GENERALIZATIONS OF SOME IDENTITIES INVOLVING THE FIBONACCI NUMBERS ## Fengzhen Zhao and Tianming Wang Dalian University of Technology, 116024 Dalian, China (Submitted February 1999-Final Revision June 1999) The generalized Fibonacci and Lucas numbers are defined by $$U_n = \frac{\alpha^n - \beta^n}{\alpha - \beta}, \quad V_n = \alpha^n + \beta^n \tag{1}$$ where $\alpha = \frac{p + \sqrt{p^2 - 4q}}{2}$, $\beta = \frac{p - \sqrt{p^2 - 4q}}{2}$, p > 0, $q \ne 0$, and $p^2 - 4q > 0$. It is obvious that $\{U_n\}$ and $\{V_n\}$ are the usual Fibonacci and Lucas sequences $\{F_n\}$ and $\{L_n\}$ when p = -q = 1. Recently, for the Fibonacci numbers, Zhang established the following identities in [2]: $$\sum_{a+b=n} F_a F_b = \frac{1}{5} ((n-1)F_n + 2nF_{n-1}), \ n \ge 1,$$ (2) $$\sum_{a+b+c=n} F_a F_b F_c = \frac{1}{50} \left((5n^2 - 9n - 2) F_{n-1} + (5n^2 - 3n - 2) F_{n-2} \right), \quad n \ge 2, \tag{3}$$ and when $n \ge 3$. $$\sum_{a+b+c+d=n} F_a F_b F_c F_d = \frac{1}{150} ((4n^3 - 12n^2 - 4n + 12) F_{n-2} + (3n^3 - 6n^2 - 3n + 6) F_{n-3}). \tag{4}$$ In this paper, we extend the above conclusions. We establish some identities related to $\{U_n\}$ and $\{V_n\}$. The equalities (2)-(4) emerge as special cases of our results. Consider the generating function of $\{U_{nk}\}$: $G_k(x) = \sum_{n=0}^{\infty} U_{nk} x^n$, where k is a positive integer. Clearly, by (1) and the geometric formula, $$G_k(x) = \frac{U_k x}{1 - V_k x + q^k x^2}, |x| > \alpha^k.$$ Let $F_k(x) = \frac{G_k(x)}{x}$. Then $$F_k(x) = \sum_{n=1}^{\infty} U_{nk} x^{n-1} = \frac{U_k}{1 - V_k x + q^k x^2}, \ |x| > \alpha^k.$$ (5) For $F_k(x)$, we have the following lemma **Lemma:** If $F_k(x)$ is defined by (5), then $F_k(x)$ satisfies $$F_k^2(x) = \frac{U_k}{V_k^2 - 4q^k} (F_k'(x)(V_k - 2q^k x) - 4q^k F_k(x)), \tag{6}$$ $$F_k^3(x) = \frac{U_k^2}{2(V_k^2 - 4q^k)^2} (F_k''(x)(V_k - 2q^kx)^2 - 14q^k F_k'(x)(V_k - 2q^kx) + 32q^{2k} F_k(x)), \tag{7}$$ and $$F_k^4(x) = \frac{U_k^3}{6(V_k^2 - 4q^k)^3} (F_k'''(x)(V_k - 2q^k x)^3 - 30q^k F_k''(x)(V_k - 2q^k x)^2 + 228q^{2k} F_k'(x)(V_k - 2q^k x) - 384q^{3k} F_k(x)).$$ (8) **Proof:** Noticing that $$F_k'(x) = \frac{U_k(V_k - 2q^k x)}{(1 - V_k x + q^k x^2)^2} = \frac{(V_k - 2q^k x)F_k(x)}{1 - V_k x + q^k x^2},$$ we have $$F_k'(x)(V_k - 2q^k x) - 4q^k F_k(x) = \frac{(V_k^2 - 4q^k)F_k(x)}{1 - V_k x + q^k x^2} = \frac{V_k^2 - 4q^k}{U_k} F_k^2(x),$$ and hence (6) holds. Differentiating in (6), we get $$2F_k(x)F_k'(x) = \frac{U_k}{V_k^2 - 4q^k} (F_k''(x)(V_k - 2q^k x) - 6q^k F_k'(x)).$$ Therefore, $$2F_k(x)F_k'(x)(V_k - 2q^kx) = \frac{U_k}{V_k^2 - 4q^k} (F_k''(x)(V_k - 2q^kx)^2 - 6q^kF_k'(x)(V_k - 2q^kx)).$$ Using (6), we have $$2F_k(x)\left(\frac{V_k^2 - 4q^k}{U_k}F_k^2(x) + 4q^kF_k(x)\right) = \frac{U_k}{V_k^2 - 4q^k}(F_k''(x)(V_k - 2q^kx)^2 - 6q^kF_k'(x)(V_k - 2q^kx))$$ Using (6) again, we can prove that (7) holds. Similarly, differentiating in (6) and applying (6) and (7), we can obtain identity (8). \Box From the above lemma, we have the main results of this paper. **Theorem:** Suppose that k and n are positive integers. Then $$\sum_{a+b=n} U_{ak} U_{bk} = \frac{U_k}{V_k^2 - 4q^k} ((n-1)U_{nk}V_k - 2q^k n U_{(n-1)k}), \ n \ge 1,$$ (9) $$\sum_{a+b+c=n} U_{ak} U_{bk} U_{ck} = \frac{U_k^2}{2(V_k^2 - 4q^k)^2} ((n-1)(n-2)V_k^2 U_{nk} - q^k V_k (4n^2 - 6n - 4)U_{(n-1)k} + (4n^2 - 28n + 28(n-3)V_k + 80)U_{(n-2)k}), \ n \ge 2,$$ (10) and $$\sum_{a+b+c+d=n} U_{ak} U_{bk} U_{ck} U_{dk} = \frac{U_k^3}{6(V_k^2 - 4q^k)^3} (V_k^3 (n-1)(n-2)(n-3) U_{nk} - 6q^k V_k^2 (n-2)(n-3)(n+1) U_{(n-1)k} + 12q^{2k} V_k (n-3)(n^2 + n-1) U_{(n-2)k} - 8q^{3k} n(n^2 - 4) U_{(n-3)k}), \ n \ge 3.$$ (11) **Proof:** To show that this theorem is valid, comparing the coefficients of x^{n-2} , x^{n-3} , and x^{n-4} on both sides of the Lemma, we have identities (9)-(11). \Box Corollary. Assume that k and n are positive integers. Then $$\sum_{a+b=n} F_{ak} F_{bk} = \frac{F_k}{L_k^2 - 4(-1)^k} ((n-1)F_{nk} L_k - 2(-1)^k n F_{(n-1)k}), \quad n \ge 1,$$ (12) $$\sum_{a+b+c=n} F_{ak} F_{bk} F_{ck} = \frac{F_k^2}{2(L_k^2 - 4(-1)^k)^2} ((n-1)(n-2)L_k^2 F_{nk} - (-1)^k L_k (4n^2 - 6n - 4) F_{(n-1)k} + (4n^2 - 28n + 28(n-3)L_k + 80) F_{(n-2)k}), \ n \ge 2,$$ (13) and $$\sum_{a+b+c+d=n} F_{ak} F_{bk} F_{ck} F_{dk} = \frac{F_k^3}{6(L_k^2 - 4(-1)^k)^3} ((n-1)(n-2)(n-3) L_k^3 F_{nk} - 6(-1)^k (n-2)(n-3)(n+1) L_k^2 F_{(n-1)k} + 12 L_k (n-3)(n^2 + n-1) F_{(n-2)k} - 8(-1)^k n(n^2 - 4) F_{(n-3)k}), \ n \ge 3.$$ (14) From the Corollary, it is very easy to obtain (2)-(4). If k = 1 in (14), then $$\sum_{a+b+c+d=n} F_a F_b F_c F_d = \frac{1}{750} ((n-1)(n-2)(n-3)F_n + 6(n-2)(n-3)(n+1)F_{n-1} + 12(n-3)(n^2+n-1)F_{n-2} + 8n(n^2-4)F_{n-3}).$$ By using $F_n = F_{n-1} + F_{n-2}$ $(n \ge 2)$, we can obtain (4). Similarly, from (12), (13), and $F_n = F_{n-1} + F_{n-2}$, we have identities (2) and (3). In addition, we can work out other sums from the Corollary. For example, when k = 2 and q = -1 in (13), we have $$\sum_{a+b+c=n} F_{2a}F_{2b}F_{2c} = \frac{1}{50} (9(n-1)(n-2)F_{2n} - 3(4n^2 - 6n - 4)F_{2n-2} + (4n^2 + 56n - 172)F_{2n-4}).$$ Applying $F_n = F_{n-1} + F_{n-2}$ $(n \ge 2)$ again and again, we get $$\sum_{a+b+c=n} F_{2a}F_{2b}F_{2c} = \frac{1}{50} ((15n^2 - 63n + 66)F_{2n-3} + (10n^2 + 20n - 124)F_{2n-4}).$$ When p = 2 and q = -1 in (10), we obtain $$\sum_{a+b+c=n} P_{ak} P_{bk} P_{ck} = \frac{P_k^2}{2(Q_k^2 - 4(-1)^k)^2} ((n-1)(n-2)Q_k^2 P_{nk} - (-1)^k Q_k (4n^2 - 6n - 4) P_{(n-1)k} + (4n^2 - 28n + 28(n-3)Q_k + 80) P_{(n-2)k}), \ n \ge 2,$$ where P_k and Q_k denote the k^{th} Pell and Pell-Lucas numbers (see [1]). ## REFERENCES - 1. A. F. Horadam & Bro. J. M. Mahon. "Pell and Pell-Lucas Polynomials." *The Fibonacci Quarterly* 23.1 (1985):7-20 - 2. W. Zhang. "Some Identities Involving Fibonacci Numbers." *The Fibonacci Quarterly* **35.3** (1997):225-29. AMS Classification Numbers: 11B37, 11B39 ***