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1. INTRODUCTION 

For n G N, where N = {0,1,2,...}, the Bernoulli polynomials, B„(t), are defined by means of 
the generating function 

7=S5«(0fr, 1*1 < 2*. (1) 

Some of the more important properties of these polynomials include 
Bn(t + \)-Bn(t) = nt»-\ (2) 

B„(l-t) = (-iyBM (3) 

each of which follows from (1). From (2) we can derive 
m-\ 

holding for all positive integers m. We define the Bernoulli numbers, Bn, by Bn = Bn(0), from 
which (1) allows us to write 

Note that we obtain the values B0 = 1, Bl = - 1 / 2 , i?2 = 1/6, ..., and 5„ = 0 for odd n>3. For 
even w>2, we have 

» + i £ s v m ) 
Perhaps the most fundamental property of Bernoulli numbers is the von Staudt-Clausen theorem 
which states that, for even positive n, the quantity 

p prime r 

is an integer. This implies that, for such n, the denominator of Bn is square-free. 
The Euler polynomials, En(t), « G N , are defined by means of the generating function 

^ = J X « > S UK,. (4) 
Each can be expanded in terms of Bernoulli numbers according to 
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m=o\ J m + i 

Euler polynomials satisfy the identities 

Em(t + 1)+En(t) = 2f, (5) 

^0-0 = (-1)^(0, (6) 
each following from (4). From (5) we see that, for positive integers m, 

m-l 
En(m) - (-l)mEn(0) = 2]T (- ly-^f. 

The Euler numbers, En, are defined by En = 2nEn(l/2). Each En E Z (see [10], p. 53), and as a 
result of (6) we must have En = 0 whenever n is odd. 

There are three particular identities, known as multiplication identities, associated with the 
Bernoulli and Euler polynomials. They enable one to rewrite a particular value of one of these 
polynomials in terms of a sum of a variety of values of either the same or another such polyno-
mial. We present them as follows with the assumption that, for each, q is a positive integer. For 
the Bernoulli polynomials, we have Raabe's identity [12], 

Bn{qt) = q"-lYJBn[t+^, (7) 

which follows from (1). For q odd, the Euler polynomials satisfy 

E„(qt) = q"9fji-iyEn[tUy (8) 

which follows from (4). Finally, for q even, 

En-1^t)=-^fyyBn[tUy (9> 
which follows from (1) and (4). 

The problem of studying Bernoulli and Euler polynomials at values in R is tantamount to that 
of considering the polynomials in certain intervals of R. From (2) and (5) we see that we can 
reduce this problem to that of considering the polynomials in [0,1). Utilizing (3) and (6) allows 
us further to reduce this to the interval [0,1/2]. Because of this it becomes a point of interest to 
consider the polynomials at various "special" values oft in [0,1/2], especially at rational /. Appli-
cations of (7), (8), and (9) enable us to find relations between values of these polynomials at 
several rationals within this interval. 

Let us now consider the known values of these polynomials. As we have seen, Bn(0) = Bn 

and EJl 12) = 2~nEn for each n > 0. The following can be derived from (7)-(9) for all n > 0: 

£w(0) = ""^TT ( 2 W + 2 " 2 ) 5 w + 1 ' 

Bn{^y<l-2l-»)Bn. 
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In addition, for even n > 0, the following can also be derived from (7)-(9): 

*„(})=4(i-3l~")5"' 
B„fy = -2-"(l-2l-»)B„, 

4 ( | ) = |(l-21-")(l-31-")5„) 

En{^ = 2-"-\\ + T")En. 

Also, for odd n > 1, we have 

En^y~-^ri(2n+l-l)(l-3-")B„+l, 

Each of these can be found in [11]. Similar expressions have been found for each of Bn(l/3) and 
Bn(l/6) when n is odd, but these are in terms of a sequence of rational values /„, whose denomi-
nators consist of certain powers of 3 (see [5], [6]). 

Bernoulli and Euler numbers and polynomials have numerous applications in mathematics. 
Because of this, they have been studied quite extensively. Besides the study of these polynomials 
at specific rational points, efforts have also been made to find congruence relations that describe 
specific Bernoulli polynomials at arbitrary rational points. A. Granville and Z.-W. Sun [7] have 
shown that if an integer q > 3 is odd and 1 < a < q, with (a, q) = 1, then for/? prime, 

Bp-^-Bp_^2-lp-lq(JJp-\) (mod/;), 

where Up is a linear recurrence of order [q/2] depending only on a, q, and the least positive resi-
due of/? modulo q. Their work extended a list of congruences given by E. Lehmer [9]. 

In this note we illustrate a means of finding congruence relations among Bernoulli and Euler 
polynomials evaluated at various rational numbers. We do this by considering the polynomials at 
values that have not been discussed previously. By applying (7)-(9), we build linear relationships 
among certain rational evaluations. Some recent results concerning the values of Bernoulli and 
Euler polynomials at rational points at rational points then enable us to obtain congruences based 
on the coefficients of these relations. Before proceeding with the derivation of the congruences, 
we shall present these results. 

2. SOME RECENT RESULTS 

The following result concerning Bernoulli polynomials was recently presented by G. Almkvist 
and A. Meurman in [1]. Other versions of the proof of this are given in [2], [3], and [13]. 

Theorem 2.1: Let r, s e Z, s * 0. Then sP(Bn{r Is) - Bn(0)) e Z. 
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Since Euler polynomials satisfy many properties that are similar to those that Bernoulli poly-
nomials satisfy, we would expect a result similar to Theorem 2.1 for Euler polynomials. In fact, 
we have such a result, presented in [4]. 

Theorem2.2: Let r, s e Z, s * 0. Then sT(En(r/s)-(-l)rsEn(0)) eZ. 

Note that Theorems 2.1 and 2.2 will be the key components that enable us to derive the con-
gruences that we intend to illustrate. They imply that, whenever k is a positive integer, for all 
r, s G Z, s & 0, the Bernoulli polynomials satisfy 

k^Bn^ksnBn (mod*), 

and for the Euler polynomials, 

ks^E^yi-ir^EM (mod*). 

Note that this last congruence can be written in terms of Bn since we can also express En(0) in 
such manner. 

3. SOME EXAMPLES 

The multiplication identities (7)-(9) provide a linear relationship among a set of values of 
particular Bernoulli and Euler polynomials at various rational numbers, these numbers also satisfy-
ing their own linear relationship. Varying the parameters t and q in (7)-(9) may provide several 
distinct linear relationships among these values. By a partial reduction of such a system, the coef-
ficients of these values are modified so that, by applying Theorems 2.1 and 2.2, a congruence 
relationship can be obtained modulo one of these coefficients. 

3.1 A Congruence Relating Bn(2r/s) and En_t(2r/s) 
This example gives a congruence relation, modulo a power of 2, between Bernoulli and Euler 

polynomials evaluated at the same rational number. 

Theorem 3.1: Let r, s e Z such that (2r, s) = 1. Then for positive integers w, 

2Bn{^ynEn.l{^y2^Bn (mod2"+1). 

Proof: Letting q = 2 and t = r Is in (7) and (9) yields 

Combining these two relations so as to eliminate Bn((s+2r)/(2s)), we obtain 

and thus, by Theorem 2.1, 
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2^B„^fj-mrE„_0y2"^Bn (mod2"+1). 

This then yields the theorem, since (2, s) = 1. • 
This result implies that, for odd n > 3, we have 

IB^ynE^^fj (mod2"+1), 
since Bn = 0, and for all n > 1, 

IB^ynE^^fj (mod2"), 

by the von Staudt-Clausen theorem. 
3.2 Congruences for Bn{t) and En_t(t) at Multiples of 1/10 for n Even 

This additional example concerns the values of Bn{t), at 1/10 and 3/10, and En_x{i), at 1/5 
and 2/5, for even n > 2. 
Lemma 3.2: Let be an even positive integer. Then 

10"4fe)+10"5"(^)=(2''"1~1X5""5)5'" (10) 
»5"JE„_1^-»5"£;I_1^ = -(2''-lX5''-5)5n) (11) 

(2" +1)10-5,, ̂  + (2-1 + 1)»5" £_, Q) = -2"-»(5" - 5)5„, (12) 

2(2" + l)5"JBn^+»5"JEn_I^j = -2"(5''-5)5„. (13) 

Proof: In view of (3), by letting q = 2 and f = 1/5,1/10 in (7) and (9), we obtain 

2".5»Bn^y2-5»B„[fj + \0»B„(j^ = 0, (14) 

2".5"5fl[|J-l(f^J+»5"JE„.1[|j = 0, (15) 

-2 • 5"B„ Q j + 2" • 5"B„(fj + 1 0 " ^ ^ = 0, (16) 

-2".5"B„[^j + l(fB„ij^+n5«E„_l^yO. (17) 

The case of q = 5 and f = 0 in (7), yields 

5^Qj + 5 «5^ |^-I (5"-5)5 w . (18) 
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Note that, by adding corresponding left-hand and right-hand sides of each equation, the combina-
tion (14) + (16)-(2W-2)(18) yields (10). Also, (17) + 2(2M-1)(18)-(14)-(15)-(16) yields (11). 
From 2W~1(16) + (2W"1 + 1)(17) + 2"(18), we obtain (12), and (17) + 2W+1(18)-(16) yields (13). D 

Now, from (10)-(13), we can derive congruences related to each of the values l0"Bn(l/lO), 
10^(3/10) , T&E^QLIS), and nSn En_x{215). We shall first focus on those for the Euler poly-
nomials. 

Theorem 3.3: For n an even positive integer, 

n5nEn_x (|1 - -(2"(5W - 5) + 5"(2W+1 + 2))Bn (mod2n+l + 2), (19) 

n5nEn_x (|1 = -(5* - 5 + 5W(2W+1 + 2))Bn (mod 2"+1 + 2). (20) 

Proof: If we use Theorem 2.1 to reduce (13) modulo 2n+1 + 2, we obtain (19). Now reduce 
(11) modulo 2n+l + 2, utilizing (19) to represent n5n En_x{\ IS), and we obtain (20). • 

Corollary 3.4: Let n be an even positive integer, and let/? be prime such that p\{2n +1). Then 

/ I ? ^ 1 Q ) S - I I 5 - J S ^ 1 ^ S ( 5 - - 5 ) ^ I (mod/?). 

Proof: If p|(2" +1), then (p -1) \n since, otherwise, 2n +1 = 2 (mod /?). Thus, by the von 
Staudt-Clausen theorem, p is not in the denominator of Bn, and so 5"(2"+1 +2)Bn = 0 (mod /?). 
Therefore, (19) and (20) reduce to yield the result. D 

Corollary 3.5: Let/? be prime such that p = 5 (mod 8). Then 

50^£(p_3)/2(T) = -5^E(p_m(fj = -2(5^^ -5)V1)/2 (mod/.). 

Proof: Note that /? = 5 (mod 8) implies that (p-1)/2 is even and that (Jr) = - 1 , where (-̂ ) 
is the Legendre symbol corresponding to p. Euler's criterion states that (j) = - 1 if and only if 
2(/>-*)/2 + 1 = 0 (mod p). Therefore, by taking n = (p -1) / 2, the result follows. D 

Corollary 3.6: Let /? be prime such that /? = 13 (mod 24). If there exist integers C and D for 
which p = C2+27D2, then 

5^y%p_7)/6^j=-50-V6V7)/6(f) - -6(5(*-1)/6 - 5)Viv« ( m o d p)-

Proof: In [8], page 119, we see that-there are integers C and D such that p = C2 + 27D2 if 
and only if 2 is a cubic residue modulo p. Now, 2 is a cubic residue modulo p if and only if 
2(/?-1)/3 == 1 (mod/?), and since (p-1) /6 must be an (even) integer, we can write 

2(P-W -1 = ( 2 ^ / 6 - 1 ) ( 2 ^ / 6 +1), 

where either 2(^1) /6 = -1 (mod/?) or 2(^1) /6 = 1 (mod/?). 
I f 2(/>-i)/6 = 1 (mod/?)3 then 2(jM)/2 = 1 (mod/?); thus, by Euler's criterion, (•£) = 1. However, 

/? = 13 (mod 24) implies that (£) = - 1 . Therefore, 2(p"1)/6 = -1 (mod/?), yielding the result. • 
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Now we consider congruences for 10"£w(l/10) and 10w£w(3/10). 

Theorem 3.7: Let n be an even positive integer. Then 

(T + l)lO"Bn(j-\ = -(5"(22n + 2"-2) + 2"-\5"-5))Bn (mod5w(2w"1 + 1)), (21) 

(2n +1)10"Bn(j-\EE(5"(22w + 2n-2) + (22"'1 - 1)(5W-5))Bn (modS^""1 +1)). (22) 

Proof: By Theorem 2.2, we can reduce (12) modulo 5n(2"~l +1) to obtain 

(2" +1)10"B„(j-\-(2"~l + lynFE^iO) = - ^ ( S " - 5 ) B n (mod5n(2"-1 +1)). 

Since -nEn_x{0) = (2"+l-2)Bn, this yields (21). Now multiply (10) through by 2" +1 and reduce 
modulo 5n(2"~l +1), utilizing (21) to represent (2" +1)10"5„(1/10), and we obtain (22). • 

Corollary 3.8: Let/? be prime, p > 3, and let n be an even positive integer such that p\(2"~l +1). 
Then 

1 0 W 4(io)"1 0^(l l)""( 5 W""5 )^ (mod/?) 

Proof: If p|(2W + 2), then (/? -1) Jn since, otherwise, 2W + 2 = 3 (mod p). Thus, /? is not in 
the denominator of Bn. This implies that we can reduce (21) to the form 

(2" + l )10"JB„^^(5"-5)5„ (mod/;). 

Also, from Theorem 2.1, 

(2" +1)10-5, (±y (2» + 2)10"B„ - WB„ ^ (mod 2" + 2) 

- -10"5 f l (^ ) (mod/ ; ) . 

Thus, we have the congruence for lVBn(l/lO). By incorporating this into the reduction of (10) 
modulo /?, we can obtain the congruence for 1(FBn(3 /10). D 

Corollary 3.9: Let/? be prime, p > 3, such that p = 3 (mod 8). Then 

l O ^ l W ^ ) - UP*" V > 4 ) - - ( 5 ^ / 2 -5)5(p+1)/2 (mod/,). 

Proof: If /? = 3 (mod 8), then (/? +1) / 2 is even and (^) = - 1 . By Euler's criterion, we then 
have 2(/?"1)/2 + 1 = 0 (mod/?). The result follows by taking n = (p +1) / 2. • 

Corollary 3.10: Let/? be prime such that /? = 11 or 19 (mod 40). Then/? divides the numerators 
of %+1)/2(l/10) and B{p+l)/2(3/\0). 

Proof: If /? s 11 or 19 (mod 40), then p = 3 (mod 8) and (f) = 1. By Euler's criterion, 
(D = l implies that 5ip+l)/2~-5 = 0 (mod/?). Since these conditions also imply that /?|10, the 
result follows. D 
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Corollary 3.11: Let p be prime such that p = 19 (mod 24). If there exist integers C and D for 
which p = C2 + 27£>2, then 

10('+5)/%+5)/6 (-L) - l O ^ ' l W ( ^ ) = ~(5(;,+5)/6 " 5 ) W (™d /» • 

jRro^ Recall that there are integers C and D such that p = C2 + 27D2 if and only if 
2(p-i)/3 s i ( m o d ^ s i n c e (p _ i) / 6 is an integer, this implies that either 2(p"1)/6 = -1 (mod p) or 
2 ( p - i ) / 6 ^ 1 ( m o d / ? ) 

If 2<*"1>/6 = 1 (mod/?), then 2<^1>/2 EE 1 (modp); thus, (£) = 1. However, p ^ 19 (mod 24) 
implies that (£) = - l . Therefore, 2(^"1)/6 = -1 (mod/?), and so p\(2ip+5)/6 + 2). D 

4. CONCLUSION 

We have illustrated how some simple properties of Bernoulli and Euler polynomials can be 
utilized to construct congruences for certain rational evaluations of these polynomials. Congru-
ences involving more terms can be easily obtained, but the difficulty to interpret their meaning 
increases with the number of terms involved. The examples given here are simple, but they are 
quite effective at illustrating how this method provides an opportunity to obtain previously 
unknown divisibility properties of rational values of Bernoulli and Euler polynomials. 

REFERENCES 
1. G. Almkvist & A. Meurman. "Values of Bernoulli Polynomials and Hurwitz's Zeta Function 

at Rational Points." C R. Math. Rep. Acad. Sci. Canada 13 (1991): 104-08. 
2. K. Bartz & J. Rutkowski. "On the von Staudt-Clausen Theorem." C R. Math. Rep. Acad. 

Sci. Canada 15 (1993):46-48. 
3. F. Clarke & I. Sh. Slavutskii. "The Integrality of the Values of Bernoulli Polynomials and of 

Generalised Bernoulli Numbers." Bull. London Math. Soc. 29 (1997):22-24. 
4. G. Fox. "Euler Polynomials at Rational Numbers." C. R. Math. Rep. Acad. Sci. Canada 21 

(1999):87-90. 
5. J. Glaisher. "The Bernoullian Function." Quart. J. Pure Appl. Math. 29 (1898):1-168. 
6. J. GHaisher. "On a Set of Coefficients Analogous to the Eulerian Numbers." Proc. Lond. 

Math. Soc. 31 (1899):216-35. 
7. A. Granville & Z.-W. Sun. "Values of Bernoulli Polynomials." Pacific! Math. 112 (1996): 

117-37. 
8. K. Ireland & M. Rosen. A Classical Introduction to Modern Number Theory. New York: 

Springer-Verlag, 1982. 
9. E. Lehmer. "On Congruences Involving Bernoulli Numbers and the Quotients of Fermat and 

Wilson." Ann. of Math. 39 (1938):350-60. 
10. N.Nielsen. Traite elementaire des nombres de Bernoulli. Paris, 1923. 
11. N. E. Norlund. Vorlesungenuber Differenzenrechnung. Berlin: Springer-Verlag, 1924. 
12. J. Raabe. "Zuriickfuhrung einiger Summen und bestimmten Integrale auf die Jacob-Bernoul-

lische Function." J. Peine Angew. Math. 42 (1851):348-67. 
13. B. Sury. "The Value of Bernoulli Polynomials at Rational Numbers." Bull. London Math. 

Soc. 25 (1993):327-29. 
AMS Classification Number: 11B68 

2001] 57 


