with parameters a and b if and only if

k(p)=p-1

Proof: Let a and B be two distinct roots of x> —ax—b=0 (mod p). Since ¢ = ord (D)
[ord (@), ord ,(B)] and q is a prime power, this implies ord ,(-b) |ord ,(a) or ord,(-b) | ord ().
By Lemma 3.2, our claim follows. O
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Example: Consider the Fibonacci sequence. Since b=1, ord,(-b)=2. We have that there
exists a Fibonacci primitive root modulo p if and only if the period of the Fibonacci sequence
modulopis p—1.

Naturally, we ask if anything more can be said about the existence of generalized Fibonacci
primitive roots modulo p with parameters a and b, for ord,(~b) not a prime power. The follow-
ing example shows that nothing more can be said in this case.

Example:
(I) Wehavethata=1,5=2,and p=7. ord,(-2)=2-3, and there is no generalized Fibonacci
primitive root modulo 7 with parameters 1 and 2.
(2) Leta=-1,5=2, and p=7.Then {U,},,={0,1,6,3,2,4,0,1,...} (mod 7). The period of
{U,}5, modulo pis p—1, and x=5 and 1 (mod 7) are distinct roots of x> —x—2=0 (mod 7).
5 is a primitive root modulo 7. Hence, there is a general-ized Fibonacci primitive root modulo 7
for {U,},—, with parameters —1 and 2.

Suppose that ord,,(—b) =q. Let @ and § be two distinct roots of x*—ax-b=0 (mod p).
Let ord,(a) =n and let ord,(f)=n,. Suppose that q|n. Then, by Lemma 2.1, we have that

n, |n,. Moreover, since (o) = (af)?™ = (-b)?™ =1 (mod p), we have that n, |, and n, |gn,.

Theorem 3.4: Suppose that ord,(-b) = q (hence g |p—1), where g is a prime power. Suppose
also that the period of the generalized Fibonacci sequence with parameters a and b modulo p is
p—1. Then we have the following:

(1) Suppose that g% | p—1. Then there exist two distinct general Fibonacci primitive roots mod-
ulo p with parameters a and b.

(2) Suppose that g[(p—1)/2. Then there exists exactly one generalized Fibonacci primitive root
modulo p with parameters @ and b.

Proof:

(1) Let o and B be two distinct roots of x>~ax—b=0 (mod p). By Theorem 3.3, the
assumption implies that either  or £ is a primitive root modulo p; let us say that o is a primitive
root. By Lemma 2.1, g|ord,(f) if and only if § is a primitive root modulo p. Suppose that
qford,(B). By the assumption g*|p-1, it follows that p—1)qord,(#). This contradicts the
argument above which says that ord (@) = p—1|gord,(8). Therefore, § is also a primitive root
modulo p.

(2) ord,(-b)|(p-1)/2 is equivalent to (-b/p) =-1. Since aff =-b, it is impossible that
(a/p) =-1and (B/p) =-1. Our claim follows. O

Remark: Theorems 3.3 and 3.4 generalize Phong ([6], Theorem 1). In his case, b =1, and hence
ord,(-b) =2. Therefore, suppose k(p)=p-1. p=1 (mod 4) (i.e.,, 4| p—1) implies the exist-
ence of two distinct generalized Fibonacci primitive roots modulo p, and p=-1 (mod 4) (i.e,
2/(p-1)/2) implies the existence of exactly one generalized Fibonacci primitive root modulo p.

Suppose that g2/ p—1. There may be two or only one generalized Fibonacci primitive root
modulo p. Our next example illustrates these cases.
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Example:

(1) Consider a=1,b=2,and p=11. ord,(-b)=5and 5*|p-1. {U,}v,={0,1,1,3,50,10,10,
8,6,0,1,...} (mod 11). The period {U,};, modulo pis p—1, and x=2 and -1 (mod 11) are
distinct roots of x> —x—2=0 (mod 11). 2 is a primitive root modulo 11 and -1 is not a primitive
root modulo 11. Hence, there is a generalized Fibonacci primitive root modulo 11 for {U,}
with parameters 1 and 2.

(2) Consider a=-1, b=6, and p=11. ord,(-b)=5 and $p-1. {UJ}>,={0,1,10,7,9,0,
10,1,4,2,0,1,...} (mod 11). The period {U,},., modulo pis p—1, and x =2 and 8 (mod 7) are
distinct roots of x>+x—6=0 (mod 11). Both 2 and 8 are primitive roots modulo 11. Hence,
there are two generalized Fibonacci primitive roots modulo 11 for {U,},_, with parameters —1
and 6.

4. SOME INTERESTING EXAMPLES

In [8], D. Shanks asked whether there exist infinitely many primes possessing Fibonacci
primitive roots. For generalized Fibonacci primitive roots similar questions can be asked. In [4],
Mays proved that if p=60k—1 and ¢ =30k —1 are both prime, then there exists a Fibonacci
primitive root modulo p. Phong ( see [6], Corollary 3) generalized Mays' result for a generalized
Fibonacci sequence with parameters @ and b = 1, which says that if a is an integer and both ¢ and
p =2q+1 are primes with (D/p) =1, where D = a* +4, then there exists exactly one generalized
Fibonacci primitive root modulo p with parameters a and b =1. Mollin (see [5], Theorem 1), fol-
lowing Mays' method, proved the following: Suppose that p>5b>2 and (D/p) =1, where
D=4b+1 and p=2qg+1 is a prime with g an odd prime. Furthermore, suppose that b has order
g modulo p. Then there exists a generalized Fibonacci primitive root modulo p with parameters
a=1 and b. Our next theorem generalizes Phong and Mollin's results.

Theorem 4.1: Suppose that p=2q+1 is a prime with ¢ an odd prime and suppose that
(D/p) =1, where D =a? +4b. Furthermore, suppose that 1+a—5 # 0 (mod p) and ord, () =1
or q. Then there exists exactly one generalized Fibonacci primitive root modulo p with parameters
aand b.

Proof: Suppose that ord,(—b) = q. Then % =-1 (mod p). This contradicts our assumption
that ord,() =1 or ¢. Our assumption also says that ord,(—b) # 1, because otherwise ord,(b) = 2.
Therefore, the possible order for —b modulo p is 2 or 2q. Let a and S be two distinct roots of
x*—ax-b=0 (mod p). Since ord,(-b) |[ord (@), ord ,(B)], this implies that either ord,(a) is
even or ord,(B) is even, say that ord,(a) is even. Now, since —1 is not a root of x—ax-b=0
(mod p), by the assumption, it follows that ord (@) =2¢ = p-1, and by the same reasoning as in
Theorem 3.4(2), there exists exactly one generalized Fibonacci primitive root modulo p.

Remark: Suppose that p=2q+1 is a prime with ¢ an odd prime and suppose that (D/p) =1,
where D =a? +4b. Furthermore, suppose that 1+a—b# 0 (mod p) and b # —1 (mod p). Let o
and S be two roots of x2 —ax—b=0 (mod p). Then Theorem 4.1 says that among «, B, and
—aff there exists one primitive root modulo p. Unfortunately, we do not know whether or not
there exist infinitely many such p.
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In [10], Wall asked whether, for a Fibonacci sequence, k(p) = k(p?) is always impossible; up
to now, this is still an open question. According to Williams [11], £(p) # k(p?) for every odd
prime p less than 10°. Our next proposition states that, for a generalized Fibonacci sequence, it is
possible that k(p) = k(p?).

Proposition 4.2: For any odd prime p, there exists a generalized Fibonacci sequence with par-
ameters a and b such that k(p) = k(p?).

Proof: For any odd prime p, choose a # 0 (mod p) and 8 # 0 (mod p) such that a # # (mod
p). By Hensel's lemma, there exist @’=a (mod p) and B’ = (mod p) such that ord »(a’) =
ord,(@) and ord:(f") =ord,(B). Choose a=a’+p' and b=—-a'f'. Consider the generalized
Fibonacci sequence {U,},., with parameters a and b. Then, by Lemma 2.2,

k(p) =[ord,(a’), ord ,(B)]=[ord . ("), ord (8] = k(p?). O

Example: For p=35, consider =2 and f=1. We have that ord,s(7) =ords(2)=4 and
ord,s(1) =ords(I)=1. Let a=7+1=8 and b=-7. Then {U,};,=1{0,1,3,2,0,1,...} (mod 5)
and {U,},,=1{0,1,8,7,0,1,...} (mod 25).
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