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1. INTRODUCTION

Fix a prime p. We say that a set § forms a complete residue system modulo p if, for all 7 such
that 0<i < p—1, there exists s € § such that s=i (mod p). We say that a set S forms a reduced
residue system modulo p if, for all i such that 1<i < p—1, there exists s € S such that s=i (mod
p). In [9], Shah showed that, if p is a prime and p=1,9 (mod 10), then the Fibonacci sequence
does not form a complete residue system modulo p. For p> 7, Bruckner [2] proved this result
for the remaining case. Thus, if p is a prime and p > 7, then the Fibonacci sequence {F,} has an
incomplete system of residues modulo p. Somer [11] generalized these results by considering all
linear recurrence sequences with parameters (a, 1), i.e., linear recurrences of the form

u,=au,  +u, .

He proved that, if p>7 and p#1 or 9 (mod 20), then all recurrence sequences with parameters
(a, 1), for which pfa®+4, have an incomplete system of residues modulo p. For the remaining
primes, this result has been proved by Schinzel in [8].

In this paper we obtain a unified theory of the structure of recurrence sequences by examin-
ing the ratios of recurrence sequences. We can apply our method to prove that, if p> 7, then all
recurrence sequences with parameters (a, 1), for which pJa®+4, have an incomplete system of
residues modulo p. To explain our idea more clearly, we include our proof here. However, our
idea is totally different from Schinzel's. Finally, we apply our method to determine for which
primes p a second-order recurrence sequence forms a reduced residue system modulo p. Our
main result is that, if p>17 and a*> +4 is not a quadratic residue modulo p, then all the recur-
rence sequences with parameters (a, 1) do not form a reduced residue system modulo p.

2. PRELIMINARIES AND CONVENTIONAL NOTATIONS

Given a,b € Z, we consider all the second-order linear recurrence sequences {u,} in Z satis-
fying u, = au,_, +bu,_,. However, in this paper we exclude the case u, =0 forall n € Z. We
also exclude the case in which =0 (mod p) since, in this case, {,} is not purely periodic
modulo p. We call the sequence {u,} a second-order recurrence sequence with parameters (a, b).
In particu-lar, the sequence with #, =0 and # =1 is called the generalized Fibonacci sequence
and we denote it by {f,}. The sequence with %, =2 and » =a is called the generalized Lucas
sequence and we denote it by {/ }.

Definition: Let {u,} be a second-order linear recurrence sequence. Consider 7, = (u,, #,,,) as an
element in the projective space P'(Z/pZ). We call r, the n'" ratio of {u,} modulo p and we call
the sequence {r,} the ratio sequence of {#,} modulo p.
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We say that two sequences {u,} and {«,} which both satisfy the same recurrence relation are
equivalent modulo p if there is ¢ # 0 (mod p) and an integer s such that u,, . = cu! (mod p) for all
n. Let {r,} and {r,/} be the ratio sequences of {u,} and {u;} modulo p, respectively. Then {u,}
and {u,} are equivalent modulo p if and only if there exist integers s and 7 such that r, =7/ in
PYZ/ pZ).

Since {u,} is periodic modulo p, the ratio sequence {r,} of {u,} modulo p is also periodic.
The least positive integer z such that 7, =7, in PY(Z/ pZ) is called the rank of {#,} modulo p. We
remark that the rank of apparition of {f,} modulo p (i.e., the smallest positive integer z such that
J, =0 (mod p)), by our definition, equals the rank of {f,} modulo p.

For convenience, we introduce some notation:

(1) (B/p) denotes the Legendre symbol; i.e., for p| B, (B/p) =1 if y* = B (mod p) is solv-
able and (B8/p) = -1if y* = B (mod p) is not solvable.

(2) For an integer m# 0 (mod p), we denote m™" to be the solution of mx = 1 (mod p).

(3) We denote the least positive integer ¢ such that d' =1 (mod p) by ord ().

Given a sequence {u,}, there exists an » € Z such that {#,} modulo p is equivalent to the
sequence {#/} modulo p with %, =1 and u/ =r. Therefore, without loss of generality, we only
consider the sequence with u#, =1and w, =r.

The following lemmas are not new. However, for some of the lemmas, we include proofs
because these ideas will be used for the proof of our main theorems.

Lemma 2.1: Let {u,} be the recurrence sequence with parameters (a, b) and u, =1, &, =r. Then
the rank of {u,} modulo p equals the rank of {f,} modulo p if > —ar —b # 0 (mod p).

Proof: Suppose the the rank of {u#,} modulo p is ¢ and the rank of {f,} modulo p is z. Since
u, = bf,_, +rf,, we have that u,,, =rf,,, =ru, (mod p) because f,=0 (mod p) and bf,_, = 1.,
(mod p). This says that (u,,u,,,) = (4, #) in P'(Z/pZ) and hence #|z. On the other hand, we
have that &f, +1f,,, = r(bf,_; +1f,) (mod p) by the assumption that u,,, = ru, (mod p). Substitut-
ing f,,, =af, +bf,_;, we have that (r*—ar —b)f, =0 (mod p). Therefore, pfr?—ar—b implies
that f, = 0 (mod p). This says that z{¢. O

Lemma 2.2: Let p be an odd prime and let z be the rank of the generalized Fibonacci sequence
with parameters (@, b) modulo p. Let D =a? +4b. Then

() z|p+1if(D/p)=-1,

(@) z=pifp|D,
@iii) z|p-1if(D/p)=1.

Proof: (i) Suppose that (D/p) =-1. Then x* —ax—b =0 (mod p) has no solution. Thus,

by Lemma 2.1, every recurrence sequence with parameters (@, b) has the same rank modulo p.
Let ¢ be the number of distinct equivalence classes of recurrence sequences of parameters (g, b)
modulo p. Further, let {{u,»,,,} |1<i <1t} be a representative of these equivalence classes and let
{{r, ,} |1<i <t} be their ratio sequences in PYZ/ pZ), respectively. By definition, we then have
T, #E , in PYZ/pZ) for all 1<s# A<z and, if i # j, {r, ,} and {r; ,} are disjoint. Since, for
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any r € PNZ/pZ), (uy, ) =r gives a sequence {u,}, we have {1 ,...., 5, U Ufr, .. ,7} =
PYZ/ pZ). 1t follows that #z = p+1 because the number of elements in P{Z/pZ) is p+1.

(i) For p|D, x*—ax—b=0 (mod p) has a double root. By Lemma 2.1, the number of
ratios that give the same rank as the generalized Fibonacci sequence does is p+1-1=p. Our
claim follows by a similar argument as in (i) above.

(iii) For (D/p) =1, there exist two distinct solutions to x? —ax—b =0 (mod p). Our claim
follows by a similar argument as in (i) above. O

Remark: From the proof above, we have that the number of distinct equivalence classes of recur-
rence sequences with parameters (a, ) modulo pis (p+1)/z (resp. 2+(p—-1)/2), if (D/p)=-1
(resp. (D/p) =1).

Lemma 2.3: Let z be the rank of the generalized Fibonacci sequence with parameters (a, 8) mod-
ulo p and let D=a*+4b. Suppose that p is an odd prime such that p/D. Then (-b/p)=1 if
and only ileﬂ"(—f/—p)—.

Proof: For the proof, please see Lehmer [5]. [

Lemma 2.4: Let {f,} be the generalized Fibonacci sequence with parameters (a, ) and let z be

the rank and k be the period of {f,} modulo p, respectively. Let z=2"z" and ord,(-b) = 2"h, 7

where z’ and A are odd integers.
(i) If v p, then k = 2lem(z, ord ,(-b)].
(i) Ifv=p>0, then k =lem[z, ord,,(-)].
Proof: For the proof, please see Wyler [13]. O
In the following, we concentrate on recurrence sequences with parameters (a, 1).

Lemma 2.5: Let {u,} and {u,} be two recurrence sequences with parameters (a,1). Then
Upthg + Uy UGy = Uy gy ) F 10U
Proof: By the recurrence formula, we have that

14 1 r —_ 4 | J— ’ ’
Uy + U U, = ur+l(ux+l aus) + (aur+l +ur)us = Uy Uyy + wug. o

Lemma 2.6: Let z be the rank of apparition of the generalized Fibonacci sequence modulo p.
() fife-ia* finSmi =0 (mod p).

. | Srzwe (mod p) iftis odd,
() [ = —fiz+r (mod p) if tiseven.

- dp) iftisodd,
(i) If zis even, then f,,,_, = ez (mod p) fHriso
Jfoaee (modp) if £is even.

Proof: (i) Since 1f, ,+af, ,=f,=0 (mod p) and f; =1, f, =a by Lemma 2.5, we have
that f, f, 5+ f,f,_, =0 (mod p). By induction, our claim follows.
(ii) Since f,, =0 (mod p), we have that f,,f;, ,+ fi,.1.fi. =0 (mod p). It follows from
Lemma 2.5 that f,,, /1,2 + f1202/2.-1 = 0 (mod p). We have that f,,_, =—f;.., (mod p) because
Siz-1 = Size1 (mod p). By induction, our claim follows.
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(iii) 'Substitute i=2z/2 in (). We have f,,f,» 1+ fy241/,2 =0 (mod p). Since f,,,#0
(mod p), it follows that f,, , = —f,/,,, (mod p). By induction, our claim follows. O

Since f;,, = f,u/y (mod p) and f, = f,., f, (mod p), it follows that f,,, = f,,,f, (mod p) for
all n. Suppose that {u,} is a recurrence sequence with parameters (a,1). Then, as u, = u,f,_, +

u,f,, we also have u,,, = f,,u, (mod p) for all n and, hence, u,, ,, = £, (mod p).

Lemma 2.7: Let z be the rank of apparition of the generalized Fibonacci sequence modulo p.

Then

&) L+, =0 (modp),

i) 1, =] (modp) iftisodd
L. (modp) iftiseven.

Proof: (i) Since z is the rank of {f,} modulo p, by the argument above it follows that
(Z,1.) =, 1) =(2,a) in P(Z/pZ). By the recurrence relation, we have that (_,, L) = (-a, 2)
in P(Z/pZ). Therefore, we have that [J_,+4/, =0 (mod p). By Lemma 2.5, it follows that
4l _, +L1,_, =0 (mod p). By induction, our claim follows.

(i) Since /;,_, =—1;,,, (mod p), we have that [,,l;, , +/;,,,/;, =0 (mod p). By Lemma 2.5 it
follows that /,, ;. » +1),,505,_, =0 (mod p). Therefore, I, , =1,,,, (mod p). By induction, our
claim follows. O

3. COMPLETE RESIDUE SYSTEMS OF SECOND-ORDER
RECURRENCES MODULO p

Somer [11] proved that, if p>7, pfa*+4, and p#1 or 9 (mod 20), then all recurrence
sequences with parameters (a, 1) have an incomplete system of residues modulo p. In Theorem
3.3 we will improve Somer's results to all primes p>7 by substantially extending the methods
used in Somer's paper. As remarked earlier, Schinzel [8] proved this result by a different method.

We remark that, if %, = 0 (mod p) for some i, then the recurrence sequence {u,} is equivalent
to {f,} modulo p. Therefore, we only have to consider the sequence that is equivalent to the gen-
eralized Fibonacci sequence modulo p. Hence, we reduce our problem to considering whether or
not {f,} forms a complete residue system modulo p.

First, we consider the case where pJa’+4 and x*-ax—1=0 (mod p) is solvable. In this
case, it follows by Lemmas 2.2, 2.3, and 2.4 that the period of {f,} divides p—1. Thus, the
number of distinct residues of {f,} modulo p is less than p and we conclude that {f,} does not
form a complete residue system modulo p.

Now we consider the case where x*> —ax —1=0 (mod p) is not solvable.

Lemma 3.1: Suppose that x?—ax—1= 0 (mod p) is not solvable. Let z be the rank of apparition
of the generalized Fibonacci sequence modulo p. Consider all recurrence sequences with param-
eters (a,1) modulo p. Fix an integer e with 1<e<z. Then, given an integer A, up to the

equivalence relation, there exists a unique {u,} and there exists a unique integer / depending on
{u,} with 1<i <z such that u,, = Ay, (mod p).

Proof: Suppose (u,u,,,)=(1,r) in P(Z/pZ). Then we see by induction that (4,u,,)=
(L 7f,+ f,,) in PZ/pZ). Since f,#0 (mod p), for 1 <e <z, there exists a unique » modulo p
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such that 7f, + f,_, = A (mod p). For the ratio (1,7) € P'(Z/ pZ), this gives a unique equivalence
class of recurrence sequences modulo p. Let {u,} be a representative of such a class. Since there
is no solution for x2—ax—1=0 (mod p), the rank of {u,} modulo p is equal to z. Therefore,
there exists a unique i with 1</ < z such that (u,4,,)=(1,r) in P'(Z/pZ). O

Example: We are particularly interested in the case A ==+1 (mod p). Consider the recurrence
sequences satisfying u, = 3u,_, +u,_, modulo p =7. We have the generalized Fibonacci sequence

{/u}0 =1{0,1,3,3,54,3,6,0,6,4,4,2,3,4,1,0,...} (mod 7).
Since z =8 = p+1, every recurrence sequence with parameters (3, 1) is equivalent to {f,} modulo
7. For e=3, we have f,=f,,; and f,=—-f,,; (mod 7). For e=5, we have f;= f;,; and
s = —fers (mod 7).
Since Somer has treated the case p=3 (mod 4) completely, in the following we only con-

sider the case p =1 (mod 4).
For the case p =1 (mod 4), by Lemma 2.3, we have that z |(p+1)/2; hence, by Lemma 2.4,

k=4z. Thus, k2p occurs only if z=(p+1)/2; hence, we have to consider only the case '

z=(p+1)/2. In this case, by the Remark following Lemma 2.2, there are exactly two distinct
equivalence classes of recurrence sequences with parameters (@, 1) modulo p. One is equivalent
to {f,,} modulo p and the other is equivalent to {/,} because of the following.

Lemma 3.2: Let p=1 (mod 4) be a prime such that x> —ax—1= 0 (mod p) is not solvable.

(i) The generalized Lucas sequence with parameters (a,1) is not equivalent to the generalized
Fibonacci sequence with parameters (a, 1) modulo p.

(i) Let z be the rank of {f,} modulo p. Then, forevery ,1 €Z, I1_,,, =(-D)*]_,1_, (mod p).

Proof: (i) For {f,}, we have f2— f,_,f,.; = (~1)""" Suppose that {u,} is equivalent to {f,}
modulo p. Then there exist r and j such that u, =rf,,; (mod p) for all n. Thus, w—u, g, =
(=D™"1¥2 (mod p); hence, it is a quadratic residue modulo p for all # because —1 is a quadratic
residue modulo p. On the other hand, 12— I ., = (-1)"(a* +4) which, by assumption, is not a
quadratic residue modulo p. Our first claim follows.

(i) Since {/,} is not equivalent to {f,} modulo p, it follows that /, # 0 (mod p) for all n. By
Lemma 2.7(i), we have that [ =-L_ I, I i =-L_ .., .. (mod p). Multiplying on
both sides, our proofis complete. O

From the proof above we know that, if z=(p+1)/2, then {u,} is equivalent to {f,} modulo
p if and only if #> —u__u,,, is a quadratic residue modulo p for all 7.

By Lemma 2.6(ii), for each ¢ with 1<#<k =2(p+1), we have that f, =xf, (mod p) for
some i, where 1<i<z=(p+1)/2. Thus, if we can find one pair (i, j), where 1<i, j<z-1,
such that f; =+, (mod p), then the number of distinct residues of {f,} modulo p is less than or
equal to 2(z—2)+1= p-2 since f, = f, =0 (mod p); hence, {f,} does not form a complete resi-
due system modulo p. We only have to claim that there exists an odd integer e such that 1<e <
(p+1)/2 and f; =xf,,, (mod p) for some 7 such that 1<i <z-1. This claim is sufficient because
in this case, if i +e >z, then by Lemma 2.6(ii), we have that f,=+f, .. (mod p) and 1<2z-
(i+e)<z. (Notice that 2z— (i +e)—i is also odd.) Now, for a fixed odd integer e, consider the
sequence {u,} such that u, = f, — f,... Since e is odd, it follows by the Binet formulas that
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ug Uy gl = (~ l)n(.fe-i-l +fe—l) = (_ l)nle'
Since p=1 (mod 4), it follows that there exists i with 1<i<z-1 such that f, = £, (mod p) if
and only if {u,} is equivalent to {f,} modulo p if and only if /, is a quadratic residue modulo p.
Similarly, using the Binet formulas to show that, if u; = £, + f,.., then (u)* —u,_u,, =(-1)""'L,

we find that there exists j such that 1< j <z-1 and such that J; ==fj+. (mod p) if and only if /,
is a quadratic residue modulo p. We remark that /, is a quadratic residue modulo p since, for

e=z, u,= f,— f, =0 (mod p).

Theorem 3.3: Let {f,} be the generalized Fibonacci sequence with parameters (a, 1) and let p be
a prime such that p =1 (mod 4) and (D/p) = -1, where D=a*+4. Then, for p>5, {f,} does
not form a complete residue system modulo p.

Proof: Assume that /, is not a quadratic residue modulo p for all odd integers e such that
1<e<z. We shall get a contradiction.

First, we consider the case p =5 (mod 8). By substituting i = (z—1)/2 in Lemma 2.6(i) and
i=(z+1)/2 in Lemma 2.7(i), we have that /., ,l; ), and f ./, are solutions to
x?=-1 (mod p); hence, neither is a quadratic residue modulo p. Note that [, =2 is not a
quadratic residue modulo p, either. By assumption, / = a is not a quadratic residue modulo p.
By Lemma 2.7(), 4" =—-1_I;' (mod p); hence, _, is a quadratic residue modulo p. By the
assumption (L_, / p) = —1, we have that (,/ p) = 1 because LI = ~I_,I"!, (mod p). By induction,
we have that (/ /p)=—1 for odd , but (/;/p) =1 for even j, where 1<i, j<z—1. This means
that /I7} is not a quadratic residue modulo p for every # such that 2<7<z-1. Note that every
element of {//|2<¢<z-1} is in a distinct residue class modulo p and that there are z—2 =
(p-3)/2 of them. Because {/,} and {f,} are not equivalent modulo p, {{/}|2<¢<z-1} and
{(f.f}12<t<z-1} are disjoint modulo p. It follows that among {f,f }|2<7<z-1} there is
only one which is not a quadratic residue modulo p. But we know that neither fi,,)/,f(;p, nor
£/t =a =1 is a quadratic residue modulo p. We get a contradiction because, by the assump-
tion, p>5, (z+1)/2=(p+3)/4>2.

For the case p=1 (mod 8), l(m)/zl('zl_!),z and f,11 f(;llm are roots of x> =-1 (mod p);
hence, both are quadratic residues modulo p. Note that J, =2 is also a quadratic residue modulo
p. By the same reasoning as above, we have that (/ / p) = -1 for every integer / such that 1</ <
z—1; hence, L/} is a quadratic residue modulo p for every ¢ such that 2<¢<z—1. Therefore,
among {f,f1|2<t<z-1}, Sz f(;fl),z is the only quadratic residue modulo p. However,
since f, =a =1, is not a quadratic residue modulo p, it follows that f, = f,/, is a quadratic residue
modulo p. Hence, one of f,f;" or f,f;" is a quadratic residue modulo p. We get a contradic-
tion because, by the assumption, p>17, (z+1)/2=(p+3)/4>4. O

4. REDUCED RESIDUE SYSTEMS OF SECOND-ORDER
RECURRENCES MODULO p

From the previous section, we conclude that, if p>7 and pja®+4, then every recurrence
sequence {u,} with parameters (a, 1) does not form a complete residue system modulo p.
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It would be interesting to know whether or not the recurrence sequence {u,} forms a reduced
residue system modulo p.

For the prime p such that p|a® +4, since z = p, there are exactly two distinct equivalence
classes modulo p. One is the equivalence class of {f,} modulo p and the other is the equivalence
class of {v,} which satisfies v, =1 and v, = @, where a is the double root of x* —ax—1=0 (mod
p). We already know, by [3], [11], and [12], that {f,} forms a complete residue system modulo
p. Moreover, {v,} also forms a reduced residue system modulo p if and only if o is a primitive
root modulo p, since v, = " (mod p).

Definition: Let a be aroot of x> —ax—1=0 (mod p). We call a a generalized Fibonacci primi-
tive root with parameters (a, 1) modulo p if & is a primitive root modulo p. For the case a=1,
we call it a Fibonacci primitive root modulo p.

Brison [1], using Hermite's criterion for a permutation polynomial over a finite field (see [6]), -
proved that, for p>7, a recurrence sequence {u,} with parameters (1,1) has the property that
{m,uy,...,u,,} is a reduced residue system modulo p if and only if {u,} is equivalent to the
sequence {v,} modulo p, where v, =1 and v, is a Fibonacci primitive root modulo p. Brison's
method can be applied directly to recurrence sequences with parameters (a,1). Therefore, we
have the following lemma.

Lemma 4.1: Let p>7 be a prime. Then a recurrence sequence {,} with parameters (a,1) has
the property that {u;, u,,...,u,_,} is a reduced residue system modulo p if and only if uu; ! mod-
ulo p is a generalized Fibonacci primitive root with parameters (a, 1) modulo p.

For a prime p > 7 such that a +4 is a quadratic residue modulo p, the period of every recur-
rence sequence with parameters (a,1) modulo p divides p—1. Therefore, we rephrase Lemma
4.1 as follows.

Proposition 4.2: Let p >7 be a prime such that a* +4 is a quadratic residue modulo p. Then a ,
recurrence sequence {u,} with parameters (a, 1) forms a reduced residue system modulo p if and
only if ;! modulo p is a generalized Fibonacci primitive root with parameters (a, 1) modulo p.

Fibonacci primitive roots and related topics have an extensive literature. Here, we refer to
Shanks [10] and Phong [7].

Lemma 4.1 does not answer our question for primes p such that a*+4 is not a quadratic
residue modulo p, because in this case the period of the recurrence sequence with parameters
(a, 1) modulo p may be greater than p—1. We have the following example.

Example: Consider the Lucas sequence {L,} (ie, [,=2, [;=1,and L, =L, ;+ L, ,) modulo
13 and 17. We have that
{L}0=1213,4,7,11,53} (mod 13),

{L,)2,,=1{11,12,10,9,6,2,8,10} (mod 13),
and
(LY _,=1{2,1,3,4,7,11,1,12,13,8} (mod 17),

(L2 ,5={15,16,14,13,10,6,16,5 4,9} (mod 17).

Therefore, the Lucas sequence forms a reduced residue system modulo 13 and 17.
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We now claim that, for a prime p>17 such that a* +4 is not a quadratic residue modulo D,
every recurrence sequence with parameters (a, 1) does not form a reduced residue system modulo
p.

Let {u,} be a recurrence sequence with parameters (a,1). Since u, =u,f,_, +u,f,, we have
that the period of {u,} modulo p divides the period of {f,} modulo p. Therefore, as before, we
only have to consider the cases where the rank of the generalized Fibonacci sequence modulo p is
(p+1)/2 or p+1. Ifthe rank is p+1, then, since every sequence is equivalent to {£,} modulo p,
it follows that none of the recurrence sequences with parameters (a,1) forms a reduced residue
system modulo p. For the case in which the rank is (p+1)/2, by Theorem 3.3, {f,} does not
form a complete residue system modulo p. Therefore, we only have to consider the generalized
Lucas sequence {/,} modulo p. By Lemma 2.7(ii), for every ¢ with 1<# <k =2(p+1), we have
that [ = +/ for some i, where 0<i<z=(p+1)/2. Thus, if we can find three distinct pairs (i, j)
such that 0<i< j<(p+1)/2 and =%/, (mod p), then the number of distinct residues of {/ }
modulo p is less than or equal to 2(z+1-3) = p-3; hence, {/,} does not form a reduced residue
system modulo p.

For a fixed odd integer e, consider the sequence {v,} such that v, =/ -/, . Since e is odd,
we see by the Binet formulas that v2-v,_v,,, = (-1)""(@*+4)/,. Since z=(p+1)/2, by Lemma
23, p=1 (mod 4). Because a* +4 is not a quadratic residue modulo p, it follows that there
exists 0<i<(p+1)/2 such that / =/, (mod p) if and only if {v,} is equivalent to {f,} modulo
p if and only if Z, is not a quadratlc residue modulo p. Similarly, by using the Binet formulas to
show that, if v, =/ +1 ,_, then (v )2 —v._v... = (=D"(a® +4)L,, we have that there exists j such

n+e>

that 0< j <z and such that /; =-/,,, (mod p) if and only if /, is not a quadratic residue modulo p.
If there exist three distinct odd integers e such that 0 <e <z and /, is not a quadratic residue
modulo p, then, by the routine argument given in the last section, we can find three distinct pairs
(@, ) suchthat 0<i<j<z and } =1/, (mod p).

Suppose that there are at most two odd integers e such that 0 <e <z and /, is not a quadratic
residue modulo p. Then, for p large enough, we claim this leads to a contradiction.

First, we consider the case p=1 (mod 8). Recall that z=(p+1)/2 and /, must be a quad-
ratic residue modulo p. Since [, =2 in this case, we have (},/p) = (/,/p) =1; hence, (}/p)=
(,_,/p) by Lemma 2.7(i). Again, by Lemma 2.7(i) and by induction, it follows that (}/p) =
(L_;/p) for all 0<i<(z+1)/2. Note that i is odd if and only if z—i is even. By assumption,
there are at most two odd integers e such that 0 <e <z and (/,/ p) = —1; hence, there are also at
most two even integers e such that 0<e <z and (/,/p) =—1. Therefore, among {{/}|1<i <z}
modulo p, there are at most eight quadratic nonresidues modulo p. Hence, there are at least
(p+1)/2 -8 nonzero quadratic residues modulo p in {{J-|1<i<z}. Since {f,f}|1<i<z} and
{171 11<i < z} modulo p form a reduced residue system modulo p, we get a contradiction if we
find eight nonzero quadratic residues modulo p among {ffoill<i<z}. Let s=(z+1)/2. By
Lemma 2.6(i), we have that f,,,f.;., =—f,i..f (mod p). Therefore, for s large enough, if we
can prove that there exist four integers i with 1<i <s=(p+3)/4 such that f,f_| is a nonzero
quadratic residue modulo p, then our claim follows. Recall that f,, =1 f,. Suppose that e is odd
and ([,/p)=1. Then we have (f,/p) = (f,./p) and, since e is odd, it follows that there exists /
with e <i < 2e such that (f,/p) = (f,_,/p). Thus, f.f] is a quadratic residue modulo p. Hence,
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our strategy is finding s large enough so that we can find four positive odd integers e(?) with
2e(i) <e(i +1) for 1<i <3 and 2e(4) <s such that (/,;)/p)=1forall 1</ <4. Since, by assump-
tion, we have at most two odd integers e such that (/,/p) = -1, the worst case is that (/,/p) =
(l;/ p) =-1. In this case, we can choose e(1) =5, e(2) =11, e(3) =23, and e(4) =47. Therefore,
for s>94 (i.e., p>373), we get a contradiction.

Next we consider the case p=5 (mod 8). Since /,=2 in this case, we have that (/,/p)=
—(l,/ p) =-1; hence, (},/p) =—(l,_,/ p) by Lemma 2.7(i). Again, by Lemma 2.7(i) and by induc-
tion, it follows that (/,/ p) = —(/,_;/ p) for all 0<i<(z+1)/2. By assumption, there are at most
two odd integers e such that 0 <e <z and (/,/ p) = —1; hence, there are at most two positive even |
integers e such that 0<e <z and (J,/p) =1. Thus, among {{/”}|1<i < z} modulo p, there are at
most eight quadratic residues modulo p, so there are at least (p+1)/2 —8 quadratic nonresidues
modulo p in {{/-}|1<i <z}. Therefore, by the same argument as above for s large enough, if we
can prove that there exist four integers i with 1<i <s=(p+3)/4 such that f,f] is a quadratic
nonresidue modulo p, then our claim follows. Suppose that e is even and (/,/p) =—1. Then we
have (f,/p) =—-(f,./p), and it follows that there exists an integer i with e <7 <2e such that
((f,/p) =—(f_;/p). Thus, f,f7} is a quadratic nonresidue modulo p. Hence, our strategy is
finding s large enough so that we are able to discover four positive even integers e(i) with 2e(i) <
e(i +1) for 1<i <3 and 2e(4) <s such that () /p)=-1for all 1<i<4. The worst case is that
(/p)=(,/p)=1. In this case, we can choose e(1) =6, e(2) =12, e(3) =24, and e(4) =48.
Therefore, for s> 96 (i.e., p>381), we get a contradiction.

We remark that, by more detailed investigation, the argument can be narrowed down to the
case s> 13 (i.e., p>49). However, in order to avoid this complication, we omit the proof here.
For the cases p=29, p=37, and p =41, by direct computation, we have that the generalized
Lucas sequence with parameters (a, 1) does not form a reduced residue system modulo p. Thus,
we have the following theorem.

Theorem 4.3: Let p be a prime such that a> +4 is not a quadratic residue modulo p. Then, for
p>17, every recurrence sequence {u,} with parameters (a,1) does not form a reduced residue
system modulo p.

In conclusion, we remark that in [11] Somer mentions that, for a more general recurrence
sequence (i.e., a recurrence with parameters (a, b), where b # 1) our results are not always true.
The following proposition tells us that, given any prime p, there exists a generalized Fibonacci
sequence that forms a complete residue system modulo p.

Proposition 4.4: Suppose that either p =2 or that p is an odd prime, —b is a primitive root mod-
ulo p, and a* +4b is not a quadratic residue modulo p. Then the generalized Fibonacci sequence
{f,} with parameters (a,b) forms a complete residue system modulo p. Furthermore, every
recurrence sequence with parameters (@, b) which is not equivalent to {f,} forms a reduced resi-
due system modulo p.

Proof: The proposition is true by inspection for p=2. Assume p>2. Let z and & be the
rank and period of {f,} modulo p, respectively. Since a*+4b is not a quadratic residue modulo
D, then z| p+1 by Lemma 2.2. Furthermore, since —b is not a quadratic residue modulo p, then
z/(p+1)/2 by Lemma 2.3. Suppose that p=1 (mod 4). Then z=2 (mod 4) and, by Theorem
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2.4, it follows that k =2gced[z, p—1]=z(p—1). Suppose that p =3 (mod 4). Then z=0 (mod
4) and, by Theorem 2.4, it follows that & =2gcd[z, p—1]=z(p—1). This shows that £, is a
primitive root modulo p in both cases. Since, for every recurrence sequence {u,} with parameters
(a,b), uy,, = £ (mod p), our proof is complete, O

Remark: Regarding the statement of Proposition 4.4, we note that, for any odd prime p, one can
always find residues a and & modulo p such that —5 is a primitive root modulo p and a® +4b is a
quadratic nonresidue modulo p. It was proved in [4] that, for a fixed residue » modulo p, one can
always find a residue a such that a® +4b is a quadratic nonresidue modulo p.
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