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1. INTRODUCTION 

We consider the sequence {Wn} defined, for all integers n, by 

W„=pW„_^W„_2, W,=a,Wx = b. (1.1) 

Here a, h, and/? are real numbers with/? strictly positive. Write A = /?2+4. Then it is well 
known [5] that 

n a-ji ' { } 

where a = (/? + VA)/2, /?= (/?-VA)/2, A-h-aP, and B = b-aa. As in [5], we put ew = 
AB = h2-pah-a2. 

We define a companion sequence {Wn} of {Wn} by 

Wn = Aan + Bftn. (1.3) 

Aspects of this sequence have been treated, for example, in [6] and [7]. In the first of these refer-
ences {Wn} and {Wn} are denoted by {H„} and {Kn}, respectively. 

For (W09 Wx) = (0,1) we write {WJ = {£/„}, and for (W0, WY) = (2, /?) we write {Wn} = {F„}. 
The sequences {[/„} and {F„} are generalizations of the Fibonacci and Lucas sequences, respec-
tively. From (1.2) and (1.3), we see that Un=Vn and Vn = AUn. It is clear that eu = \ and 
ev = -A = -(a-P)2. 

The purpose of this paper is to investigate certain infinite sums. In Section 3 we investigate 
the sum 

00 W 
C - Y rrk(n+m) n 4x 

n=\ ^kJ^k{n^my^k(n+2m) 

and in Section 4 we investigate the sum 

*k,m Zrf ur W W W ' ' ' 
„=1 vvknV¥k(n+myvk{n+2my¥k{n+3m) 

where & and #i are taken to be odd positive integers. 
Now since /? > 0, then a > 1 and a > \fi\, so that 

Wn=-^—an and Wn = Aan. (1.6) 
cr-/? 

Hence, assuming that a and h are chosen so that no denominator vanishes, we see from the ratio 
test that Skm and Tkm are absolutely convergent. 
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2, PRELIMINARY RESULTS 

We require the following, in which k and m are taken to be odd integers. 
Wn+k+Wn_k = WnUk, (2.1) 

Wn+k-Wn_k = WnVk, (2.2) 

pWn + Wn_x = Bp\ (2.3) 

amWn+m + W„ = Aa»™Um, (2.4) 

™k(n+mffic(n+2m) ~ ̂ krWk(n+3m) = %(~0"^knPlkm> (2-5)" 

t-^T-^h-^^ "2-̂ odd, (2.6) 
ZLcrw*. Btr ' wk kn 

1 . 1 * UM 
« \ <xk{n+m)WKn+m) WJVklH¥m)-

Identities (2.1)-(2.5) are readily proved with the use of (1.2) and (1.3). Now, since k is odd, 
then a'^ = ( - 1 ) ^ " = (-1)"/?*". Hence, 

y _ L _ = vHXV^ 
n=nl

iA' rrkn n=nx kn 

i±i-rr<m.+»~\ by(2.3), 
D n=nx

 Wkn 

and since n1-nl-\-\ is even, this yields (2.6). Identity (2.7) is readily established with the use of 
(2.4). 

We also require the following theorem, which follows immediately from (2.7). 

Theorem 1: Ifk and m are odd positive integers, then 
o o - i co -J m -j 

„=\ V¥kn¥¥k(n+m) n=\ « ™kn n=\ a vvkn 

Since a > 1 and a > \fi\9 it follows from the ratio test that the infinite sums in (2.8) are abso-
lutely convergent. For similar infinite sums in which the denominator consists of products of two 
terms from the sequence {Wn}, see [2]. 

3. THE SUM 5 * ^ 

The first of two theorems in this section is 

Theorem 2: \fk and m are odd positive integers, then 
oo -j 2m -I m I 

AUL$k,m=4Jl knW " Z ~ W 2 S knW ' ^ A"> 
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Proof: Consider the expression 
1 

r/knW r/k^n+m^W ffHn+2m)W 
u YVkn u vvk(n+m) u rvk(n+2m) 

Using (2.7), we can write this as 
AU> km + - 1 

WMfn+rt ^WWl 

or as 

Now 

vknrrk{n+m) 

l 

k(n+2m) 

- + 
AU, km 

a Wkn ^k{n+my^k{n+2m) 

AU, km - + -
AUX km AU, km 

^kJ^k{n+m) ^k(n+m)^k(n+2m) "k(n+m) 

] - + , l 

"kn *^k{n+2m) 

_ AUkm ^k(n+2m)+^kn 

™k(n+m) ^krWk{n^2m) 

= AUl ^kjn+m) 

^kn^k(n+my^k(n+2m) 
by (2.1). 

But, from (3.2)-(3.4), we then have 

1 
• + - -+-aknW ryk(<n+m^W r/k(n+2m)W 

U Wfo, U ryk(n+m) a vyk(n+2m) 

- + -aknWkn a
k^Wk(n+2m) 

+ AUl km ' 
^k(n+m) 

so that 
W 

AJJ2 rrk(n+m) 
km WW W 

1 
-+-

^kn^k(n+mync(n+2m) 

1 . 2 
knyrk(n+m)rrk(n+2m) a vvkn a vvk(n+2m) a nk(n+m) 

Now, summing both sides, we obtain (3.1). D 

Our next theorem expresses 5 ^ in terms of Sktl. 

Theorem 3: Let k and m be odd positive integers with m > 1. Then 

AUkm$k,m~ AUkSkl — 
2SL w JL w 

w=3 rrkn n=2 vrkn 

Proof: From (3.1), we have 
co j 2 | 

In (3.7), we solve for 

and substitute in (3.1) to obtain 

^ak"Wk„ £a*Wfc„ akWk 

1 4Y-
*-> ryktW n=\" rrkn 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 
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2m -j m i 
AUkmSkm = AUkSkl-2^ £„ ~ 2 2^ 

n=3 a ^ L «=2 a ^kn 

From this, we arrive at (3.6) by using (2.6). • 
For an application of Theorem 3, take k = 1 and m = 3. Then, with Wn=Fn and Wn = Ln, 

(3.6) becomes, respectively, 

Z At+3 _ 1 y 4+i 143 . . 
f f J 7 „ A Z^ 17 17 J7 4 g n ' ^ ' 

„=1 rnrn+3rn+6 H «=1 rnrn+lrn+2 HOKJ 

and 
V _ ^ ± 2 _ J v /W, 115 
w=i AIAI+3AI+6 4 w=1 LnLn+lLn+2 11088 

4 THE SUM F ^ 

We denote the infinite sum on the left side of (2.8) by 
oo i 

Then, from (2.8), we see that 

l y 4-n 115 n Q v 

w=l ^w^Jk(yi+iw) 

oo -j 3w -j 

oo -I m -j 

Next, we solve for ^ 3m and ^ w and consider their difference. Then, making use of (2.2) to 
factor U3km - U^ and noting that U2n = UnV„, we obtain 

_ 2 J 7 2 °° 1 i m i 1 3 w 1 
A(tk,3m-tk,m)= TJ Li knW

 + 7 7 ~ Z ^ " 7 w 7 7 ~ ~ Z ^ W ' ( 4 1 ) 
U3ATW W =1 « " f c , Utow «=1 « ^foi U3fow «=1 « ĵfcw 

Our main result concerning Tk m can now be given in the following theorem. 

Theorem 4: Let k and m be odd positive integers. Then 

—2V2 °° 1 1 m 1 
eWAUkmU2kmTk,m^JJ~^ld knW

 + T j ~ ^ ~^W~ 
u3km n=l a Wkn Ukm w=l a ^kn 

1 3ffl i /w 

~7T 2^ ^kniir + ALa 

(4.2) 

^3*m *=1 a %n n=\ ^ktWk{n+m) 

Proof: Using (2.5), we see that 

*k(n+m)™k(n+2n 

If we now sum both sides, we obtain 

WjcJVk(n+m)™k(n+2m)™k(n+3m) ^kJ^k(n+3m) ™k(n+my*k(n+2m) 
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eW^knf^2km^k,m ~ *k,3m ' h,m ZL 
n=l ^kJ^k(n+m) 

and (4.2) follows from (4.1). D 

We mention that Tkm can be expressed in terms of Tkl. We simply write down (4.2) for the 
case m = l, solve for Z*=1(l/ akr2Wkn), and then substitute in (4.2). Since the result is rather 
lengthy, we do not give it here. 

As can be seen from Theorems 2 and 4, Skm and Tk^m can be expressed in terms of the infi-
nite sum Z^=i(l/ a^Wkn) together with certain finite sums. If we consider specializations Wn-Un 

orWn=Vn, this infinite sum can be expressed in terms of the Lambert series, which is defined as 

L(x) = V , |x| < 1. In this regard, see [1]. 
^ 1 - x " 

Remark: For the sake of definiteness, we have assumed throughout this paper that p > 0, so that 
Z*=i(l I' aknWkn) is absolutely convergent. However, we can immediately write down parallel 
results for p<0. For then we see that / ? < - ! and \j3\ > \a\, so that Wn =(-B/(a-{3))j3n and 
Wn = B/3n. It follows from the ratio test that lL™=i{llPknWkn) is absolutely convergent. We then 
obtain counterparts of Theorems 1 through 4 if in each theorem we replace a(]3) by P{a) and 
A(B) by B(A). Indeed, these substitutions are valid in (2.3), (2.4), (2.6), and (2.7), regardless of 
the sign of p. 

Finally, two early references that touch on a wide variety of infinite sums in which the 
denominators of the summands contain products of Fibonacci and Lucas numbers are [3] and [4]. 
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