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1. INTRODUCTION
We consider the sequence {¥,} defined, for all integers », by
I47n:p14/—l+p1{1—2a I/V():a’ I/Vlzb (11)

Here a, b, and p are real numbers with p strictly positive. Write A= p?+4. Then it is well
known [5] that
_Aa"-Bf”"
n _a_:?—_’
where a = (p+JA)/2, f=(p-~JA)/2, A=b-af3, and B=b-aa. As in [5], we put ¢, =
AB =b* - pab—a*.
We define a companion sequence {W,} of {¥,} by
W, =Aa"+Bp". (1.3)
Aspects of this sequence have been treated, for example, in [6] and [7]. In the first of these refer-
ences {i,} and {W,} are denoted by {H,} and {K,}, respectively.

For (W, W)) =(0,1) we write {W,} ={U,}, and for (W,, W) = (2, p) we write {W,}={V,}.
The sequences {U,} and {/,} are generalizations of the Fibonacci and Lucas sequences, respec-
tively. From (1.2) and (1.3), we see that U, =V, and V, = AU,. It is clear that ¢, =1 and
& =-A=—(a-p)*

The purpose of this paper is to investigate certain infinite sums. In Section 3 we investigate
the sum

(1.2)

0

-W—k(n+m) (1 4)

Sk = >
o n=1 I/anka(rH-m)I/Vk(n+2m)

and in Section 4 we investigate the sum

E,m=i CLr , (1.5)

n=1 I/anle.:(n+m)ka(n+2m)le<¢(n+3m)

where k and m are taken to be odd positive integers.
Now since p >0, then @ >1 and a >|f|, so that
-4 W~
VVn:Fﬂan and W,:Aa”. (16)
Hence, assuming that a and b are chosen so that no denominator vanishes, we see from the ratio
test that S, ,, and 7, ,, are absolutely convergent.
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2. PRELIMINARY RESULTS

We require the following, in which k and m are taken to be odd integers.

I/V:v1+k +W1—k = W;Uk’ (21)
Work =Wk =WV, (2.2)
W, + W, =Bp", 23)
aW,,,+W,=Aa™"U,,, 2.4
WI.:(n+m)Wc(n+zm) - Wan/Vk(n+3m) =&y (=" UpilU yiom> 2.5)
W,

Z k"W =3 Z( 1) k" k=l p, —n, odd, (2.6)

n=m n=ny

1 1 Ui

+ =A
% i
a’"w, «a r(nw)Wk(mm) Wkn%(mm)

2.7)

Identities (2.1)-(2.5) are readily proved with the use of (1.2) and (1.3). Now, since k is odd,
then o™ = (1) g% = (~1)" #*". Hence,

n pkn
Z kn% z(l)ﬂ

n=m n=n

_ l i (“DH(ﬁVVIm + I/an—l)’ by (2.3)’

n=n, I/an
=—Z(( 1+ (-1 Dt )

and since n, —n, +1 is even, this yields (2.6). Identity (2.7) is readily established with the use of
2.4).
We also require the following theorem, which follows immediately from (2.7).

Theorem 1: If k and m are odd positive integers, then

- 1 - 1 = 1
= - . 2.8
AV ooy~ Ty 2 @9

n=1

Since a@ >1 and a >|f)|, it follows from the ratio test that the infinite sums in (2.8) are abso-
lutely convergent. For similar infinite sums in which the denominator consists of products of two
terms from the sequence {7}, see [2].

3. THE SUM S,
The first of two theorems in this section is

Theorem 2: 1f k and m are odd positive integers then

1
AULS, = 42 ,m Z k”W l—a,ka. 3.1

n=
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Proof: Consider the expression
1 1 1

+
ki k k 2 .
@ n%n (n+m)W k(n+m) ot m>VVk(n+2m)
Using (2.7), we can write this as
AU, 1
I/Kv.’npzc(rﬁm) ak(n+2m)VVk(n+2m) ’
or as
1, AU,
T .
a m«:n I/Vl‘r(n+m)VVk(n+2m)
Now

AUy, AU, AU, [1 1
Wkn%(n+m) I/Vk(n+m)ka(n+2m) I/Vk(n+m) I/an VVk(n+2m)

— AUkm X I/Vk(n+2m) + I/Vlr:n
I/Vk(n+m) I/anpz‘c(n+2m)

7,
= AU?, - k(rim) , by(2.1).
“ I/anka(n+m)ka(n+2m)
But, from (3.2)-(3.4), we then have

1 1 1
+ +
% E(n+ k(n2
W, « - m)Wk(n+m) ot m)Wk(n+2m)J
1 1 +AU2 VVk(n+m)

ki
" I/Kmka(n+m)VVk(n+2m)
so that

A U,?m . ka(n+m) _ 1 1 2

Now, summing both sides, we obtain (3.1). O

Our next theorem expresses S, ,, in terms of S, ;.

Theorem 3: Let k and m be odd positive integers with m>1. Then

AURS, , = AUS, —+ %(—1)" W""“+22( ty Pzt
km*k,m kPk,1 B ot I’an Van .

n=2

Proof: From (3.1), we have

2
AU2Sk 1 _42 kn nz anan aku’/k .

In (3.7), we solve for

and substitute in (3.1) to obtain

296

= + + .
2 k(n+2 3
Wkn%(n+m)u/k(n+2m) W, «a (o m)%(mzm) a (n+m)VVk(n+m)

(3.2)

(3.3)

3.4

(3.5)

(3.6)

(.7)
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AU S, = AU*S
kmPk, m £Ok,1 z kann 2 k"%,

From this, we arrive at (3.6) by using (2.6). O

For an application of Theorem 3, take k=1 and m=3. Then, with W, =F, and W, =L,
(3.6) becomes, respectively,

S L+3 RS +1 143
— n¥3 1 n , 38
LTk @FF;HFM 430 ©-8)
and
& By 1% Fy 115
— - . 3.9
2T Tolre = 32Tyl TIOSE 3.9)

4. THESUM T, ,

We denote the infinite sum on the left side of (2.8) by
- 1

tk = Trr Trr -
gl Wi (nem)

Then, from (2.8), we see that

AUspiti 3m = Z"Z_l gy ‘"Z_l a""%,

AUkmtkm—ZZ kn Z kann

Next, we solve for #, 3, and #, ,, and consider their difference. Then, making use of (2.2) to
factor Uy, — U,,,, and noting that U,, = U}, , we obtain

n n>

3m 1

212 1 1
A, o, —t, ) =—1"n ) 4.1
(eam = te.m) = Usim nz—la W Ukmnz "’Wm Uakm;aknmm @D

Our main result concerning 7, ,, can now be given in the following theorem.

Theorem 4: Let k and m be odd positive integers. Then

“WE L 1 & 1
e AU Usimli, m = U Z po W U Z Pz W,
3km km p=1 (42)

n=1

M S ) ypu—
Usim n=1 akn Wen WanVk(n+m).

n=1

Proof: Using (2.5), we see that

& (=1)"UinUsion — 1 _ 1
Wkn%(n+m)%(n+2m)%(n+3m) WknPVk(n+3m) I/Vk(n+m)ka(n+2m)

If we now sum both sides, we obtain
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m 1
e UUsinlem =t am = tem— 2.5 |
w k™ 2komlke,m = 3 [k, nZ—-kanVVk(n+m)]
and (4.2) follows from (4.1). O

We mention that 7, ,, can be expressed in terms of 7, ;. We simply write down (4.2) for the
case m=1, solve for == (1/a*"W,,), and then substitute in (4.2). Since the result is rather
lengthy, we do not give it here.

As can be seen from Theorems 2 and 4, §,, ,, and T, ,, can be expressed in terms of the infi-
nite sum X, (1/ &*"W,,) together with certain finite sums. If we consider specializations w,=U,
or W, =V,,, this infinite sum can be expressed in terms of the Lambert series, which is defined as

X n
L(x)= 21%}7’ |x| < 1. In this regard, see [1].
n=1

Remark: For the sake of definiteness, we have assumed throughout this paper that p >0, so that
>* (1/ a*W,,) is absolutely convergent. However, we can immediately write down parallel
results for p <0. For then we see that f<—1 and || > |a|, so that W, =(-B/(a - p))S" and
W, = BB". Tt follows from the ratio test that > (1/ #*"W,,) is absolutely convergent. We then
obtain counterparts of Theorems 1 through 4 if in each theorem we replace a(f) by fB(a) and .
A(B) by B(A). Indeed, these substitutions are valid in (2.3), (2.4), (2.6), and (2.7), regardless of
the sign of p.

Finally, two early references that touch on a wide variety of infinite sums in which the
denominators of the summands contain products of Fibonacci and Lucas numbers are [3] and [4].
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