
D E R I V E D SEQUENCES, T H E TRIBONACCI R E C U R R E N C E 
AND CUBIC F O R M S 

MicheleElia 
Dipartimento di Elettroniea, Politecnico di Torino 
Corso Duca degli Abrazzi 24, 1-10129 Torino, Italy 

e-mail: elia@polito.it 
(Submitted January 1999) 

1. INTRODUCTION 

Integer representations by forms are sources of a series of very interesting Diophantine equa-
tions. For instance, the cubic form x3 +y3+z3 represents 1 and 2 in an infinite number of ways, 
whereas only two representations (1,1,1) and (4,4, -5) are known for the number 3 and it is 
unknown whether there are other representations. Number 4 has no representations, as was 
proved using congruential arguments. But, in general, we do not know a definitive criterion for 
testing if a number is representable as a sum of three cubes, nor a method for finding such a 
representation (see [12]). For the quadratic forms, the situation is different; Gauss developed his 
theory of quadratic forms [7] and solved the related integer representation problem. In particular, 
quadratic forms, computed as first derived sequences using the Simson determinant, are invariant 
for some second-order linear recurrent sequence. Therefore, each representable integer admits an 
infinite number of representations deduced from the recurrent sequence (see [17], [6]). 

In this paper we discuss integer representations by a cubic form associated with a third-order 
recurrence known as the Tribonacci recurrence [9]. The technique of derived sequences is used 
to define an invariant cubic form, computed as second derived sequences [5] of a third-order 
linear recurrent sequence. Therefore, an infinite number of representations is produced whenever 
a representation exists. Before stating the problem, let us briefly review the properties of a third-
order linear recurrent sequence {TQ, Tl9T2,...} defined by the recurrence 

Tn+3 = pTn+2 + qTn+l +rTn, p,q,r e Z, (1) 
over Z, the ring of rational integers, with initial integer values T2 =c, Tx=b, and T0=a. The 
characteristic polynomial of recurrence (1) is A(x) = x3 - px2 -qx-r, and expressions that allow 
us to directly compute Tn are 

' Aan + B@n + Cr\ 
(A + Bn)a" + Cr\ (2) 
(A + Bn + Cn2)an, 

T = 

according to whether A(x) has three simple roots a, J3,y,& double root a = /? and y, or a triple 
root a = P = y. The second derived sequence T}2) (see [5], Vol. I, p. 410) of a third-order recur-
rent sequence is defined by 

T ( 2 ) _ 

The development of this determinant, using the recurrence (1) to eliminate Tn+3 and Tn+4> yields a 
cubic forai in three variables, T„, Tn+l, and Tn+2: 

T 
*n+\ 

*n+2 

*n+i 

^n+2 

*n+3 

*n+2 

^7+3 

"^7+4 
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-Ty -(pq+r)Tlx - T*+2 + (3r-pq)T„T„+1T„+2 -2qrTn
2Tn+1 -prT„2T„+2 

-(pr + q2)TX+x + qTX+2 +(S~ P2Kl,Tn+2 + 2pTn+lT2
+2. 

Whereas a closed-form expression for the sequence T^ as a function of n is obtained using (2) 
before expanding the determinant: 

-r»ABCl(a-{3)(p-y)(r-a)]\ 
T™ = \ -rnB2C[(a - yfa]2, (4) 

-r"8CV\ 

according to the three situations of simple, double, or triple roots. 
From expression (4) we can conclude that, whatever may be the root multiplicity of A(x), 

T^ satisfies the first-order recurrence T^ = rT®\. From the same equation (4) we can see that 
the cubic form (3) is an invariant for the sequence Tn if and only if r - 1. Rewriting expression (3) 
with r - 1, and substituting the variables x, y9 and z for Tn9 Tn+l9 and Tn+2, respectively, we obtain 
the invariant cubic form % (x, y, z): 

-x3 - y3(pq +1) - z3 + xyz(3 - pq) - Iqo^y - px*z -(p + q2) xy2 + qxz2 + (q-p2) zy2 + 2pyz2, (5) 

The integer representation problem consists of finding all triples (x0, y0, z0) e Z3 that are 
solutions of the Diophantine equation <€(% yQ, z0) = m Vw e Z. If a triple (x0, y09 zQ) exists, it is 
called a representation of m and c%(x9y9z) is said to represent m. Otherwise, it is said that 
^(x, y9 z) does not represent m. From the invariance of %{x9 y, z) it is evident that, using a triple 
(x0,yQ,z0) as an initial condition in the recurrence (1), we get an infinite number of repre-
sentations for m. 

When p = q = r = 1, expression (1) is known as the Tribonacci recurrence, and the sequences 
with initial conditions T2 = l, TJ = 1, T0 = Q, and T2=3, 7[ = 1 TQ = 3 are called the Tribonacci 
sequence Kn and the generalized Lucas sequence Sn, respectively (see [9]). 

In this paper we investigate the properties of the Tribonacci cubic form 2T(x, y, z)9 which we 
define as the opposite of the expression obtained by setting p = q = 1 in (5), namely, 

2T(x, y9 z) - x3 + 2y3 +z3- 2xyz + 2yx2 +zx2 + 2xy2 - xz2 - lyz2. (6) 

The related representation problem is fully solved. With this aim, the paper is organized as fol-
lows: Section 2 collects the main properties of the Tribonacci recurrence and a related ring that 
we will call the Tribonacci ring. Section 3 studies the Tribonacci cubic form; Section 4 solves the 
integer representation problem for the Tribonacci cubic form; Section 5 comments on related and 
open problems. 

2. THE TRIBONACCI RECURRENCE AND CUBIC MINGS 

Let ®(x) = x3 - x2 - x - 1 denote the characteristic polynomial, called Tribonacci polynomial, 
of the Tribonacci recurrence. The polynomial 0(x) is irreducible over the rational field Q with 
Galois group ^ 0 isomorphic to £f3, the symmetric group on three elements. Let us denote by r 
the real root and with rx and r2 the complex conjugate roots of 0(x). These roots, expressed by 
means of the Tartaglia-Lagrange formulas, are 
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r = l [ l + | l 9 + 3V33+^19-3V33]3 

^ = ̂ 1 + ̂ 1 9 + 3^33+£?2 #19-3^33] , 

T2 = j [ l + 6)2^19 + 3V33+^^/l9-3v^3"]? 

where OD = ~l
2 *s a primitive cube root of unity. 

Let Q[r] denote a cubic field generated by the real root r of the Tribonacci polynomial. The 
field Q[co, T] of complete reducibility for @(x) is obtained from Q[r] by the adjunction of m. 
Using (2) and the roots of the Tribonacci polynomial, we get the following explicit expressions 
for the Tribonacci and the generalized Lucas sequence, respectively: 

yJl+l „M+1 -w+1 

K=- -+- -+-(T - T^T - T2) (TX - T){tl - T2) (T2 - T)(T2 - TX) ' 

Notice that Sn is the w-power symmetric function of r, r1? and r2. 
In a ring, the solution of the representation problem for decomposable forms is based on ring 

factoring properties [1]. In the case of the Tribonacci cubic form, the solution depends on the 
integral ring of Q[r] that we will call the Tribonacci ring. 

2A The Tribonacci Ring 
In this section we will prove two main properties of the integral ring of Q[T] : 
i) the ring of integers in Q[r] is Z[r], the extension of Z by the adjunction of r; 

ii) Z[r] is a principal ideal domain (PDO). 
Let us recall that the norm in Q[r] is defined as 

Nr(a + bT + CT2) = (a + bT + CT2)(a + bTl+cr'l)(a+bT2+CTl) 
= a3+b3 + c3-4abc-c2(h+a)+h2(c-a)+a2(3c + bX 

(7) 

where the product expansion turns out to be an irreducible cubic form ([1], p. 80) over Z. 
A direct calculation shows that the basis discriminant is D[l, r, r2] = -44. Since the norm of 

T is unity, i.e., Nr(r) = T-T1-T2 = 1, then T is a unit, and the triple {1, r, r2}, hereinafter called 
polynomial basis, is an integral basis for Q[r]. 

Theorem 1: The triple {1, r, r2} is an integral basis for the integer ring of Q[r]. 

Proof: Let us consider an integral basis {o)x, m2, a)3} for the ring of integers in Q[r]. Since 
T is an integer, then a 3 x 3 matrix C - (chj) with chj e Z exists such that 

1 = CnO)l + Cl20)2 + ^ i 3 ^ 3 ? 

T = c21a)1+c22a)2+c23w3, (8) 
r 2 = i : C31^1+ C32^2+ C33^3-

The determinant det(C) is an integer, and (see [14], p. 67) we have 

D[l, r, T2} - det(C)2D[a)h m2, w3] = -22 • 11; 
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hence, possible values for det(C) are ±1 and ±2. Let us first observe that it is sufficient to 
consider positive values for det(C), since negative values only correspond to a different ordering 
of the basis elements. Let Cjh e Z denote the cofactor of chj. If det(C)= 1, then, inverting (8), 
we have 

0)2=C2l'l + C22T + C23T2, (9) 
^^C^'l + C^T + C^T2, 

and {1, r, r2} is evidently an integral basis for Q[r]. 
If det(C) = 2, then, inverting (8), we obtain 

/si - CH'I + CUT + CJST 
0)1 ~ 2 ' 
^2 = Qi±t^I+Q3^? ( 1 0 ) 

/>i _ Q r ^ + Q 2 r + Q 3 r 
0)3" 2 5 

where at least one of the coefficients Cjh is an odd number, otherwise det(C-1) is an integer, 
contrary to the assumption that det(C_1) = 112. 

To demonstrate that det(C) = 2 is not possible, let us compute the norm Nr(6)j) = ±Q, 
where fi is the cubic form 

q,+q2+c% - 4cjlLcj2cjZ - q3(cJ2+cyl)+q2(cJ3 - cn)+q^q,+cj2). 
Since Nr(o)j) is an integer, fi must be a multiple of 8, which will turn out to be impossible unless 
all Cjh are even, a case already excluded. In fact, taking the congruence modulo 2 of the expres-
sion between square brackets, we find the condition CjX + Cj2 + Cj3 = 0, j = 1,2,3, where, for at 
least one j , one addend is even and two addends are odd. For instance, let CjX = 2a, CJ2 =26 + 1, 
and CJ3 = 2c + l be substituted in the above bracketed expression, then, taking the congruence 
modulo 4 of the resulting expression, we have 

(2b +1)3 + (2c +1)3 - (2c +1)2(26 +1 + 2a) + (2b + l)2(2c +1 - 2a) = 2 mod 4. 

This result shows that O is twice an odd number; hence, it cannot be a multiple of 8. The 
other two cases, CjX = 2a + l, Cj2 = 2b, Cj3 = 2c + l and CjX = 2a + l, Cj2 = 26 + 1, CJ3 = 2c, respec-
tively, yield the same conclusion. Therefore, det(C) = 2 is not possible. Thus, the ring of integers 
in Q[r] is the integral extension Z[r], and any integer in Q[T] is of the form a + hr + cr2, with 
a,b,c G Z . • 

It follows from the above proposition that the field discriminant is A^TJ/Q = -44. Moreover, 
we have already observed that Nr(r) = 1. Since @(x) has one real root and two complex roots, 
Dirichlet's theorem ([1], p. 112) allows us to conclude that the multiplicative group U[r] of the 
units in Z[r] is an Abelian group generated by -1 and r. In other terms, U[r] = C2 x C^, where 
C2 = {1, -1} and Coo is a cyclic group of infinite order isomorphic to the additive group of Z. 

We end this section by showing that Z[r] is a principal ideal domain (PID), consequently, 
Z[r] is a unique factorization domain. For this purpose, let us recall three basic concepts: 
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• In Q[r], a notion of ideal equivalence is introduced by defining two ideals Yx and T2 as 
equivalent if a rational number u eQ exists such that V{ = uY2> 

• Given a nonzero ideal 3S of a ring R, we call the number card (R/28) (the cardinality of 
the quotient R/S8) the norm of 2S and denote it by Nr(9&) (see [15], p. 52). 

• Z[T] is the only ideal with norm 1 in Q[r]. 

Theorem 2: The ring Z[r] is a principal ideal domain. 

Proof: The ring Z[r] is a Dedekind ring; hence, it is integrally closed and, by Corollary 1 on 
page 58 of [15], every ideal class contains an integral ideal 28 such that 

Nr(») < f£)4J-44|1 / 2< 1.877 <2, 

and this means that Z[r] belongs to every ideal class, so that in Z[r] every ideal is principal (see 
[l],p.231). D 

Remark 1: Dedekind gave a pictorial description of an ideal number in his masterful survey paper 
on the theory of algebraic integers [4]. Ideal numbers were introduced by Dirichlet and Kummer 
in order to recover unique factorization in algebraic number fields. A "true" ideal number "is 
never defined in its own right, but only as a divisor of actual number co" ([4], p. 94) in the ring. 
If the unique factorization holds in the ring of integers of an algebraic number field, then no ideal 
number exists and all ideals belong to a single equivalence class. Whereas, if unique factorization 
does not hold true, then a "true" ideal number of Kummer occurs. "True" ideal numbers produce 
different classes of ideals in the algebraic number field, and these classes cannot contain the inte-
gral ring as an element. 

3. THE TRIBONACCI CUBIC FORM 

We defined the Tribonacci cubic form 2T(x, y9 z) as having a positive x3 coefficient. This 
assumption is not restrictive, since a sign change of the three variables corresponds to a sign 
change of the,form, that is, 

°r(-x,-y9-z) = -°r(x9y,z). (11) 

The transformation (11) belongs to a set of variable substitutions that specify the equivalence of 
forms. This concept, together with the notions of reducibility and decomposability of forms, is 
elemental to classify 2T(x, yy z). Let us recall, for the sake of reference, their definitions from [1]. 

Definition 1: Let all cubic forms considered have coefficients in Z: 
i) Two cubic forms %'{yx, y2, y3) and %(xh x2, x3) are called equivalent if there is a non-

singular linear change of variables which takes one form to the other. The transforma-
tion is characterized by a matrix with integer entries and its determinant is ±1. 

ii) A cubic form is said to be irreducible over Q if it cannot be written as a product of a 
linear form and a quadratic form with coefficients in Q. 

Hi) A cubic form is said to be decomposable over Q if it can be written as a product of 
linear forms with coefficients in some finite algebraic extension of Q; it is called non-
decomposable otherwise. 
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The above definition has its nearly direct consequence in the following facts: 
1. Equivalence of forms is an equivalence relation. 
2. The variable transformation is invertible, and the matrix of the inverse transformation has 

integer coefficients. 
3. Equivalent forms represent the same set of integers. 
4. Any cubic form is always equivalent to a form with at most eight nonzero coefficients. 
5. Reducible cubic forms with integer coefficients are reducible over Z. 
6. Cubic forms with integer coefficients, which are decomposable in a finite algebraic 

extension 21 of Q, are decomposable in the integral ring of 2,. 

Proposition 1: The Tribonacci cubic form ?T(x,y,z) is irreducible in Q, decomposable in 
Q[T,<»] and equivalent to a form %(t, u, v) with eight nonzero coefficients. 

Proof: The equivalent form %(t,u,v) with eight nonzero coefficients, 

u3 + 4v3 - It3 - 2tuv + 9ut2 + 2vt2 - Stu2 - 4uv2, (12) 
is obtained performing on 2T(x, y9 z) the variable substitution 

(x = -t + v9 

[z = -2t + v + u. 

Irreducibility is easily proved by setting y = 0 and z--\ to obtain the irreducible polynomial 
2T(x, 0, -1) = x3 - x2 - x - 1 in a single variable. 

Decomposability is proved by factoring 2T(x, y, z) into a linear and a quadratic form over the 
real field Q[r]. The full decomposition into three linear forms over Q[o), T] is obtained by taking 
the conjugate of the linear factor under the Galois group <§©. 

Let us consider the real decomposition 

&(x,y,z) = (x+ay+hz)(x2+cy2+dz2+exy+fyz + gxz); (13) 

therefore, we obtain the following system of nine equations in seven variables from the compari-
son of the coefficients in their expanded version with the coefficients of equal monomials in (6): 

ac = 2 
hd = l 
ag+be + f = -2 
e+a = 2 
c+ae = 2 
af+hc = 0 
ad+bf = -2 
d + hg = -l 
b + g = l 

=> 
=> 
=> 
=> 
=> 
=> '" 
=> 
=> 
=> 

c = 2/a = a2-2a + 2, 
d^b2-b-\ 
f = ~2-a-2b + 2ab, 
e = 2-a, 
a3-2a2+2a~2 = Q, 
f = -b{a2-al 
f = -2(b2-b-l)~a(2b-b2X 
i 3 _ ^ 2 _ A „ l r : : 0 ? 

g=l-b. 
The system is compatible. Moreover, the factorization (13) takes place in Q[r] because we can 
express both b and a in terms of r. Actually, we have b-x and, from the birational substitution 
b = i /(a-1) that transforms the equation Q(b) = b3 -b2 -b-1' = 0 into the equation a3 -2a 2 + 
2a-2 = 0, we get a = (l+b)/b = (l + r)/r. The coefficients of the decomposition (13) are 
explicitly 
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a = I±! = ( r _ l ) r j b = t, C = 2-*- = -T2+2T + 1, d = T2-r-l 
T T+l 

£ = - ^ - U - T 2 + r + 2, f = -r2-l, g=l-r. 

Over the complex extension Qpy, r]9 2T(x, y, z) decomposes Into three linear factors as 

2T(x, y, z) = (zx + (1 + r)y + r ^X^x + (1 + rx)y + T\Z) (T2X + (1 + r2) y + T\Z) . (14) 

It Is evident that the Tribonacci cubic Is a norm in Q[r] with respect to the Integral basis 
{Y, 1 + r, r2}, hereinafter called Tribonacci basis. 

Remark 2: Along with a cubic form, it is interesting to consider the cubic curve in a complex 
projective plane with homogeneous coordinates x, y, and z, defined by the equation %{x, y,z) = 0 
(see [11]). Whenever the cubic curve has a singular point, a translation of the singular point into 
the origin usually yields to a simpler expression of cubic form. However, the curve 9~(x, y,z) = Q 
has no singular point, in fact It is a degenerate curve which is the product of three straight lines 
that are not concurrent In a single point. Since the Tribonacci cubic form cannot be simplified 
using this artifice, It Is likely that the reduced form (12) with eight coefficients is the simplest one 
possible. 

4. THE TRIBONACCI CUBIC AND REPRESENTATION OF INTEGERS 

The Tribonacci cubic gives infinitely many representations for m = -l and m- -44 by Tri-
bonacci and generalized Lucas sequences, respectively, and no representation for m = 3. As a 
consequence of (14), the representation problem for the Tribonacci cubic can be completely 
solved, since Z[r] is a PID. In particular, It Is evident that rational primes, which are still primes 
in Z[r], are not represented by the Tribonacci- cubic. The following theorem folly characterizes 
the rational primes of Z[r]. 

Theorem 8: A prime/? in Z is also prime In Z[r] If and only if ®(x) is irreducible over Zp. 

Proof: First, let us assume that/? Is a rational prime in Z[r], then the set of residues Z[T]P 

modulo/? is a field isomorphic to GF(p3) with basis {1, r, r2}, so 0(x) is Irreducible over Zp. 
Second, let us assume that &(x) is irreducible over Zp; therefore, the Galois field GF(p3) is 

generated by a root of ©(x). If we assume that p factors properly in Z[r], then we have a 
decomposition 

p = (aQ + axr + a2r2) \(al - af + a^ + 3a</i2 - la^) 
+ (-a2 + 2a2 - a0aj - a^Jr 4- (a2 -a\- a^ + a ^ ) ^ ] , 

where aQ.,aha2 e Z. Taking the congruence modulo p, we see that (a0+oir + a2r2), where 
a0, ah a2 e Zp Is a zero divisor in GF(p3), a contradiction. Thus, p is a prime in Z[r]. • 

Remark 3: Theorem 3 Is a reformulation adapted to our cubic field of the well-known fact that 
rational Gaussian primes are primes p(=4k + 3) for which -1 is a quadratic nonresidue; in other 
words, the polynomial x2 +1 is Irreducible over Zp. Whereas, for primes p = 4k + l, since -1 is a 
quadratic residue, the polynomial x2 + l is reducible over Zp. Hence, p factors over Zp], I.e., 
p-x2 + y2 has a solution in rational integers x and y (see [4]). 
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Remark 4: It is easy to check whether an integral polynomial m(x) is irreducible over GF(p) by 
computing the greatest common civisor (GCD), via the Euclidean algorithm, with xp~l - 1 . If the 
GCD is 1, then m(x) is irreducible, otherwise we get the product of its linear irreducible factors, 
possibly m(x) itself. 

It follows from Theorem 3 that 3, 5, 23, 31, 37, ... are primes in Z[r]; therefore, they are not 
represented by the Tribonacci cubic. In the next table, we summarize the representation of the 
rational primes up to 29 that factor in Z[r]. The prime factors are explicitly written in the poly-
nomial basis, whereas the representing triples are given in the Tribonacci basis, which is useful to 
initiate the Tribonacci recurrence generating an infinite number of representations. The rational 
primes 2 and 11 are factors of the discriminant D; hence, they are the only primes that ramify in 
Z[r] (see [15], Theorem 1, p. 58). In particular, they are the only rational primes divisible by a 
square of a prime in Z[r]. 

2 = 
2s = 
11 = 
7 = 

13 = 
17 = 
19 = 
29 = 

(1 + rXl-T)2 

(1 + TY(1-T)2S 

(3 + 4r+4r2)(3-2r)2 

(l + 2 r ) ( - l -6 r + 4r2) 
(3 + r - r 2 ) ( 4 - r + 2r2) 
(-l + 2r2)(-5 + 8 r -2 r 2 ) 
( - 2 - r + 2r2)(-3 + 7 r - l r 2 ) 
(2 + 3r)(l-15r + 9r2) 

=> 
=> 
=> 
=> 
=> 
=> 
=> 
=> 

(0,1,0), 
(a,b,c), 
0,3,4), 
0,1,0), 
(-2,3,-1), 
0,-1,2), 
0,-2,2), 
0,2,0). 

Finally, we give conditions that are necessary and sufficient to represent an integer M by the 
Tribonacci form. 

Theorem 4: A rational integer M e Z is represented by the Tribonacci form if and only if its 
prime decomposition is 

M = ±2"\\bf{p^Y{qf\ 
;=1 h=l 

where /? are distinct rational primes that factor in Z[r], and qh are distinct rational primes in 
Z[r] with a,b >0. 

Proof: From the norm product property, it follows that a representation for M is obtained as 
a product of the prime power factor representations. Therefore, the conclusion stems from the 
following facts: 

a) Z[r]isaPID; 
b) let (aj,bj,Cj) be a representation of pj,, then JV(ayr+^(r + l) + cyr2) = /?y; 
c) any cube c^h is represented as (q%h, 0,0), given that 1 is represented as (1,0,0); 
d) neither ql"h+l nor ql"h+2 is represented, because qh is not represented, and they are not 

cube-powers. D 

5. REMARKS AND CONCLUSIONS 

In this paper we have introduced the Tribonacci cubic form 2T(x, y, z) and solved the related 
representation problem. To this end, we have described the Tribonacci ring, namely, the ring of 
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Integers in the real cubic field Q[r] containing the real root r of the Tribonacci polynomial 
x3 -x2 -x-l. In particular, we have computed the integral basis, the discriminant, the group of 
the units, and we have shown that the integral ring Z[r] is a principal ideal ring. 

The integer representation problem for cubic forms, in general, has unpredictable features, 
unlike the one for binary quadratic forms. For instance, the equation z(x2 + y2) = m has a finite 
number N(m) of solutions for every m, depending on the factorization of m, a solution being the 
triple (1,0,/w). In the Introduction we recalled that the cubic x3+y3+z3 despite numerous 
attempts still remains unsolved (see [12]). Unfortunately, this cubic is neither a Tribonacci cubic 
nor does it seem to be equivalent to any invariant cubic of a third-order recurrence. Therefore, in 
this context, cubic forms like the Tribonacci cubic, yielding none or infinitely many representa-
tions for every integer, have a rather regular behavior. 

In conclusion, although Gauss began the study of integer representations by cubic forms, the 
theory is far from complete, unlike the theory of binary quadratic forms, but this is a challenging 
source of beautiful problems. 
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