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1. INTRODUCTION 

In the predecessor to this paper (see [7]) a family of rational termed series having irrational 
sums was constructed. These series whose terms, for a fixed k e7V\{0}, were formed from 
the reciprocal of the factorial-like product of generalized Fibonacci numbers UkUk+l...Uk+n, in 
addition exhibited irrational limits when summed over arbitrary infinite subsequences of N, by 
replacing n with a strictly monotone increasing function f:N->N. Owing to this factorial-like 
form, the argument employed in [7] was closely modeled on that of Euler's for establishing the 
irrationality of e. However, as a consequence of the approach taken, one needed to restrict atten-
tion to those sequences {£/„}, generated with respect to the relatively prime pair (P,Q) with 
121 = 1 and |P | > 1. In view of these results it was later conjectured in [7] whether other irrational 
valued series could be constructed having terms formed from the reciprocal of such products as 
[//(„)... C//(W)+jt, where again / : N —» N \ {0} was a strictly monotone increasing function. In this 
paper we shall provide evidence to support the conjecture by examining two disparate cases, 
namely, when / ( • ) satisfies a linear and an exponential growth condition. To help establish the 
result in the later case, a sufficient condition for irrationality will be derived. This condition, which 
is similar but slightly more restrictive than that employed in [2] and [6], will be demonstrated, for 
interest's sake, by an alternate proof based on the following well-known criterion for irrationality 
(see [8]): If there exists a 8 > 0 and a nonconstant infinite sequence {pnl qn) of rational approxi-
mations to 0, with (pn, qn) = l, and such that, for all n sufficiently large, 

I 9n\ qX;S 

then 6 is irrational. In addition, the above sufficiency condition will allow us to prove that the 
conjecture also holds for generalized Lucas sequences {FJ, when / ( • ) has exponential growth. 
One notable feature of these results compared to those obtained in [7] is that they apply to a much 
wider family of sequences, namely, those which are generated with respect to the relatively prime 
pair (P, 0 with \Q\ > 1 and P > \Q +1|. Unfortunately, in the linear case (i.e., when f(n) = n\ 
we cannot achieve the same level of generality, as irrational sums can only be deduced for those 
series involving generalized Fibonacci numbers where Q = 1 and P > 2. This restriction is due to 
the fact that (for k even) the sum of the series in question is given as a linear expression in s over 
the rationals, where s = 1EZsll/U„ is at present only known to be irrational for \Q\ = 1. In the 
final part of the paper, we return to the family of series first considered in [7] and, by applying the 
above criterion for irrationality, we extend the results there to encompass those series involving 
both the generalized Fibonacci and Lucas numbers where Q * 0 and P>\Q + l\. 
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2. SERIES WITH TERMS (Uf(n)... Uf(n)+k )~l 

We will first address the case of / ( • ) satisfying an exponential growth condition. To help 
motivate the required sufficient condition for irrationality, let us consider the following result 
which was first stated (without proof) in [3] but later proved by Badea in [2]. 

Theorem 2.1: Let {a„}, for n > 1, be a sequence of integers such that an+l >a*-an + l holds for 
all n. Then the sum of the series Z^Li 1 lan is an irrational number. 

This criterion, which is based on a sufficient condition for irrationality of Bran [3], is best 
possible, in the sense that rational valued series can occur if the strict inequality is replaced by 
equality. It is clear from Theorem 2.1 that, if ax > 1 and an+l > a* for n > 1, then the series of 
reciprocals {llan} must also sum to an irrational number. Such a weaker version of the above 
criterion was proved indirectly by McDaniel in [6] via a descent method and later was used to 
establish the irrationality of S*=11 /C//(W>, where f:N—>N satisfied the inequality f{n + X)> 
2f(ri). In a similar manner, by using the more restrictive condition of MneN{an+1/a%} > 1, 
we can now extend the results obtained in [6] to those series involving the reciprocal of such 
products as an = Uf^...Uf^+k. Although not essential, the advantage in using this alternate 
condition is that we can demonstrate irrationality via a direct proof, as opposed to the indirect 
arguments employed in [6]. To this end, consider now the following technical lemma. 

Lemma 2.1: If Z^=1 IIan is a series of rationals with an GN\{0} and inf„e^{a„+1 Id*} > 1, then 
the series converges to an irrational sum. 

Proof: From the above inequality, the series is clearly convergent. Denoting the sum of the 
series by 0, we examine the sequence of rational approximations pnlqn to 6 generated from 
the 71th partial sums, expressed in reduced form. As an > 0, for n > 1, the terms pn lqn must be 
strictly monotone increasing and so the sequence is nonconstant. To prove the irrationality of 6 
it is sufficient, in view of the aforementioned criterion, to demonstrate that \q„0-p„\ = o(l) as 
n-^oo. Since (pm,qm) = l, the lowest common denominator of the m fractions in the set 
{l/aw}^=1 must be greater than or equal to qm but, as axa2 ...am is one common denominator, we 
deduce that qm<al...am. Thus, again by the above inequality, 

n=m+l n n=m+l n n=m+l n 

<»«fi+i^]<*Ji+z^]<*«(i+^ 
\ r=\am+r+lj \ r=i "m+r J 

where hm = (ax...am) lam+l. The result will follow after showing that bm -> 0 as m -> oo. To this 
end, we consider log(l / bm). Via assumption, there must exist a 8 > 0 such that an+l /a*>(l + S) 
for all n, and so 

m m 
log(l/6w) = ^(logar + 1 - loga^ + log^ - ^ l o g a r 

r=l r=\ 
m / a \ 

= ^ l o g - ^ H-loga^/w log(l + J)-^ooasm->oo. • 
r=l \ a r ) 
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In the case of an = C/y(w) ...C/y(w)+jt, the condition of the previous lemma can be satisfied when 
/ ( • ) has exponential growth. We demonstrate this using the following well-known identities: 

U2m = UJm> U2m_^U2
m-QU2

m_h Vm>Um. (1) 

Theorem 2.2: Suppose {UJ is a generalized Fibonacci sequence generated with respect to 
the relatively prime pair (P, Q) with Q*0 and P > |Q +1|. If, for a given k eN, the function 
/ : N-> N\{0} has the property /(w + 1) > 2f(n) + 2k for all n > 1, then the series E"=1 l/tf„ 
converges to an irrational sum, where an = Uf^... £//(„)+*. 

Proof: We first note that, for the prescribed values of P and 0, {C/w} and {FJ are strictly 
monotone increasing sequences of positive integers. To demonstrate the irrationality of the series 
sum, it will suffice in view of Lemma 2.1 to show that infneJV{aw+11 al) > 1. Now, since 

2 I I ill 
an r=0 uf{n)+r 

observe from the assumption on / ( • ) and the identities in (1) that, for r = 0,1,..., k and n e N, 

Uf(n+l)+r &2f(n)+2k+r+l &2f(n)+2r+l _ *^f{n)+r^f{n)+r ~ Q^2f(n)+2r-l 

Uf(n)+r ^f(n)+r &f(n)+r Uf(n)+r 

PU}{n)+r~QU2f{n)+2r-l _ Uf (n)+riP ~ Q) + Q Uf(n)+r-l 
> TJ2 jjl 

Consequently, as P-Q>2, one deduces from the previous inequality that infneN{an+l/a%} > 
2*+1>l. D 

Via a similar application of Lemma 2.1, one can prove the irrationality of the above series 
when U„ is replaced with the terms of a generalized Lucas sequence {Vn}. 

Theorem 23: Suppose {Vn} is a generalized Lucas sequence generated with respect to the rela-
tively prime pair (P, Q) with Q * 0 and P > | Q +11. If, for a given k e N, the function / : N -> 
N\{0} has the property that f(n + l)>2f(ri) + 2k for all w>l, then the series E^=1l/^w con-
verges to an irrational sum, where an = Vf^ ...Vf^+k -

Proof: For the prescribed values of P and Q, it is readily seen that l im^^ V2n+l I V% = a > 1. 
Thus, for an 0<e<a-l, there must exist an N(e) > 0 such that V2n+l/V* > a-s> 1, when 
n > N{s). Let N' := rmn{s GN : /(/?) > iV(^) for all w > 5} and consider the remainder of the 
series given here by Y^=N, Van. To demonstrate the irrationality of the above series, it will suf-
fice to prove that i n f ^ K ^ left) > 1. Now, for n > Nf and r =. 0,1,..., k, one clearly must 
have f(n) + r> N{s) and so, from the assumption on / ( • ) , observe that 

Vf(n+l)+r > ^2f(n)+2k+r+l > *2/(n)+2r+l > a _ g 

V2 ~ V2 ~ V2 

Consequently, \x£n7>N.{an+l la2
n) >(a-s)k+l > 1. D 
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Turning now to the case of f(ri) = n, it is readily apparent that one cannot apply Lemma 2.1 
to prove irrationality as an+l /a* = Ilf=o(̂ H+i+r / Un+r) -> 0 as « -» oo and so the infimum over the 
natural numbers of the associated sequence must be equal to zero. In spite of this, one can still 
reach the desired conclusion for the series in question by an application of two existing results 
within the literature. The first of these, which is due to Andre-Jeannin (see [1]), asserted that the 
series E*=i 1/C/W sums to an irrational number when {Un} is generated with respect to the ordered 
pair (P, 0 , where \Q\ = 1 and P > 2. By then combining this with the well-known reduction for-
mula of Carlitz for Fibonacci summations, we can write the sum of E^Lil/tfw (for any fixed 
k G N) in terms of a linear expression in 9 over the rationals, where 9 is an irrational number to 
be determined. Thus, consider now the following Lemma which forms the basis of the reduction 
formula that shall be used directly. 

Lemma 2.2: Suppose that the sequences {U„} and {Vn} are generated with respect to the 
ordered pair (P, 1) with P&1,2 and let a and ft be the roots of x2 - Px +1 = 0. If we denote 
{m

r} = (U)m I(U)r(U)m_r, where (U)m = Uv..Um and (U)0 = 1, then 

i(-iy{2j,V=n[i-^_,x+x2], (2) 
j=o l J J ; = i 

I * ("iy \2mtl) ai+lx' = (a - am+2/Tmx) f [ [ l - V2J_xx + x2], (3) 
7=0 V J ) j=\ 

2m+l 

I 
j=0 

1 
^n^n+l •' • ^n+2m 

The above restriction on the value of P is required in order that the Binet formula for U„ is 
not indeterminant. For a proof of the above identities, interested readers should consult [4]. 

Theorem 2.4: Suppose the sequence {£/„} is generated with respect to the ordered pair (P, 0 , 
where P>2 and Q = 1, then the series Z^=1\lan sums to an irrational number where an = U„... 
Un+k and k G N. 

Proof: For the prescribed values of P and Q, all series under consideration are clearly con-
vergent. Addressing the case in which k is even, observe from Lemma 2.2 when x = l that 

00 -J 1 I ? , l W f 2 » i l f 1 
ic-iy 7 1 «„ (u)2m^ UJ±JO; n=l n X^ Jim j=Q v. J ) w==i ^ « + ; 

2/w r « ^ oo 1 1 2w 

Consequently, the sum of the series in question is of the form a9 + b, where a,b GQ and 9 is an 
irrational number. However, as {VJ is a monotone increasing sequence and Vx = P > 2, one must 
have a ^ 0. Hence, the result is established for k even. Suppose now that k = 2m +1, then as in 
[4] we multiply (4) by 1 / Un+2m+\ and upon summing we find 
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= _L.y(-iyft»V£ i L_yr_iyJHf ?• 
(tf)2»# ; U J t ! ^ ^ i (0)2* £T ; \J)ku„un+.. 

(5) 

y n+2m-J+l 

Now, dividing both sides of the standard identity Un+rUn_l-UnUn+r_l = ~{a(3)n~lUr by the term 
UnUn+r, with r = 2m-j + l, and summing to JVterms, where N >r, observe that 

IT V ! - V un+2nt-J y Uw_1 
u2m~j+l£ai IT IT JLjT ZJ IT 

n=\ kyn^Jn+2m-j+l »=1 LJn+2m-j+l n=l u n 
(6) 

2/W-/+1 r r 2/W-/+1 r r X ' 

_ y uN+n-i y ^w-i 
Z^ IT JLd IT ' 
n=l UN+n n=\ Un 

By assumption, \a\ > |/?|, and so UN+rl_l/UN+n ->l/a as N —» GO. Thus, combining the limiting 
value of (6) with (5), we obtain 

( f / ) 2 , § ( ! ) l i j § ^ ^ + 2 ^ 

where a\ bf eQ and a l is an algebraic irrational. It remains only to show that the constant 
af ^ 0. From the definition of the generalized binomial coefficient in Lemma 2.2, we see that 

2m h ™ l 0 » * , _ r_i_1 1 2w 

2m+l 

'hmj=0 {*J} U2m-j+l \Uhm+lj=0 l J J u2m-j+l 

hm+\ y=0 V J J 

Thus, if we denote the polynomial function in (3) by R(x), then 

\Uhm+\ \Uhm¥\ M 

However, by Lemma 2.2, R(x) contains the quadratic factor \-Vxx + x2 = (I - fix)(l - ax) and so 
R(a~l)~0, Moreover, 

^ ( a " 1 ) = (l-V.a-1
 + a - 2 ) ^ | ( a - a ^ 2 ^ x ) n [ l - ^ x + ^ l K O 

/» 
+ (2a"1 - Vx)(a - ara+1^-m) H O - Vv_xcTx + a'2) (7) 

m 
= (2a"1 - ^Xa - am+lp~m) J\{\- V^cT1 + a"2). 

y=2 
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Now, since a ;*/?, it is immediate that the first two factors in (7) must be nonzero, while as the 
quadratic factor l-V2j_lx + x2 for j = 2,...,m has the roots aj~l IJ3J, (3j~l I aj of which neither 
is equal to a"1, we can finally conclude that R'{aTl) & 0 and so a' & 0. D 

Remark 2.1: The inequality P > 2 in Theorem 2.4 cannot be weakened as the series in question 
will sum to a rational value when (P, Q) = (2,1). To demonstrate this, we first consider as Un -n 
in the present case, the function f(x) = (xn+k(n-!)!)/(«+ k)\. Applying Taylor's theorem to 
f(x) about the point a = 0, observe that, for x > 0, 

#1=0 

Now, as fm(0) = 0 for m = 0,..., k, it is clear after setting x = 1 in (8) and applying Lebesgue's 
Dominated Convergence Theorem that 

£j/Kit+i)-(n+*) £tJo k\ 

. Jo^J k\ Jo k\ kk\ 

It still remains an open problem as to whether the series having terms of the above form con-
tinue to exhibit irrational sums when f(n) is replaced by an arbitrary strictly monotone increasing 
integer valued function, such as a polynomial in n over the positive integers. Such a problem may 
be impossible to resolve, as it is difficult in general to predict the nature of a series sum. To 
illustrate this difficulty, we shall show that it is possible to construct a pair of infinite series having 
positive rational terms asymptotic to each other, with one summing to a rational number and the 
other to an irrational number. Consider X^=il/tfw, where an is generated from the recurrence 
relation an+l =a%-an + l with ax - 2. Then, as 1 / (an+l -1) = 1 / (an -1) - 1 lan9 one deduces that 
Z^Li 1 lan =4 - (aN+l -1)"1 and so the series converges to 1. However, if we define bn = an -1 In, 
then clearly 1 / bn ~ 1 lan as n -> oo with 

K^ =al-a„ + l 

n n2 n n + \ 

where the inequality follows from the fact that 2bn In +1 In2 - 1 In -1 l(n +1) > 0, which is easily 
deduced via the simple inequalities 2bn >2 and 2>l+nl(n + T)-lln. Thus, via Theorem 2.1, 
Z*=i 1 lbn will sum to an irrational number. 

3. SERIES WITH TERMS (UkUk+1...Uk+fin))-1 

In this section we shall again apply the criterion mentioned in the Introduction to establish 
irrational sums for the family of series considered in [7] but now involving the larger class of 
sequences {£/„}, {Vn} generated with respect to the relatively prime pair (P, Q), where Q^0 and 
P > 1. As in the previous section, it will be convenient to first demonstrate irrationality for a gen-
eral family of series having terms of the form (xkxk+l...xk+f{n))~l, where {xn} is an arbitrary 
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strictly Increasing sequence of positive integers. Although a similar result was established in [5] 
via an indirect argument, the version proved here is far stronger in comparison because we do not 
need to impose the restrictive divisibility assumption that for any mGN\{0} there exists an n 
such that m\xlx2...xn. However, it should be noted that this condition, which was also used in 
[7], was the source for the restriction on the parameter Q that was needed to argue in a similar 
manner as in [5]. 

Theorem 3.1: Let {xn} be a strictly increasing sequence of positive integers and g:N->N Y{0} 
a strictly monotone increasing function. If, in addition, {bn} is a bounded sequence of nonzero 
integers, then T^=\bnIan converges to an irrational number, where an = xxx2...x ^ny 

Proof: From the assumption, it is immediate that the series in question are absolutely con-
vergent. Denoting the sum of the series by 0, we again consider the sequence of rational approxi-
mations pn lqnto 9 generated from the 17th partial sums expressed in reduced form. As pn lqn are 
clearly nonconstant, the result will follow upon showing that \qn9- pn | = o(l) as n->oo. Since 
(pn, qn) = 1, the lowest common denominator of the m fractions {bn lan)™=l must be greater than 
or equal to qm, but as xxx2...x ^ is one common denominator, we deduce that qm < xxx2...xg^my 
Thus, if \bn | < M for all w, then 

>M±^ = M±± (9) kmd~Pm 
00 h 

Z um+r 
a r=l am+r r=l Q-

where af
r = xg{m)+l... xg(m+r). Now, by the strict monotonicity of xn, all g(m + r)- g(m) terms in 

the definition of a'r are greater than or equal to xg(m)+l. Consequently, as g(m 4- r) - g(m) > r, one 
deduces a'r > x^(w)+1, and so 

I ^ Z ^ H . - ^ - T T - (10) 

r = l ar r=l Xg(m)+l L 

Thus, by combining (9) with (10) together with the monotonicity of xn and g(-), it is readily 
apparent that \qm9-pm | -»0asm->oo. D 

Corollary 3.1: Suppose {[/„} and {Vn} are generated with respect to the relatively prime pair 
(P9 0 , with Q * 0 and P > \Q +1|. If, in addition, f:N.-+N\ {0} is a strictly monotone increas-
ing function and {bn} is a bounded sequence of nonzero integers, then J^=ibn/an converges to an 
irrational number, where an = Uk...Uk+f(n) oran=Vk...Vk+m. 

Proof: In Theorem 3.1, substitute xn for either U„ or V„, which are strictly monotone in-
creasing sequences of positive integers. If g(n) = f(n) + k, then Z^=! hn lan sums to an irrational 
number. In the case in which k>l9 the result will follow upon multiplying the series by the 
product xx ...xk_x. U 

To conclude, we shall prove, as in [5], a companion result to Theorem 3.1 in which a class of 
irrational valued alternating series were constructed. Again one can dispense with the divisibility 
condition that was required in [5]; however, in its place we have imposed an order condition. 

Theorem 3.2: Let {xn} and {yn} be two strictly increasing sequences of positive integers such 
that yn = o(x„) as n -> oo and for all n sufficiently large, 
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y„+i <y„<x„. (11) 
*-n+l 

If, in addition, g: N-> N\{0} is a strictly monotone increasing function, then JZ=i{~~Wyn^an 
converges to an irrational number where an - X\*2-~xg{ny 

Proof: Using (11) and the fact that g(ri) > n, observe that, for n sufficiently large, 

yn+i qn _ yn+\ i ^ >Wi ^ J W 
an+l y» yn Xg(n)+l'-'Xg(n+l) J V ^ / H - l ) .Vw^w+l 

<1 

and 

0 < ^ = (xP..xg(n)_0-1-^L-<(xI...xg(„)_1)-1^<(x1...xg(n)_1)-1^0 

as n—>oo. So, by Leibniz1 criterion, the alternating series converges. Denoting the sum of the 
series by #, we again consider the sequence of rational approximations pn/q„ to 0 generated 
from the 17th partial sums expressed in reduced form. As pn lqn are clearly nonconstant, the result 
will follow upon showing that \qn0- pn |= o(l) as n -> oo. Since (pn,qn) = 1, the lowest common 
denominators of the m fractions {(-l)n y„ / ®n}™=i niust be greater than or equal to qm, but since 
xxx2 '••%g(m) is one common denominator, we deduce that qm<am. Now 

\qm0-Pm\ = q» Z H)' «y» 

n=m+l 
= q» Z(-D ,r+i y* <an ZH> • + 1 ^ 

r=l a„ 
(12) 

furthermore, by standard bounds from the theory of alternating series, we also have that 

o < ^m+i y™+i < v* (—\Y+i ^m+r < ^m+i 

Am+\ Am+2 r = i 

Thus, we can, obtain, from (12), the upper bound 

\qme-pm\<am^ = ym+i 

Am+l 

< y?n+l < Jm+1 
am+l Xg(m)+l • • • Xg(m+l) X. g(m+l) -*m+l 

Hence, the result is established since, by assumption, ym+l I xm+l -> 0 as m -> oo. D 

As an application, we can now construct the following class of irrational valued series involv-
ing generalized Fibonacci numbers and the Euler totient function. 

Corollary 3.2: Suppose {£/„} is generated with respect to the relatively prime pair (P, Q) with 
Q < 0 and P > 0, then 

f y iv* Pi") 

where <p{ri) is Euler's totient function, will converge to an irrational number. 
Proof: In Theorem 3.2, substitute xn for Un, which is a strictly monotone increasing 

sequence of positive integers. If, in addition, we set g(ri) = n and yn -<p{n), then the irrationality 
of the series sum will follow if the inequality in (11) holds for n large and <p(ri) - o(Un). To this 
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end, we first note that, for the prescribed ( P , 0 values, one must have n = o(Un)9 and since 
<p(n)<n for all n9 we deduce that 0<<p(ri)/Un <nlUn -^0 as w-»oo. Consequently, for n 
sufficiently large, 

^-<l^(n)<n<Un, 
un+\ 

as required. D 
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