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PROBLEMS PROPOSED IN THIS ISSUE 
H-574 Proposed by Jose Luis Diaz-Barrero, University ofCatalunya, Barcelona, Spain 

Let n be a positive integer greater than or equal to 2. Determine 

At "*" ^w A - + - A i + A t A* -+- A ? + At A? 
(Fn-Ln){F„-Pn) (Ln-F„)(Ln-Pn) (Pn-F„)(P„-Lny 

where Fn, Ln, and Pn are, respectively, the /1th Fibonacci, Lucas, and Pell numbers. 

H-575 Proposed by N. Gauthier, Department of Physics, Royal Military College of Canada 
Problem Statements ffFour Remarkable Identities for the Fibonacci-Lucas Polynomials11 

For n a nonnegative integer, the following Fibonacci-Lucas identities are known to hold: 
^2«+2= 5F2n+i - L2n; F2n+3 = L2n+2 - F2n+1. 

The corresponding identities for the Fibonacci {Fn(u)}™=0 and the Lucas {Ln(u)}™=0 polynomials, 
defined by 

F0(u) = 0, F,(«) = 1, F„+2(u) = uFn+x(u) + F„(u), 
L0(u) = 2, Lx(u)^u, L„+2{u)=uL„+l{u)+Ln(u), 

respectively, are: 

^ H . 2 ( « ) = ( « 2 + 4 ) ^ 2 » + I ( « ) - ^ 2 » ( I ' ) ; F2n+3(M)^L2n+2(u)-F2n+l(u). (1) 

For m, n nonnegative integers, with the convention that a discrete sum with a negative upper limit 
is identically zero, prove the following generalizations of (1). 

Case a: (2n + 2)2mL2n+2(w) = (u2 + 4) 

Case b: (2n + 3)2mF2„+3 (u) = 

/=(A y 

£(5)(2» + 2)» 

F2n+l(u) 

L2n+l{u)-[{2nfm]L2n(u). 

(«) 

+ U 
m-\ 2m 
1=0 \ / 

\2/+l F2n+2&)~i(2n + l)2m]F2n+l(u). 
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Case c: (2n + 2)2m+1F2n+2(u) = u 

+ 

Case d: (2» + 3)2ffl+1Z2„+3(it) = u 

1=0 \ J 

"§(*w>+1>2' 

+ (w2+4) ! ( & > . • * > 

F2n+M) 

L2n+1(u)-[(2n)2m+l]F2n(u)-

L2n+l(U) 

F2n+l{u) 
2M-1 

-[(2» + l)2m+1]Z2n+1(«). 

H-576 Proposed by Paul S. Bruckman3 Sacramento^ CA 
Define the following constant, 

c2^mi-ii(p-if} 
p>2 

as an infinite product over all odd primes/?. 
(A) Show that 

C2 = ^M(2n-l)/m2n-l)}\ 
n=\ 

where ju(n) and (j>(ri) are the Mobius and Euler functions, respectively. 
(B) Let R{ri) = Zd|„ //(«ld)2d. Show that 

where £{n) - Z^U k~n is the Riemann zeta function (with n > 1), and 

r(«)=l(2*-ir=(i-2-"K(/i). 

Note: C2 is the "twin-primes" constant that enters into Hardy and Littlewoodfs "extended" con-
jectures regarding the distribution of twin primes and Goldbach's conjecture. 

SOLUTIONS 

Comment by H»-J* Seiffert 
In my solution to Prob. H-562,1 gave a valid proof for the identity 

[ * V 211 + I 
\n 

k=Q 

^2n-hl =*•-*! U--5*-2 ? 

n a nonnegative integer, as stated in the original proposal Therefore, the word "corrected" is 
meaningless. 
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Symmetry 

H-564 Proposed by Stanley Rabinowitz, Wesiford, MA 
(Vol 38, no. 4, August 2000) 

Let kbe a positive integer and let a0 = 1. Find integers aha2, ...,ak and bQ,bhb2, ...,bk such 
that 

j=0 1=0 

is true for all integers n. Prove that your answer is unique. 
For example, when k = 4, we have the identity 

Z8+21L8
+1 + 56Z8

+2 + 2 l 4 + 3 + Z8
+4 = 625(F„8 +217^ + 56ift2 + 21FK

8
+3 + F„8

+4). 

Solution by L. A. G. Dresel9 Reading, England 
Symmetry and Uniqueness 

Let E,. denote the sum from i = 0 to k. 
Let ^((a^b^n) denote ^faiL^^-bAF^)2*}. Then, if Ik((ai,bi),ri) = 0 for all w and 

we put n~-m~k, we have Zj{@j(L^m_.k)2k-bi(Fi_m_.k)2k} = 0, and because (L_t)2 = (Lt)2 and 
{F-t)2 = {Ftf for all f, we obtain 2/{^(ZIB+it-/)2*-6/(j?Witw)2*} = 0 f o r a l ! **• finally, putting 
j = k-i,vte obtain Sy{ak__j(lm+Jfk-b^F^f*} = 0. This shows that, if 4({a,, .̂>,zi) = 0 for 
all w, then we also have Ik((ak_^ bkmf\ m)~0 for all m. For this to represent the same identity, we 
must have ak^ = Aa/5, Z^,. = Xbiy which leads to I2 = 1. This gives either the "symmetric91 solu-
tion, ak_t = ai9 bk_j = bi9 or the "anti-symmetric" solution ak_t = -a,-, 6fcw = -J,.. In general, if, say, 
the identity Ik((Pj, qt\ «) = 0 is true, we also have Ik((pk_i9 %_/X n) = 0, and since these identities 
are linear and homogeneous in the coefficients, it follows that we also have the "symmetric11 iden-
tity Ik({pt + pk_i, qt +&_,•>, n) = 0 and the isanti-symmetricst identity Ik((Pi~~Pk-a ft -£*-/>,») = 0. 
Therefore, we can prove the uniqueness of our solution for a particular k if we can show that 
there is only one symmetric solution and no anti-symmetric solution. 

We shall also use the notation Ai = at -h5~kbf and Di = a{ ~ 5~kb^ and we note that Ai and Dt 

then have the same symmetry property as at. 
For&= 1. the simplest case, we have, 

(Ln)2 = (a"+n2 = L2„ + 2(-l)" and 5(F„)2 = (a»-fi")2 = L2„-2(-l)", 
so that 

Z, faiLJf - bf(Fn+if} = A4„ + A ̂ i ) + 2(-l)w{ A ~ A) = 0. 
Since this is to be true for all w, we must have D0 = £\ = 0 and AQ = Ax> so that we have the 
unique solution 

(Z„)2
 + (Z„+1)2=:5{(F„)2

 + (F„+1)2}. 

The Reduction Algorithm for Even k 
By rearranging the terms in the binomial expansion (Ln)2k = (an + @n)2k, or using equations 

(79) and (81) of [1], when k is even, say k = Ih, we obtain 
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( 4 ) = COLM + <\HYL2«k-i) + CiKyc-D + •' • + %-i(~ l ) n 4 , + % 
and 

where c0, cl3..., ck are the first A +1 coefficients In the binomial expansion (1 + Z)2k. 
We note that the right sides of these formulas differ only in the signs of the terms involving 

the factor (-l)n. Therefore, if A = a + 5~kb mdD = a-Fkb, we have 

{a(Lnfk - b(F„)2k] = D{c0L2kn + c2L2(k_2)n +... + C J + (-1)" Afal^.^ + • • • + c^L^} 

for all n. For large «, each of the k + l terms on the right is of a different order of magnitude, so 
that to satisfy the identity ^.{^.(Z^)2* ~ bj(Fn+ifk} = 0 we must satisfy the k + \ equations 
W w o ^ 0 (for * = M - 2 , . . . , 2 ) , E,Z} = 0, and ^ ( - l ) ^ / ^ ^ = 0 (for s = k-\k-3, 
..., 1). Letting y - L2s, we have the recurrence given by (17a) of [1], namely, 

We can use this to eliminate the first and last terms in each of the summations involving L2s^n+j^, 
and then repeat this process until we are left with only the middle three terms. For simplicity, we 
put Q = (-I)1 Aiy and note that Q has the same symmetry as Af because, when k is even, (-l)^_l = 
(-1)1. Now consider the reduction of E/QZ^^) = 0, first to 

(yC0 + C1)Z2j(„+1) + (C2 - C0)Z2J(/I+2) + Q^2J(«+3) + • • • = 0, 

and more generally to 

Rj^2s(nH) + (Q+l ~ J^-l)^2s(n+/+l) + Q+2^2s(rH-i+2) + ' *' = 0 

for i = l,2,. . . , /f-l, where i?o = C0, ^ = 0, and ^ = ̂ - 1 - ^ _ 2 + Q for / > 1 . Thus, Rt is a 
polynomial in j of degree /'. For a symmetric solution, the final reduction gives 

^h-l^2s(n+h-l) + (Ch~^h-2)^2s(n+h) + ^h~l^2s(n+h+l) = ®? . 

where the middle term includes a contribution of Rh_2 from both the left and the right. This final 
reduction must be a multiple of the recurrence relation, so that we have yRh_l + Ch-2Rh_2 = 0> 
giving Rh~ Rh_2 = 0, an equation of degree h which must have the h roots y = i 2 5 for 5 = 1,3, 
..., k -1. This determines the h +1 coefficients C0 to Q , except for an arbitrary factor, while the 
remaining coefficients are determined by the symmetry condition Ck_f =Cr 

If, on the other hand, the Q were anti-symmetric, our reduction would lead to 

R-h-l^2s(n+h-l) + ^h^2s(n+h) ~~ ̂ h-l^2s(n+h+l) = ® 

with Ch = 0, giving Rh_x = 0. This is an equation of degree h-l in j , which cannot have h roots 
unless Q=0 for all /', giving the only anti-symmetric solution for Q. Similarly, the only anti-
symmetric solution for Dt is Dt = 0 for all /. 

Finally, we have to look for symmetric solutions for the coefficients Df. But then we cannot 
satisfy the additional equation S^ . = 0, unless Df = 0 for all i. Hence, we have bt = 5kai, so that 
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our symmetric solution for Q = (-l)iAj = 2(-l)iai, as determined by the equation Rh-Rh_2 = 0, 
gives the unique solution for the coefficients at. 

Defining Pt = Ri- Ri_2 and using the recurrence Rj = yRj-i - i?j_2 + Q, we obtain a recurrence 
for Pi9 namely, Pt = yPt_x - Pt_2 + (Q - C,_2), a polynomial of degree i. Hence, we have P0 = C0, 
Px=yC0 + Cx, P2=y(yC0+Cx) + (C2-2C0), P3 = y2(yC0+Cx)+y(C2-3C0) + (C3-2Cx), and 
P4=y3(yC0+Cx)+y2(C2-4C0)+y(C3-3Cx) + (C4-2C2 + 2C0). 

We now consider the equation Ph = 0, identifying its roots for k = 2h = 2,4,6, and 8. 
For A = 2. we have Pj = yCQ + Cx = 0, giving yA0 - Ax = 0 for y = L2 = 3. Thus, <a,> = <1,3,1>, 

so that (Z„)4 + 3(IW+1)4 + (Ln+2)« = 25{(FJ4 + 3(FW+1)4 + (Fw+2)4}. 
For k = 4. we have P2 = y(yC0 + Q + (C2 - 2C0) = 0, giving y(yAQ - 4 ) + (A2 -2A0) = 0 for 

y = L2 and Z6. Hence, taking a0 = l, we obtain ax = L2 + L6 = 3 + 1% = 21 and a2 = Z,2Z6 = 54, 
giving (a,) = (1,21,56,21,1) and ht = 54a,, which agrees with the solution given by the proposer. 

For k=6. we have P3 = y2(C0y + Q)+y(C2 - 3C0) + (C3 - 2Q) = 0 for j = L2, Z6, Z,10. This 
leads to a0 = l, ax = L2 + L6 + LX0 = 21 + 123 = 144, a 2 - 3 = Z2Z,6 + (Z2 + Z6)Z10 = 54 + 21-123 = 
2637, a, r-2^=54-123 = 6642. Therefore, we obtain (ax) = <1,144,2640,6930,2640,144,1> and 
ft, =5%. 

For ft =8. we have y\C0y+Cx)+y2(C2-4C0)+y(C3-3Cx) + (C4-2C2 +2C0) = 0 for y = L2, 
L6, Lxo, Z14, leading to a0 = 1, ax = 144 + 843 = 987, a2 - 4 = 2637 +144 • 843 = 124029, a3 - 3ax = 
6642 + 2637-843 = 2229633, a4-2a2 +2 = 6642-843 = 5599206. Thus, we obtain 6, = 5 % , with 
<a,.> = <1, 987,124033,2232594,5847270,2232594,124033,987,1). 

The Reduction Algorithm for Odd k 
Proceeding as before, when k = 2h +1 we have 

(L„) = CQL2nk + Cx(-X)n L2„yc-\) + ̂ 2 2̂«(it-2) + • • • + ck-l^2n + (~WCky 
and 

^ CV = CoL2„k ~ Cl(~ 1)"Llnik-l) + C2^2n(k-2) + Ck-\^2n ~ (~^TCk' 

Taking A = a + 5~kh and D = a- 5~kh as before, we now have 

{a(L„r - b(Fn?k} = D{c,Llkn + <^2(t_2)„ + • • • + ck_xL2n} + (-l)M{c,Z2(,_1)n + • • • + ck}. 

To satisfy the identity S,{a,(L„+/)2* -&,(F„+,)2i} = 0 we have the k +1 equations I / A ^ n + o = ° 
(for s = k, k-2,...,\\ 1,^-1)'AtL2s(n+i)^0 (for 5 = t - l , k-3,...,2) and S,(-l) '4 = 0- The 
last equation will require Ai to be symmetric, and therefore Q = (-1)* At will be anti-symmetric, as 
k is odd. The formulas for Ri in the reduction algorithm are the same as before, and at the pen-
ultimate stage we have four middle terms remaining, namely, 

Rh-lL2s(n+h-l) + (Ph ~ ̂ h-2)^2s(ti+h) ~ (Q ~ fyi-2)^2s(n+h+l) ~ ̂ h-l^2s(n+h+2) ~ 0-
This finally reduces to ( i ^ + i ^ 1 ) ^ ^ ) - ( / ^ + / ^ i ) ^ ^ ^ i ) = 0 foraU'/i, giving i^ + i ^ = 0, 
an equation of degree h with the h roots y = L2s, for 5 = 2,4,..., k - 1 . This determines C0 to Ch, 
and hence the symmetric Ai = (-1)'Q. 
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Turning to the equations for Di9 they also reduce to an equation of degree h in y with roots 
y = L2s, but now we have the h +1 values s = 1,3,..., k. Hence, Dt = 0 for all /, and we have 
bf = Skau and our symmetric solution for Ai = (-1)'CJ. gives the unique solution for the coeffi-
cients ai and bt. 

Defining Q = Ri + R.^ and using the recurrence i?,. = ji?,^ - i^_2 + Q, we obtain Q = j ^ - . j -
Q-2+ (Q + Q-i) > a polynomial in y of degree i. Hence, we have Q, = Q, Q = (y + 1)C0 + Q, 
& = X > < ; + Q + Q ) + ( ^ + Q - ^ ^ 

We now consider the equation Qh = 0, identifying its roots for k = 2h +1 = 3,5, 7. 
For^=3 . (2i = (y + l)C0 + Q = 0 + 1 ) 4 , - ^ = 0 for y = L4 = 7, giving 4 = 8 4 and, finally, 

< a , > < l , 8 , 8 , l > a n d ^ 5 V 

Eoi^^i,a=^OQ+Q+Q)+(Q+c1-Q) = o,thus^o^ 
for 3; = Z8 = 47 and j = L4. Therefore, (At - AQ) = (47 + 7 ) 4 and ( 4 - 4 - 4 ) = 7 • 4 7 4 > s o 

we have the solution <a,> = <1,55,385,385,55,1) and bt = 55ai. 
Fork =7. a = / O Q + Q + Q ) + X Q + Q - 2 C 0 ) + ( Q + C 2 - C 1 » q ) ) = 0for j = 7,47, and 

3; = Ll2 = 322. Hence, ( 4 - 4 ) - (54 + 322)4, ( 4 " 4 ™ 2 4 ) = (7 • 47 + 54 <322)4) = 177174, 
and ( 4 - 4 - 4 + 4 ) = 7• 47• 3224 = 1059384, so we have the solution (af) = <1,377,18096, 
124410,124410,18096,377,1> and bt = 57at. 

Concluding Remarks 
It is clear that, using these methods, we can obtain a unique solution for the coefficients for 

any value of k, and that ak_t = af and bf = 5kat. 
We also have ax = F2k for all k. When k is odd, we have at(k) = 1 + L4 + • • • + L2k_2, while for 

k even we have ax{k) = L2 + L6 + • • • + L2k_2. Therefore, ax{k) -ax(k-2) = L2k_2 for all k. But 

and we have al(2) = 3-F4 and ^(3) = 8 = F6. Hence, by induction, ax(k) = i ^ for all A. 
In the numerical results for even k = 2A = 4,6,8, we note that the coefficients a2 to ah are all 

divisible by F2k_2, whereas for odd k = 2h + l = 5,7 we find ^ to â  are divisible by i ^ . We 
conjecture that these results are true for all k, but time does not permit us to pursue this further 
here. 

Reference 
1. S. Vajda. Fibonacci & Lucas Numbers, and the Golden Section. Chichester: Ellis Horwood 

Ltd., 1989. 

Also solved by P. Brmckmam, H.-J. Seiffert, and the proposer. 

A Prime Example 

B-565 Proposed by Paul S. Bruckmam, Berkeley9 CA 
(Vol 38, no. 4, August 2§§0) 

help be a prime with p = -\ (mod 2m\ where m> 3 is an odd integer. Prove that all resi-
dues are in* powers (mod/?). 
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Solution by the proposer 
Given any residue x (modp\ let y = (x I p)x^V)l2m (mod/?). Clearly, y is a well-defined resi-

due (mod/?).. We-make use of the well-known result: (x/p) = x^"1^2 (modp). Then 
ym EE (xlp)m^m s (x/p)wx(^1)/2x = (x/p)(OT+1)x = x (modp), 

since wi is odd. We then see that x [an arbitrary residue (modp)] is an nfi* power (modp). Q.E.D. 

Also solved by L» A. G. Dresel$ R Martin,. andB»-J, Seifferl 

Late Acknowledgment; H.-J. Seiffert solved H-563. 
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Proceedings, manuscripts that include new, unpublished results (or new proofs of known theorems) will be considered. A 
manuscript should contain an abstract on a separate page. For papers not intended for the Proceedings, authors may submit 
just an abstract, describing new work, published work or work in progress. Papers and abstracts, which should be submit-
ted in duplicate to FT. Howard at the address below, are due by May 1, 2002. Authors of accepted submissions will be 
allotted twenty minutes on the conference program. Questions about the conference may be directed to: 

Professor F.T* Howard 
Wake Forest University 

Box 7388 Reynolda Station 
Winston-Salem, NC 27109 (USA) 

howard@mthcsc.wfu.edu 
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