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1. INTRODUCTION AND STATEMENT OF MAIN THEOREM 

Everyone knows that the familiar binomial coefficients are integers. But it is not so obvious 
that quotients of binomial coefficients whose parameters are linear in n by factors linear in n also 
sometimes yield sequences of integers. For example, 

llnU ={1,1,2,5,14,42,132,...} 
Tt + 1 v n ,, 

is the well-known sequence of Catalan numbers. In the same vein, 

{f(»2-3)}n>3 = ̂ 6'27'110'429'^ 
is sequence M4177 in Sloane and Plouffe's Encyclopedia of Integer Sequences [3], 

1~\f^2-l)i is s e c l u e n c e M 2 8 0 9 > 

— -— — n„ I > is sequence Ml 660, 
(3w + 2)(3w + l)V n J) 

is sequence M3904. 1/1 + 3 ^ - 1 / 
There are at least another dozen such sequences listed in the Encyclopedia, including Ml 782, 
M2243, M2926, M2946, M2997, M3483, M3542, M3587, M4198, M4214, M4529, M4721. 
Incidentally, the smallest-parameter such sequence of integers not listed seems to be 

{£(£,)} = K3",T O-frl)} = & ">•«, .98.1001. 
Why are these sequences integral while similar sequences such as 

k(2n^ and * f2n 

}• 

n\n) 2n + l\n, 
are not, no matter what the integer k is? Here we attempt to shed some light on this question. 
Each of the above sequences is an integer multiple of a sequence of the form 

1 fan+b^ 
P(n)\cn + dy 

where P(n) is a product of one or more factors linear in n with integral coefficients and a, b, c, d 
are integers with a>c>0. Let us call such a sequence w linear binomial. In this paper, we 
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establish a simple and intuitively appealing criterion for a linear binomial sequence w to have 
bounded denominators, equivalently, for the existence of an integer k such that Aw is a sequence 
of integers. Furthermore, when the criterion is met, the proof consists of verification of an 
algorithm that produces not only a suitable multiplier k, but also a "Certificate of Integrality" for 
kw in the form of an identity expressing it as an integral linear combination of binomial coeffi-
cients. For example, the algorithm yields that the Catalan number -~[{2^) is equal to 

For j;(*"3), the algorithm returns the identity 

3 / In \_(2n-\\_(2n-l\ 
n[n-3J~{n-3J [n-4J' 

A small Mathematica package, DecomposeBinomial, implementing this algorithm, is available 
from the author's home page at http://www.stat.wisc.edu/~caISan/. 

The criterion for bounded denominators revolves around cancellation of the factors in P(n) 
with factors in what might be called the symbolic numerator of ( " ^ ) . Here cancellation refers to 
proportional polynomials or, equivalently, division in the polynomial ring Q[ri\. Set e = a-c and 
f -b-d. Thus, for any particular n, 

[cn + dj (cn + d)\ ' K } 

Now define the numerator set N of this binomial coefficient (considered symbolically) to be N = 
U<uV, where U= {an + b-i}t>0 and V={en + f + j}j^x. Thus, N contains both "ends" of the 
range of factors in the numerator in (1) but not the "middle." For example, for (2"), the numera-
tor set consists of {6n, 6n -1,6n - 2,...} u {4n +1,4n + 2,...} (but not any term of the form 5n±i). 
Similarly, define the denominator set D = {cn + d-i}i>Q. The desired criterion can now be 
expressed as follows: Each linear factor in P(n) must divide a factor in N and if a factor in D is 
proportional to one in P(n), it too must divide a factor in N (always taking multiplicity into 
account). 

For example, 2^r(2
w

w) ^ s t 0 m e e t ^ s criterion because 2/1 + 1 does not divide any term in 
N= {2/?, 2n-l, ...}u{« + l,« + 2,...}. And -̂ (2„w) also fails to meet the criterion because D-
{n,n-\...} includes «, giving two w's that need to divide factors in N = {2n,2n-l, ...}u 
{n +1, n + 2,...} but only one term in N is divisible by n. On the other hand, •£ (2^+i) does meet the 
criterion because, although here again D includes a factor proportional to n, namely 2n, the num-
erator set N = {5w, 5w-l, ....}u {3w, 3« + l,...} contains two terms proportional to «, and so both 
offending factors can be canceled. Clearly, no two factors in C/(resp. V, resp. D) can be propor-
tional. It follows that the criterion cannot be met if P(n) has two proportional (or repeated) fac-
tors. This is because the only way N can contain two proportional factors is if one of them is in U 
(say in the ith position) and the other in V (say in the 7th position). But then a simple calculation 
shows that the (i+j)®1 term in D would also be proportional to both, and "three into two won't 
go." 
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To state the criterion (and our main result) succinctly, we make two definitions. Say a linear 
factor appears in a set if it is proportional to a term in the set. Thus, 2n +1 appears in the numer-
ator set of (4w*3). Also, say a linear binomial sequence p ^ y ( ^ ) is normalized if each linear 
factor gn + h in P(n) has relatively prime coefficients g, h. 

Using this terminology, our main result can be formulated as follows. 

Theorem 1: Suppose w = j^j{cn+d) °ls a normalized linear binomial sequence. Then w has 
bounded denominators if and only if P(ri) fs linear factors are distinct and each such factor appears 
in the numerator set N of the binomial coefficient (as defined above), and appears there twice if it 
also appears in the denominator set D. 

Furthermore, if a linear binomial sequence w has bounded denominators, then there is a 
positive integer k such that kw is an integral linear combination of a fixed number (independent of 
ri) of binomial coefficients with parameters linear in n. 
Remark: Bearing in mind that a factor can appear at most twice in N, an equivalent but more 
pithy formulation of the criterion for bounded denominators is: if and only if P(w)'s linear factors 
are distinct, and each appears more often in N than in D. 

The "only if part is proved in §2. It relies on Dirichlet's classic theorem on primes in arith-
metic progressions [1, Chap. 7], and Kummer's pretty rule for finding the exact power of a prime 
p that divides a binomial coefficient; the number of carries when its parameters are subtracted in 
base/?. See [2, Ex. 5.36, p. 245] for a proof of Kummer's rule (in an equivalent formulation in 
terms of addition in basep). The "if1 part is proved in §4. It relies on a neat determinant expan-
sion, of interest in its own right, that is presented in §3. Finally, §5 contains a mild extension of 
the main theorem, some further remarks, and a conjecture. 

2, MAIN THEOREM: PROOF OF ?fONLY IFf? 

We will show that infinitely many primes occur among the denominators in j5^(cn+d) when 
the criterion of Theorem 1 is not met. Let gn+h be a factor in P(n). Suppose p = gn + h is 
prime (as it will be for infinitely many n by Dirichlet's theorem, since g and h are relatively prime). 
Write a = qxg + rt with 0<rx<g and c = q2g + r2 with 0 < r2 < g (division algorithm). Expressed 
in base/?, the two parameters of the binomial coefficient are then (for sufficiently large ri) 

an + b-

1 
rpi + b-qji 

b-qxh 

and similarly, 

cn + d = 

p 
<h 
<J2 

12-1 

1 
r2n+d-q2h 

d-q2h 
p-(q2h-d) 

i f r^O, 
if/i = 0 and b>qxh, 
if/i = 0 mid b<qxh, 

ifr2*0, 
if r2 = 0 and d>q2h, 
if r2 = 0 mdd <q2h. 
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In particular, since an + b has only two digits in base/?, at most one carry can occur in subtract-
ing cn + d from an+b in base/?. Thus, p2t{™nXbd) a n 4 if gn + h is a repeated factor in P(n), then 
p will occur among the denominators in w (for infinitely many primes p) and w will have 
unbounded denominators. Also, no carries occur in subtraction, equivalently pJ(^J5) if and only 
if (an + h) mod p>(cn + d) mod p. It is straightforward to verify that gn+h appears (i) in [/iff 
rx = 0 and b>qxh, (ii) in Viff rx=r2 and (ql-q2)h>b-d, (iii) in D iff r2 = 0 and d>q2h. 
Except for one wrinkle, it is now simply a matter of checking cases to verify/? j(^+^) unless 
gn + h- p appears in the numerator set N at least once, and twice if it appears in the denominator 
set D. This will show that infinitely many primes occur among the denominators in w, as desired. 
The one wrinkle is that when 0<rx <r2 (a subcase where gn + h does not appear in N at all), p 
does divide (*£J5) and we proceed as follows. Set n = (g-l)m-h with m variable; thus, 

1 (an + b\ = _ J _ _]__fa(g-l)m- ah + b 
gn + h\fn + d) g-\ gm-h\c(g-l)m-ch + d 

Here r{\- (a(g-l)) mod g = g-rt and r2:=(c(g-l)) mod g = g-r2. Since r{>r2:> the case 
ri > r2 applies with m in place of n, a(g-1) in place of a, and the role ofp played by gm - h. This 
completes the proof of the "only if1 part. 

3. A DETERMINANT EXPANSION 

The following result is crucial for the "if part of the main theorem in the next section. Let 
coeff denote the function that produces the row vector of coefficients of a polynomial or the 
matrix of coefficients of a list of polynomials. Thus, 

c°efflzc/xj=(c/)r=o-
Let * denote convolution of sequences; thus, 

coeff (p(x)q(x)) = coeff (p(x)) * coeff (q(x)). 

Also, for a matrix N, let N° denote the column vector obtained by taking the Hadamard (entry-
wise) product of the columns in N. For example, for N = {\ 4), N° - (i2). 

Theorem 2: Let /wbea positive integer and let a} (l<j< m\ bjt (1 < 1 <j < m), c, e, x be inde-
terminates. Let Nbe the m +1 by m matrix with rows indexed [0, m] and columns indexed [1, m], 
and (/', j) entry 

[cx + Qj i£0<i<j<rn, 
)ex + K if \<j<i<m. 

Let Mbe the m +1 by m +1 matrix coeff(N°). For example, when m = 2, 

N = 
^cx+ax cx + a2 ^ 
ex+bn cx+a2 

Kex+b2l ey 

Then det M = Ui<i<J<m(eaj -cbfi) 

ex+b2l ex + b22j 

( > 

and M-
{ax+a2)c 
bnc + a2e 

.2 A c 
ce bna2 

P2A2 (K+b2i)e el 
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Proof: We first show, for \<i<j<m, that eaj-cbj{ divides detMin the polynomial ring 
Q(e, c)[a's, b' s]. To do so, suppose eaj = cbjt for some /, j . Let iV7- denote the submatrix of n 
consisting of rows 0 through/ Then pj '^tlj^^icx+a^ is a factor in each entry of JV}; we 
may write NJ = (^)0</<y^; with deg^ =j-l (0<i < j). Now rows 0 throughy ofMconstitute 
the submatrix My = coeflF(iy/-) = (coeflF(r/))0^ * coeff(>;) [convolution of each coeff (/;) with 
coeff (p,)]. Since Rjf :=(coeff(#j))0^ is a y' + l byy matrix, its rows are linearly dependent 
[over Q(e, c, a's, &'s)] and there exists a nonzero vector u = (^)o</<./ s u c^ * a t u ^ / - ® • Thus, 

uMj = u(Rj * coeff{pj)) = (uRj) * coeff (/?,.) = § * coeff (/>,) = 0 

and Mis singular. Hence, eay - c ^ is a factor of det M Since each eaj -cb^ is obviously prime 
in Q(e9c)[a\ A's], their product also divides det M and Theorem 2 follows by confirming the 
degrees agree and the coefficients of any one term agree. 

Corollary 3: Let TV" be an m + l by m matrix with linear polynomials in one indeterminate as 
entries. Partition N into offset row and column segments as indicated. (Each vertical column seg-
ment sits atop the last position in the corresponding row segment.) 

0 
1 
2 
3 

m 

Suppose, for l<j<m, that all entries in column segment j are equal and this common entry does 
not divide any of the entries in row segment j . 

Then the rn +1 by m +1 matrix M = coeff (N°) is invertible. 

Proof: The matrix TV is of the form in Theorem 2. Clearly, a factor eaj - cbjt (\<i<j< m) 
in det Mis 0 if and only if cx+a- is proportional to ex + bJi9 that is, divides ex + bjr But these 
polynomials lie in corresponding row and column segments and thus the hypothesis ensures that 
one does not divide the other. Hence det M * 0 and Mis invertible. 

4. MAIN THEOREM! PROOF OF tfIFf? 

We seek an expression for p73-(c«+S) a§ a rational-coefficient linear combination of binomial 
coefficients. Due to the basic identity (£) = ( ^^ (^ - l ) ? we can always reduce an upper param-
eter at the expense of increasing the number of terms in the linear combination. Thus, we look for 
a combination in which all the upper parameters are the same. It will turn out that a suitable 
upper parameter is determined by the factors in P(n) that appear in U (the upper range in the 

1 2 3 m 

D 
IZ 3 
lr~ 

... r-|\ 

1 
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numerator set). Specifically, it is an+b-u, where u is the location of the last term in [/that 
appears in P{ri) (and u = 0 if there is no such term). 

By hypothesis, each (linear) factor of P(n) appears in U or V or possibly both. Let 
(an+b + l-i)ieIKj(en + f + j)j€j 

be a complete listing of these appearances, where / and J are finite subsets (one of them may be 
empty) of the positive integers. Set u - max / and v = max J (with max 0: = 0). Let rx - an + 
b + l-i, sx -en + f +v + l - j , and tt -cn + d-u-v+i, so that 

fan + b}_rft^j$'"^„ an + h-u \ 
\cn+d) tu+vtu+v_l..Jir- nST^ \cn + d-(u + v))-

We claim that all appearances of P(n)'s factors in N<uD occur within the three groupings dis-
played in the middle expression. This is true for the numerator N by definition of u and v. And if 
a P(n) factor gn + h appears in D, then by hypothesis it appears in both U and V, say in the 7th 

position in U and the y* position in V. As noted earlier, a simple calculation then shows that the 
position in D at which gn + h appears is i+j. Since i <u and j < v, it follows that i+j<u+v 
and so the (i + j) term in D is one of the displayed fs. Hence, the claim. 

Next, we have to determine appropriate lower parameters for the binomial coefficients in the 
desired linear combination. This turns out to be a little tricky; rather than being consecutive 
as one might expect, they turn out to form an interval with a hole in it. To this end, define L = 
{i G[l,u + v]:tj\Sj in the ring Q[n] for somej with l<j<i). Since thej here is necessarily 
unique, we get a map ^:/,—»[!,u + v] satisfying ^|^(/) and </>(i) <i, i GL. Also, it is easy to 
check that L is either empty or an interval of integers. (The reader might like to look ahead to the 
illustrative example at the end of this section.) Suitable lower parameters are determined by 
removing L from the set [1, u + v] and adjoining 0. Thus, we set K: = [1, u + v] \ L and the rest of 
the proof is devoted to showing that there exist (unique) rational numbers (ci)ieKKj{0) such that 

y ( an + b-u \_ 1 (an + b\ ^ \ 
tJtlo) \cn+d-(u + v) + i)- P(n){cn + dJ- ^ > 

Factoring out (c«+^~(M+V))/n;e^ tj from each side, (2) is equivalent to 

jeK ieK ^jeLlj r\P)lljeLlj 

We will show that (i) both sides of (3) are polynomials in n, and (ii) equating coefficients of like 
powers of n in these polynomials yields a system of linear equations for the c7's with a coefficient 
matrix to which the Corollary to Theorem 2 applies (and which is therefore invertible). 

Consider the right side of (3). All the factors in P(n) appear in its numerator by definition of 
u and v. For ; G I , we have f. | ^ ) . If <j)(j) < v, then s^ is present in the numerator. If, on 
the other hand, (j>(j) > v, we claim: tj also divides some rt with 1 < / < u. In fact, i-u + (j>(j) - j 
works. First, i>\ since 7 > u + v - j > 0 and i < u since <j>(j) < j . Second, tj \s^ implies 

tj\tj+sM=(cn + d-(u + v) + j) + (en + f+v + l-0(j)) 
= an + b + l-u + j - <j)(j) = an + b + l-i = rr 
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Hence, the claim. Thus, every factor in the denominator divides a factor in the numerator. And if 
a factor in P(ri) also appears among {tj}JeL, then by hypothesis it appears twice in N and hence 
appears twice in the numerator. So the right side of (3) is indeed a polynomial Prhs(n) and its 
degree is u + v - d e g P - \L\ = | ^ | - d e g P . 

As for the left side of (3), it is clearly a polynomial if L = 0. Else, since K = [1, u + v] \ L and 
L consists of consecutive integers in [1, i/+v], K may be written as a disjoint union of intervals 
Ks u Kb (Ks for the smaller numbers, here one of Ks, Kb may be empty). For / GKS, summand / 
isq(J^jriSj)QlkeK9k>itk). Now suppose i eKb. As tJ\s4U) for j GL and <f>{j) <j < maxZ < /, 
each t in the denominator of summand i divides some s in the numerator, leaving a quotient 
q:=e/c (e and c being the coefficients of n in the s's and i*s, respectively). Hence, the left side of 
(3) is the polynomial 

( t \ f \ 

jeK ieKs 
Pijrt^coii'j+i,0!\USJ H'k + z ^ i nsJxtM^ 

^/=l keK,k>ij i*Kh 

u+v 
\Je[hi],J*mgt 

(4) 

and its degree is \K\. 
Equating coefficients of powers of n in these polynomials gives a linear system of equations 

for the linear combination coefficients ct. To apply Corollary 3 to the coefficient matrix of this 
system, arrange the factors in the products occurring in P]hs(n) into a (block) matrix 

K, Kb 
N = Ksu{0}(N1 N2\ Kb {N3 NJ 

with rows and columns indexed as indicated. For blocks Nx and N4, the ij entry is tj if / < j and 
Sj if i > j . For N2, the ij entry is tj for all i. For N3, each row is (Sj)jeKs^LJ^(L) (order im-
material). Thus, in matrix terms, Plhs(n)=cN°, where c = (c0,(c;.)/e^(qr,L,c/)/eJ^) incorporates 
the glL| factors. 

Nov/ equate coefficients of powers of n in Plhs(n) = PThs(n), that is, in cN° = PThs(n), by apply-
ing the coefF operator of §3, to obtain 

ccoeflF(J\T) = coeflF(Plhg(/i)). 

This is a linear system of | ^ | + 1 equations in the \K\ + l unknowns c. The coefficient matrix 
M = coeff(iV0) is invertible because Corollary 3 applies to N. The hypothesis of the Corollary is 
met because, for all j eK = Ks^Kb, all entries of Ndirectly above position (/', j) are equal to tj, 
and all entries at or to its left are of the form si with i<j. And tj does not divide any such st or 
else j would lie in L whereas, by the definition ofKJ does not lie in L. 

To illustrate, for (6n+u^l3){62n!il w ^ have u = 2, v = 6, r,=&i + 16- i , $=4w + 14- i , 
tt = 2n+i. Since t3 \%, t4 |s6, t5 \s4, and t61^, we have L = {5, 6} with ^(5) = 4, </>(6) = 2. This 
makes Ks = [1,4] and Kb = [7,8]. The common factor in (2) is 

6n2n3) / ^2n + 1 ) ( 2 ^ + 2^2n + 3 ) ( 2 w + 4 ) ( 2 / l + 7 ) ( 2 ^ + 8 ) ) ' 

After dividing this out, the polynomial remaining on the right side is 
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while that on the left side is 

where N = 

22(6n +1 5)(4/2 + 8)(4/2 + 9)(4n +11) 

(c0, c1? c2, c3, c4,4c^, 4 ^ ) ^ ° , 

0 
1 
2 
3 
4 
7 
8 

1 2 
r2n + l 2/2 + 2 
4/1 + 13 2/2 + 2 
4/1 + 13 4/1 + 12 

3 

2/1 + 3 
2/1 + 3 
2/1 + 3 

4/1 + 13 4// + 12 4// + 11 

4 
2/2 + 4 
2/1 + 4 
2/1 + 4 
2/1 + 4 

7 8 
2/1 + 7 2/2 + 8A 

2/1 + 7 2/1 + 8 
2/1 + 7 2/1 + 8 
2/1 + 7 2/1 + 8 

4/1 + 13 4/2 + 12 4/i + H 4/1 + 10 2/1 + 7 2/2 + 8 
4/1 + 13 4/2 + 8 4/? + l l 4/? + 9 4/2 + 7 2/2 + 8 

v4/2 + 13 4/2 + 8 4/2 + 11 4/2 + 9 4/2 + 7 4/2 + 6̂  

5. CONCLUDING REMARKS 

Theorem 1 enables one to tell by inspection if a linear binomial sequence -p7~j(cn+d) has 
bounded denominators. The theorem readily extends to sequences of the form j^(c"td)> where 
both/? and Q have linear factors. Indeed, if gn+h is a factor in P(n) with g and h relatively 
prime, and if g'n + h' is a factor in Q(ri), then the prime values of gn + h can divide g'n + h' for 
only finitely many values of n unless gn+h divides g'n + h' (as polynomials in n over Q), in 
which case they can be canceled. Thus, the criterion of Theorem 1 also applies to j^(c"+d)-

The algorithm of Theorem 1 often yields the "smallest" sequence of integers among all multi-
ples of the original sequence that are integral. But it does not always do so. It does not neces-
sarily even yield the smallest sequence expressible as an integral linear combination of binomials. 
For example, (^) will be returned unchanged, whereas 

U5n)_(5n-l\(5n-l 
5{2n)-{ 2/2 J 1,2/2-1 

Here is another phenomenon: (2t-i) is also returned unchanged, while 

i f 4/2 ) _ , 4/2-1 
812 /2- l j~^ 12/2-1 

4/2-1 
2/2-_ * - ( 4 / 2 - 0 ( 4 / 2 - 3 ) — 4/2-5 

is clearly a sequence of integers. We conjecture that every such rational multiple of a linear 
binomial that yields a sequence of integers is similarly expressible as a linear combination of 
binomial coefficients with polynomial coefficients in Z[n]. It would be interesting to characterize 
those cases where the coefficients can be taken to be constants, to extend the algorithm of 
Theorem 1 to sums 

y P^fap + b^ 

and to sharpen it to yield "smallest" sequences. 
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NEW PROBLEM WEB SITE 
Readers of The Fibonacci Quarterly will be pleased to know that many of its problems can now 

be searched electronically (at no charge) on the World Wide Web at 

http://problems.math.umr.edu 

Over 20,000 problems from 38 journals and 21 contests are referenced by the site, which was 
developed by Stanley Rabinowitz's MathPro Press. Ample hosting space for the site was gener-
ously provided by the Department of Mathematics and Statistics at the University of Missouri-
Rolla, through Leon M. Hall, Chair. 

Problem statements are included in most cases, along with proposers, solvers (whose solutions 
were published), and other relevant bibliographic information. Difficulty and subject matter vary 
widely; almost any mathematical topic can be found. 

The site is being operated on a volunteer basis. Anyone who can donate journal issues or their 
time is encouraged to do so. For further information, write to: 

Mr. Mark Bowron 
Director of Operations, MathPro Press 
P.O. Box 713 
Westford, MA 01886 USA 
bowron@my-deja.com 
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