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L INTRODUCTION 

A divisor d of n is said to be a unitary divisor of n if the greatest common divisor of d and 
nld is 1 (see [4], [9]), and a divisor d of n is said to be a biunitary divisor of n if the greatest 
common unitary divisor of d and nld is 1 (see [11], [12]). It is easy to see that the unitary divi-
sors of a prime power pa (a > 1) are 1 and pa, and the biunitary divisors of pa {a > 1) are 1, p, 
p2, ...,pa, except for pa/2 when a is even. Cohen [5] extends the above notions inductively. 

Definition LI: If d |n , then dis a 0-ary divisor of n. For k > 1, a divisor d of n is a &-ary divisor 
of n if the greatest common (k - l)-ary divisor of d and nld is 1. 

Remark: Different extensions of the concept of a unitary divisor have been developed by Suryan-
arayana [10] (who also used the term &-ary divisor) and Alladi [1]. We do not consider these 
extensions here. 

We write d\kn to mean that d is a &-ary divisor of n, and (m, n)k to stand for the greatest 
common &-ary divisor of m and n. Thus, for k > 1, d \k n if and only if d \ n and (d, nld)k_l = 1 
with the convention that (d, n/d)0 =(d,n/d). In particular, d\xn (resp. d\2n) means that d is a 
unitary (resp. biunitary) divisor of n. 

Definition 1.2: We say that pb is an infinitary divisor of pa (a>l) (written as pb\QOpa) if 
Pb\a-\Pa• In addition, 1 is the only infinitary divisor of 1. Further, d\^n if pd^\^pn^ for all 
primes/?, where d = JJp pd^ and n~Wp pn^ are the canonical forms of d and n. 

The justification for Definition 1.2 is that, for & > a - l > 0 , ph\kpa o pb\a„xpa (see [5]). 
Thus, f o r & > a - l > 0 , 

pb\kpaophLpa. 0-1) 
This means that, for a = 0,1,2,..., A +1, the A>ary divisors of pa are the same as the infinitary 
divisors of pa. For example, for a = 0,1,2,..., 101, the 100-ary divisors of /?a are the infinitary 
divisors of pa. 

Cohen and Hagis ([5], [6], [7]) give an elegant method for determining infinitary divisors. 
Let / = {pia \p is a prime, a is a nonnegative integer}. It follows from the fundamental theorem 
of arithmetic and the binary representation that every n (> 1) can be written in exactly one way 
(except for the order of factors) as the product of distinct elements of/. Each element of/ in this 
product is called an /-component of n. Cohen and Hagis ([5], [6], [7]) also note that d \^n if and 
only if every /-component ofd is also an /-component of n with the convention that \\^n for all n. 
For example, if n = 2335 = 2 • 22 • 3 • 34, then the /-components of n are 2,22, 3,34. Note that this 
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method makes It possible to compute the k-ary divisors of the prime powers 1, p, p2,..., pk+l. A 
general formula for the Ar-ary divisors of pa for a > k + 2 is not known. 

The concept of divisor is related to the Dirichlet convolution of arithmetical functions. The 
concepts of unitary and biunitary divisor lead to the unitary and biunitary convolution. This sug-
gests we define the £-ary convolution of arithmetical functions/and g as 

d\kn 

for k>0. In particular, the Q~ary, l~ary, and 2-ary convolution is the Dirichlet, unitary, and 
biunitary convolution, respectively. 

The purpose of this paper is to represent the basic algebraic properties of the A-ary convolu-
tion and to study the Mobius function under the ^-aiy convolution. 

X BASIC PROPERTIES OF TBE.Jfc-ARY CONVOLUTION 

In this section we represent the basic algebraic properties of the £-ary convolution. Particular 
attention is paid to multiplicative functions. An arithmetical function/is said to be multiplicative 
if /(I) = 1 and f{mn) - f(m)f(n) whenever (m, ri) = l, and an arithmetical function/is said to be 
completely multiplicative if / ( I ) = 1 and f(mn) = fQn)f(ri) for all m and n. Cohen and Hagis [6] 
say that an arithmetical function/is /-multiplicative if / ( I ) = 1 and f{mn) - f(m)f(n) whenever 
(m, ri)^ - 1, where (m, n)^ is the greatest common infinitary divisor ofm and n. It is easy to see 
that 

/ i s completely multiplicative => / i s /-multiplicative 
=> / i s multiplicative. (2.1) 

Theorem 2.1: Let k>0. 
1) The k-ary convolution is commutative. 
2) The function 8 serves as the identity under the £-ary convolution, where 8(1) = 1 and 

8{n) = 0 for n > 2. 
3) An arithmetical function/possesses an inverse under the k-ary convolution if and only if 

/ ( I ) * 0. The inverse (f~l)k is given recursively as (f~l)k(l) = 1//(1) and, for n > 2, 

J(l)d\kn 
d>\ 

4) The k-ary convolution preserves multiplicativity, that is, if/and g are multiplicative, so is 
their k-ary convolution. 

5) If/is multiplicative, so is (f~l)k. 

Proof: Theorem 2.1 can be proved by adopting the standard argument (see, e.g., [2], [9]). 
As part 5 is needed later, we present the details of the proof of part 5. Assume that (m, ri) = 1. If 
mn = 1, then (f~l)k(mn) = 1 = (f~l)k(m)(f~l)k(n). Assume that mn * 1 and that (f~\(m'nf) = 
(f~l)k(mf)(f~l)k(n') whenever (m\ nf) = 1 and m'n' < mn. If m = 1 or n = 1, then (f~l)k(mn) = 
(f~l)k(m)(f~l)k(n). Assume that m,n±\. With the aid of (2.2), we obtain 
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d\kmn dx\km 
d>\ ^2\kn 

dxd2>\ 

d\\km 
dl\kn 

d\d2>l 

= -(f-\(.m) £ fid2){J-\(nld2)-{f-\{ri) ZfViXrXfa'dJ 
d2\kn dx\km 
d2>\ dx>\ 

- X /(dXf-'Um/d,) E / C W V " / ^ ) 
dx\km d2\kn 
dx>\ d2>\ 

= if-\{m)<J-\{n) + {f-\{m){f--\{n) - (f-\(m)(f-\(n) 

This completes the proof. D 

Remark: The &-ary convolution is not associative in general. For example, the biunitary convo-
lution is not associative (see [8]). 

The infmitary convolution [6] of arithmetical functions/and g is defined as 

<J*-g)(ri)=YJf{d)g{nld). 
d\«>n 

The infmitary convolution possesses the properties given in Theorem 2.1. In addition, it is asso-
ciative and possesses basic properties with respect to /-multiplicative functions. We present these 
results in the following theorem. 

Theorem 2.2: 
1) The infmitary convolution is associative. 
2) The infmitary convolution is commutative. 
3) The function S serves as the identity under the infmitary convolution, where 8(1) = 1 and 

£(w) = 0for / i>2 . 
4) An arithmetical function / possesses an inverse under the infmitary convolution if and 

only if / ( I ) ^ 0 . The inverse (f1)^ is given recursively as ( / " ^ ( l ) = 1 / /0) and, for 
w>2, 

(f-lU") = 7^ Hfi^r'Un/d). (2.3) 
JWdUn 

d>\ 

5) The infmitary convolution preserves multiplicativity. 
6) If/is multiplicative, so is (f'1)^. 
7) The infmitary convolution preserves /-multiplicativity. 
8) Iff is /-multiplicative, so is (f'1)^. 
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Theorem 2.2 is given in Cohen and Hagis [6] except for equation (2.3) and parts 5 and 6. 
Cohen and Hagis [6] do not prove their results. We do not prove these results either, since the 
standard argument (see, e.g., [2], [9]) can be applied. 

Remark: It is easy to see that the k-ary convolution for all k and the infmitary convolution do not 
preserve complete multiplicativity. 

Remark: Theorem 2.2 shows that /-multiplicative functions possess two basic properties under 
the infmitary convolution. This leads us to propose the following unsolved research problem. 
Define £-ary multiplicative functions so that they possess basic properties under the &-ary 
convolution. 

3e THE Jt»ARY MOBUJS FUNCTION 

We define the &-ary Mobius function juk as the inverse of the constant function 1, denoted by 
g, under the k-ary convolution. In particular, ju0 is the classical number-theoretic Mobius func-
tion and jux is the unitary Mobius function (see [4], [9]). Since £ is a multiplicative function, so is 
juk. Therefore, juk is completely determined by its values at prime powers. The values of juk at 
prime powers are obtained recursively as juk(\) = 1 and, for a > 1, 

Mk(P
a)=~ ]•>*(/>*). (3-1) 

0<b<a 

A general explicit formula for juk is not known. 
We define the infmitary Mobius function ju^ as the inverse of the function £ under the 

infmitary convolution. An explicit formula for ju^ is known. Let s2(a) denote the number of 
nonzero terms in the binary representation of a with the convention that ^(O) = 0, and let J{n) 
denote the arithmetical function defined as 7(1) = 0 and, for n>2, J(n) = Hps2(n(p)), where 
n = Ilp pn^p) is the canonical form of n. Note that J(n) is the number of /-components of n. 
Cohen and Hagis [6] show that 

K(») = (-l)'(n)- (3-2) 
It follows from (1.1) that 

Mk(Pa) = Moo(Pa) fora = 0,l,2,...,* + l. (3.3) 

Therefore, in a sense, juk comes closer to //^ as k increases. 
It is interesting that 

fh = M~- (3 -4) 
This is a consequence of Theorem 3.1 given below and equation (3.2). 

Theorem 3.1: If/is completely multiplicative, then 
(/-')2(») = (-l)JW/(«). (3.5) 

Proof: Since both sides of (3.5) are multiplicative functions in n, we may confine ourselves 
to prime powers pa. By (2.2), and knowing the biunitary divisors of pa, we have (f~l)2(l) = 1 
and, for a> 1, 
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£ CT1 W l / O ^ ' ) = 0 if a is odd, 
7=0 

E (/'WW') - (f-l)2(Pa/2)f(Pa/2) = 0 if a is even. 
l/=o 

Therefore, for a > 0, 
2a+l 

2a 

This shows that the function (f~l)2 at prime powers is completely determined by the recurrence 
relation 

\(f-lUp2a+x)+f(pa+l)(f-\(pa) = Q, 
1(T Wa+V/0>a+1)tr W+1) = o, 

for a > 0, with the initial condition (f~l)2(l) = 1. 
We show that the function g(n) = (-l)J^f(n) satisfies the same recurrence relation at prime 

powers. In fact, 

g(p2a+1)+Apa+1)g(pa)=(-iy^a+1)f(p2a+1)+f(pa+1)(-dS2(a)/(pa) 
= (-iyiW+if(pfa+1+f(j,y+\-iy2(a)f(j,y = o 

and 
g(P2a+2)~f(pa+1)g(pa+l) = ( - i y 2 ( 2 a + 2 ) / ^ + 2 ) - / ^ + 1 x - i ) ^^v^ + 1 ) 

for a > 0, with initial condition g(l) = 1. This completes the proof. D 

Remark: The idea for the recurrence relation in the proof of Theorem 3.1 is developed from [3]. 
Cohen and Hagis [6] show that, iff is /-multiplicative, then 

( /- ! ) . (")=(-i)y (" ) / (») . 
On the basis of equations (2.1) and (3.5), we see that, if/is completely multiplicative, then 

(f-l)2 = (f-\- (3.6) 
Since the function t, is completely multiplicative, we obtain equation (3.4). 

Remark: It is an open question whether (3.6) holds for all /-multiplicative functions/ 

It is known [5] that the 3-ary divisors of pa are 1 and pa, except for the cases a = 3 and 
a = 6. The 3-ary divisors of p3 are l,p,p2,p3, and the 3-ary divisors of p6 are l,p2,p4,p6. 
Using this result and (3.1), we conclude that 

fl ifa = 0,16, 
1-1 otherwise. 
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Thus, in the case k = 3, we have juk(pa) = Mao(pa) for a = 0,l,2,...,£ + l (cf. (3.3)), but 
juk(pk+2) = -fioo(pk+2) o r MsiP5) = -1 = -MooiP5) • Further evaluations of juk for small values of 
k could be derived using the results on k-axy divisors given in [5]. 
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