COUNTING THE NUMBER OF SOLUTIONS OF EQUATIONS IN GROUPS BY RECURRENCES

Umberto Cerruti

Dipartimento di Matematica, Università di Torino, Via Carlo Alberto 10, 10123 Torino, Italy e-mail: cerruti@dm.unito.it

Gabriella Margaria

Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy e-mail: margaria@calvino.polito.it (Submitted May 1999-Final Revision September 1999)

1. THE BASIC THEOREM

Let G = (G, *, e) be a finite group with support $G = \{g_1, g_2, ..., g_n\}$, operation * and identity element $g_1 = e$. The aim of this paper is to find recurrences for the number N(T, k, a) of solutions of the equation $x_1 * x_2 * \cdots * x_k = a$, where $a \in G$ and the variables x_i are limited to belonging to a given subset T of G. Let θ be the left regular representation of G extended to the group algebra ZG. If $T \subset G$, we pose $\gamma(T) = \sum_{g \in T} g \in ZG$.

We begin with the following basic result.

Theorem 1.1: Given $T \subset G$, let $A = \theta(\gamma(T)) \in Mat(n, Z)$. Then

- (a) $N(T, k, g_i) = A_{1,i}^k$
- (b) The sequence $N(T, k, g_j)$, $k \in N$, is linearly recurrent with characteristic polynomial f(x), where f(x) is any polynomial s.t. f(A) = 0.

Proof:

(a) Let $T = \{g_{i_1}, g_{i_2}, \dots, g_{i_m}\}$, then

$$(\gamma(T))^k = (g_{i_1} + g_{i_2} + \dots + g_{i_m})^k = \sum_{j=1}^n N(T, k, g_j)g_j$$
 in ZG.

Applying θ on both sides:

$$A^{k} = \sum_{j=1}^{n} N(T, k, g_{j}) \theta(g_{j}).$$

The first row of $\theta(g_j)$ is (0, ..., 1, ..., 0) with 1 in the j^{th} place and 0 elsewhere, and the result follows. \Box

(b) By Theorem 1.6 in [3], the sequence A_{ij}^k (for fixed indices i, j) is linearly recurrent with any polynomial f(x) s.t. f(A) = 0 and initial values $A_{ij}^0, A_{ij}^1, \ldots, A_{ij}^{m-1}$ [if deg(f(x)) = m]. \Box

Example 1.2: Let $G = S_n$ (the symmetric group of degree *n*), $T = \{n \text{-cycles}\}, a \in T$. By Corollary 4.2 of [5],

$$N(T, k, a) = n!^{-1}(n-1)!^{k} \sum_{h=0}^{n-1} (-1)^{h(k-1)} {\binom{n-1}{h}}^{1-k}.$$
 (1)

We know from Theorem 1.1 that this sequence is recurrent. We now find a characteristic polynomial. If n is odd, collecting some terms, we can rewrite (1) as

[AUG.

$$N(T, k, a) = \sum_{h=0}^{\frac{n-1}{2}} C_h \left[(-1)^h h! (n-h-1)! \right]^{k-1},$$
(2)

where the coefficients C_h are rational numbers. From equation (2) and Theorem C.1. of [6], we see that the sequence N(T, k, a) is recurrent with characteristic polynomial of degree $\frac{n+1}{2}$:

$$f_{\text{odd}}(n) = \prod_{h=0}^{\frac{n-1}{2}} (x - (-1)^h h! (n-h-1)!).$$

For example, if n = 7, N(T, k, a) is linearly recurrent of fourth degree with characteristic polynomial $x^4 - 612x^3 - 80928x^2 + 2073600x + 149299200$ and initial values

{1, 180, 153072, 106173504}.

Let us suppose now that n is even. Of course, in this case, when k is even, N(T, k, a) = 0. We consider the subsequence formed by the terms with k odd, k = 2s+1. From equation (1), we obtain

$$N(T, 2s+1, a) = \sum_{h=0}^{n-1} D_h [[(-1)^h h! (n-h-1)!]^2]^s,$$

which can be rewritten as

$$N(T, 2s+1, a) = \sum_{h=0}^{\frac{n}{2}-1} D_h \left([h!(n-h-1)!]^2 \right)^s.$$

Then the subsequence N(T, 2s+1, a), s = 0, 1, ..., is recurrent with characteristic polynomial

$$f_{\text{even}}(n) = \prod_{h=0}^{\frac{n}{2}-1} \left(x - (h!(n-h-1)!)^2 \right)$$

of degree $\frac{n}{2}$. For example, if n = 6, N(T, 2s+1, a) is recurrent of third degree with characteristic polynomial $x^3 - 15120x^2 + 10450944x - 1194393600$ and initial values

{1, 5040, 69237504}.

2. SMALLER DEGREE OF RECURRENCE

As we have seen, the sequence N(T, k, a) is always linearly recurrent with degree at most n = |G| for any subset T in which we confine the variables $x_1, x_2, ..., x_k$.

Sometimes we can find recurrences of lower degree.

Definition 2.1: A partition $\mathcal{T} = \{T_1, T_2, ..., T_m\}$ of G is said to be *closed* if $\forall h, k \in \{1, ..., m\}$ the set-product $T_h * T_k$ is a disjoint union of elements of \mathcal{T} .

We can write

$$\gamma(T_h) * \gamma(T_k) = \sum \lambda_{hk}^s \gamma(T_s)$$

in the algebra ZG, where λ_{hk}^s is the number of solutions of the equation x * y = g, where $x \in T_h$, $y \in T_k$, $g \in T_s$. This number does not depend on g itself but only on the fact that $g \in T_s$. Then $\lambda_{hh}^s = N(T_h, 2, g)$ with $g \in T_s$. Of course,

2001]

291

COUNTING THE NUMBER OF SOLUTIONS OF EQUATIONS IN GROUPS BY RECURRENCES

$$\underbrace{\gamma(T_h) * \gamma(T_h) * \cdots * \gamma(T_h)}_{k \text{ times}} = \sum N(T_h, k, g_s) T_s, \text{ where } g_s \in T_s$$

We abbreviate $N(T_h, k, g_s)$ to N(h, k, s).

Now let $A_h = \theta(\gamma(T_h)), h = 1, ..., m$. Then the set $\mathcal{A} = \{A_h : h = 1, ..., m\}$ satisfies

$$\sum_{h=1}^{m} A_{h} = J \text{ where } J \text{ is the all one matrix.}$$
(3)

There exist natural numbers λ_{hk}^s s.t.

$$A_h^k = \sum_{s=1}^m \lambda_{hk}^s A_s.$$
⁽⁴⁾

The numbers λ_{hk}^s are those we are searching for, that is,

$$A_{h}^{k} = \sum_{s=1}^{m} N(h, k, s) A_{s}.$$
 (5)

If we compute A_h^k , the k^{th} power of A_h , the number N(h, k, s) appears in the places of the first row of A_h^k , where A_s has ones.

Let us define the set of matrices \mathfrak{B} , $\mathfrak{B} = \{B_h : h = 1, ..., m\}$, where $(B_h)_{ij} = \lambda_{hi}^j$. By the following theorem, we obtain recurrences of degree lower than |G| when T is an element of a closed partition.

Theorem 2.2: Let $T_h \subset G$ be an element of a closed partition \mathcal{T} . Then the sequence $N(T_h, k, g)$, $g \in G$, satisfies a recurrence of degree at most $m = |\mathcal{T}|$ with characteristic polynomial any polynomial f(x) s.t. $f(B_h) = 0$, where the matrix B_h is defined by $(B_h)_{ii} = \lambda_{hi}^j$.

Proof: Again by Theorem 1.6 of [3], it is enough to prove that $N(T_h, n+1, g) = (B_h^n)_{ht}$ for every h = 1, ..., m and $n \ge 1$, with $g \in T_t$. We prove this by induction.

For n = 1, $N(h, 2, t) = \lambda_{hh}^{t} = (B_{h})_{ht}$.

Let us suppose that $N(h, n, t) = (B_h^{n-1})_{ht}$. Then

$$(A_h)^n = \sum_t N(h, n, t) A_t = \sum_t (B_h^{n-1})_{ht} A_t$$

and

$$(A_h)^{n+1} = \sum_t (B_h^{n-1})_{ht} A_h A_t = \sum_{t,s} (B_h^{n-1})_{ht} \lambda_{ht}^s A_s$$
$$= \sum_{t,s} (B_h^{n-1})_{ht} (B_h)_{ts} A_s = \sum_s (B_h^n)_{hs} A_s.$$

It follows that $(B_h^n)_{hs} = N(h, n+1, s)$ by equation (5) and the independence of the A_s .

Corollary 2.3: Let G and H be, respectively, a finite group and an automorphism group of G. Let $\mathbb{O} = \{O_1, O_2, ..., O_m\}$ be the set of orbits and let N(h, k, t) be the number of solutions of $x_1 * x_2 * \cdots * x_k = g$, with $x_i \in O_h$ and $g \in O_t$. Then N(h, k, t) is linearly recurrent with characteristic polynomial of degree at most m.

Proof: The proof follows from Theorem 2.2 and the fact that \mathbb{O} is a closed partition. \Box

Remark 2.4:

- (a) In the case of Corollary 2.3, the matrices A_h form an association scheme (see [1]), where $A'_h = A_v$ and A_v is the matrix corresponding to the orbit $O_v = O_h^{-1}$.
- (b) The characteristic polynomial can be computed as the minimum polynomial of the matrix B_{h} .
- (c) The set of conjugacy classes is a well-known example with H = Inn(G). The example 1.2 falls in this case, where conjugacy classes are those of *n*-cycles and transposition. Let us observe that, from Theorem 1.1, we could only suppose a recurrence of degree $n! = |S_n|$. Instead, from Theorem 2.2 and Corollary 2.3, we know that the recurrence degree for equations in S_n with variables constrained in conjugacy classes is at most equal to the number of partitions of *n*.

3. CYCLIC GROUPS AND RANDOM WALKS ON THE CIRCLE

Let Z_n be the additive cyclic group $Z_n = \{0, 1, ..., n-1\}$ and $Z_n^* = Aut(Z_n)$. If $H \le Z_n^*$ acts on Z_n , we get *m* orbits:

$$O_0 = O(0), O_1 = O(1) = H, \dots, O_i = O(g_i), 0 \le i \le m - 1,$$

with a set of representatives $\Re = \{g_0 = 0, g_1 = 1, g_2, ..., g_{m-1}\}$. We know that $\mathcal{T} = \{O(g_i), 0 \le i \le m-1\}$ is a closed partition.

Let us now consider the special case $H = \{\pm 1\}$.

If *n* is odd, we have $\frac{n+1}{2}$ orbits with $\Re_{\text{odd}} = \{0, 1, \dots, \frac{n-1}{2}\}$; if *n* is even, we have $\frac{n+2}{2}$ orbits with $\Re_{\text{even}} = \{0, 1, \dots, \frac{n}{2}\}$.

Let z be the $n \times n$ circulant matrix with first row [0, 0, ..., 0, 1], that is, the permutation matrix corresponding to the *n*-cycle (1, 2, ..., n).

The adjacency matrices of the well-known "polygon scheme" determined by the action of H are:

(a) if r is odd,

$$A_0 = I_n, \ A_k = z^k + z^{-k} \text{ for } 1 \le k \le \frac{n+1}{2};$$

(b) if r is even,

$$A_0 = I_n, \ A_{n/2} = z^{n/2}, \ A_k = z^k + z^{-k} \text{ for } 1 \le k \le \frac{n+2}{2}$$

We divide the circle in *n* equal parts labeled 0, 1, ..., n-1.

Let P(k, a) be the probability that we get the vertex a starting from 0 and flipping a coin k times to decide whether to move one step clockwise or counterclockwise. Of course,

$$P(k, a) = \frac{N(O(1), k, a)}{2^k}.$$

Theorem 3.1: Let $g(x) = x^m + b_1 x^{m-1} + \dots + b_m$ be the characteristic polynomial of B_1 .

The sequence P(0, a), P(1, a), ..., P(k, a), ... is recurrent with polynomial

$$f(x) = x^m + \sum_{h=1}^m \frac{b_h}{2^h} x^{m-h}.$$

2001]

Proof: From the proof of Theorem 2.2, we know that we find P(k, a) in the first row of $(\frac{1}{2}B_1)^k$. The result follows because, if g(x) is the characteristic polynomial of B_1 , then f(x) is the characteristic polynomial of $\frac{1}{2}B_1$. \Box

Example 3.2: Let n = 7. The matrix $\frac{1}{2}A_1$ is the double stochastic transition matrix of the Markov chain associated with this random walk (see [4], p. 82).

$$A_{1} = \begin{pmatrix} 0 & \frac{1}{2} & 0 & 0 & 0 & 0 & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & 0 & 0 & 0 & 0 & \frac{1}{2} & 0 \end{pmatrix}$$

 $C = \frac{1}{2}B_1$ is the stochastic matrix

$$C = \begin{pmatrix} 0 & \frac{1}{2} & 0 & 0 \\ 1 & 0 & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} \end{pmatrix}.$$

We find P(k, 0), that is, the probability that we come back to the origin 0 after k steps, in the place (1, 1) of C^k .

From Theorem 3.1, the sequence P(k, 0), $k \in N$, is recurrent with polynomial $x^4 - \frac{1}{2}x^3 - x^2 + \frac{3}{8}x + \frac{1}{8}$ and initial values $\{1, 0, \frac{1}{2}, 0\}$.

This recurrence sequence is convergent to $\frac{1}{7}$; in general, the first row of C^k converges to

$$\left(\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n}\right)$$
, that is, $\forall a \lim_{k \to \infty} P(k, a) = \frac{1}{n}$.

The polygon scheme is a particular polynomial scheme. Then the matrix B_1 is tridiagonal and has the form

$$B_1 = \begin{cases} * & 1 & \dots & 1 & 1 \\ 0 & 0 & \dots & 0 & 1 \\ 2 & 1 & \dots & 1 & * \end{cases}$$
(6)

for n odd, and

$$B_1 = \begin{cases} * & 1 & \dots & 1 & 2 \\ 0 & 0 & \dots & 0 & 0 \\ 2 & 1 & \dots & 1 & * \end{cases}$$
(7)

for *n* even (see [1] for notation).

Let $B_1^{(n)}$ be the tridiagonal matrix of the polygon scheme with *n* vertices, and $g_n(x)$ be its minimum polynomial. Then

$$g_n = \prod_{h=0}^{\lfloor \frac{n}{2} \rfloor} \left(x - 2\cos\frac{2\pi h}{n} \right).$$
 (8)

294

[AUG.

We now see that g_n can be computed easily using recurrence.

Theorem 3.3: The sequence $g_n(x)$ is recurrent with polynomial

$$v^4 - xy^2 + 1 (9)$$

and initial values $\{g_0(x), g_1(x), g_2(x), g_3(x)\} = \{0, x-2, x^2-4, x^2-x-2\}$.

Proof:

$$B_1^{(n)} = \begin{cases} * & c_1 & c_2 & \dots & c_{d-1} & c_d \\ 0 & a_1 & a_2 & \dots & a_{d-1} & a_d \\ k & b_1 & b_2 & \dots & b_{d-1} & * \end{cases},$$
 (10)

where $c_1 = c_2 = \cdots = c_{d-1} = 1$, $a_1 = a_2 = \cdots = a_{d-1} = 0$, and k = 2, $b_1 = b_2 = \cdots = b_{d-1} = 1$; also, for n odd, $c_d = 1$, $a_d = 1$, n = 2d + 1, and for n even, $c_d = 2$, $a_d = 0$, n = 2d.

Let us consider the sequence

$$F_0(x) = 1, F_1(x) = x + 1, F_i(x) = (x - k + b_{i-1} + c_i)F_{i-1}(x) - b_{i-1}c_{i-1}F_{i-2}(x)$$

Then (see [1], p. 202), $(x-2)F_d(x) = g_n(x)$.

If *n* is odd, we have

$$F_{i} = xF_{i-1}(x) - F_{i-2}(x)$$
(11)

 $\forall i, 2 \leq i \leq d$, which implies immediately that

$$g_n(x) = xg_{n-2}(x) - g_{n-4}(x), \tag{12}$$

and (9) is proved.

If *n* is even, (11) holds true $\forall i, 2 \le i < d$, but $F_d = (x+1)F_{d-1} - F_{d-2} = xF_{d-1} + F_{d-1} - F_{d-2}$. Then $(x-2)F_d = (x-2)(xF_{d-1} - F_{d-2}) + (x-2)F_{d-1}$, that is,

$$g_n(x) = g_{n+1}(x) + g_{n-1}(x)$$
(13)

with n = 2d. Hence,

$$xg_{n-2} - g_{n-4} = x(g_{n-1} + g_{n-3}) - (g_{n-3} + g_{n-5}) = g_{n+1} + g_{n-1} = g_n$$
(14)

by (13) and (12). □

Of course, the sequence $g_k(x)$ has a geometrical meaning only if $k \ge 3$; we have extended it adding $g_0(x)$, $g_1(x)$, and $g_2(x)$ by computing the recurrence backward.

Remark 3.4: Let

$$F_d^{\text{even}} = \frac{g_{2d}}{(x-2)}$$
 and $F_d^{\text{odd}} = \frac{g_{2d+1}}{(x-2)}$

Theorem 3.3 is equivalent to saying that the sequence F_0^{even} , F_1^{even} , ... and F_0^{odd} , F_1^{odd} , ... are both recurrent with characteristic polynomial $y^2 - xy + 1$, with initial values, respectively, $\{1, x + 1\}$ and $\{0, x + 2\}$.

Theorem 3.5: Let C be the matrix

$$\begin{pmatrix} x+1 & x+2 \\ -1 & -1 \end{pmatrix}.$$
 (15)

Then the first row of C^d is $[F_d^{\text{odd}}, F_d^{\text{even}}] \quad \forall d \ge 0.$

2001]

295

Proof: The characteristic polynomial of C is $y^2 - xy + 1$ which is, by Theorem 3.3, the recurrence polynomial of both F_d^{odd} and F_d^{even} . Then the result follows from Remark 3.4 and Theorem 2.5 of [2], where the ring R is Z[x]. \Box

Corollary 3.6: The first row of $(x-2)C^d$ is $[g_{2d+1}(x), g_{2d}(x)] \quad \forall d \ge 0$.

4. DIHEDRAL GROUP

Let D_n be the group of symmetries of a regular polygon $D_n = \{\rho^k, \tau \rho^k, k = 0, 1, ..., n-1\}$, where *n* is the number of sides of the polygon, ρ is a rotation of $2\pi/n$, and τ is a reflection.

When n is odd, the regular representation θ is a direct sum of irreducible representations:

$$\theta = \psi_1 + \psi_2 + 2\phi_1 + 2\phi_2 + \dots + 2\phi_{\frac{n-1}{2}},$$

where ψ_1 is the trivial representation, ψ_2 is the alternating representation, and ϕ_1 is the twodimensional representation such that

$$\phi_l(\rho^k) = \begin{pmatrix} \alpha^{lk} & 0\\ 0 & \alpha^{-lk} \end{pmatrix} \phi_l(\tau \rho^k) = \begin{pmatrix} 0 & \alpha^{-lk}\\ \alpha^{lk} & 0 \end{pmatrix}, \quad \alpha = \exp \frac{2\pi i}{n}$$

If *n* is even,

$$\theta = \psi_1 + \psi_2 + \psi_3 + \psi_4 + 2\phi_1 + 2\phi_2 + \dots + 2\phi_{\frac{n-2}{2}},$$

where $\psi_3(\rho^k) = \psi_4(\rho^k) = (-1)^k$ and $\psi_3(\tau \rho^k) = (-1)^k$, $\psi_4(\tau \rho^k) = (-1)^{k+1}$.

Let us now consider the case of two reflections which generates D_n , τ , and $\tau\rho$, that is, suppose $T = \{\tau, \tau\rho\}$ and $a \in D_n$.

Theorem 4.1:

(a) The sequence N(T, k, a) is recurrent with polynomial

$$p_n(x) = \frac{g_{2n}^2(x)}{x^2 - 4}.$$
 (16)

(b) The sequence $p_n(x)$ for n = 1, 2, ... is recurrent with polynomial

$$y^4 - y^3 x^2 + (2x^2 - 2)y^2 - x^2 y + 1 \tag{17}$$

and initial values $\{x^2 - 4, x^4 - 4x^2, -4 + 9x^2 - 6x^4 + x^6, -16x^2 + 20x^4 - 8x^6 + x^8, -4 + 25x^2 - 50x^4 + 35x^6 - 10x^8 + x^{10}\}$.

Proof:

(a) From the decomposition of θ , if n is even,

$$p_n(x) = x^2(x-2)(x+2) \prod_{h=1}^{\frac{n-2}{2}} \left(x^2 - 4\cos^2\frac{2\pi h}{n} \right)^2,$$
(18)

and if *n* is odd,

$$p_n(x) = (x-2)(x+2) \prod_{h=1}^{\frac{n-1}{2}} \left(x^2 - 4\cos^2\frac{2\pi h}{n} \right)^2.$$
(19)

Collecting appropriate terms and using equation (8), we find (16). \Box

[AUG.

(b) By remark 3.4, $p_n(x) = \frac{x-2}{x+2} (F_n^{\text{even}}(x))^2$. In the ring $Z(x) \frac{x-2}{x+2}$ is constant and the sequence $p_n(x)$ is recurrent with the same recurrence of $(F_n^{\text{even}}(x))^2$. By the same remark $F_n^{\text{even}}(x)$ is recurrent with polynomial $y^2 - xy + 1$ whose companion matrix is

$$C = \begin{pmatrix} 0 & -1 \\ 1 & x \end{pmatrix}$$

By Theorem 2.6 of [2], $(F_n^{\text{even}}(x))^2$ is recurrent with the characteristic polynomial of the Kronecker product $C \otimes C$, that is, $y^4 - y^3x^2 + (2x^2 - 2)y^2 - x^2y + 1$. \Box

For example, if n = 7, the sequence N(T, k, e) is recurrent with polynomial $-4 + 49x^2 - 196x^4 + 294x^6 - 210x^8 + 77x^{10} - 14x^{12} + x^{14}$ and initial values

We now consider the case of the basic rotation ρ and the reflection τ , that is, $T = \{\rho, \tau\}$ and $a \in D_n$.

Theorem 4.2:

(a) The sequence N(T, k, a) is recurrent with polynomial

$$p_n^{\text{odd}}(x) = \frac{g_n^2}{(x-2)} x^n$$
 (20)

if *n* is odd, and

$$p_n^{\text{even}}(x) = \frac{g_n^2}{(x-2)(x+2)} x^n \tag{21}$$

if *n* is even.

(b) The subsequences p_{2s+1}^{odd} and p_{2s}^{even} are recurrent with polynomial

$$y^{4} - y^{3}x^{4} + (2x^{6} - 2x^{4})y^{2} - x^{8}y + x^{8}$$
(22)

and initial values, respectively,

{
$$x^{2}-2x$$
, $-2x^{3}-3x^{4}+x^{6}$, $-2x^{5}+5x^{6}-5x^{8}+x^{10}$, $-2x^{7}-7x^{8}+14x^{10}-7x^{12}+x^{14}$ }

and

$$\{-4x^{6} + x^{8}, -4x^{6} + 9x^{8} - 6x^{10} + x^{12}, -16x^{10} + 20x^{12} - 8x^{14} + x^{16}, -4x^{10} + 25x^{12} - 50x^{14} + 35x^{16} - 10x^{18} + x^{20}\}.$$

Proof:

(a) From the decomposition of θ , we find

$$p_n^{\text{even}}(x) = x(x-2)(x+2) \prod_{h=1}^{\frac{n-2}{2}} x^2 \left(x-2\cos\frac{2\pi h}{n}\right)^2$$
(23)

and

$$p_n^{\text{odd}}(x) = x^2(x-2) \prod_{h=1}^{\frac{n-1}{2}} x^2 \left(x - 2\cos\frac{2\pi h}{n} \right)^2.$$
(24)

Equations (20) and (21) follow from (8). \Box

2001]

297

(b) In the ring Z[x], $p_{2s+1}^{\text{odd}}(x)$ is equal to x(x-2) multiplied by $(F_s^{\text{odd}}(x))^2 x^{2s}$. Furthermore, $(F_s^{\text{odd}}(x))^2$ is recurrent by characteristic polynomial $y^4 - y^3 x^2 + (2x^2 - 2)y^2 - x^2y + 1 = u(x)$ and x^{2s} by $y - x^2$. We again use Theorem 2.6 of [2]: the characteristic polynomial of x^2U , where U is the companion matrix of u(x), is precisely $y^4 - y^3 x^4 + (2x^6 - 2x^4)y^2 - x^8y + x^8$.

The same holds for $p_{2s}^{\text{even}}(x)$. \Box

For example, if n = 7, the sequence N(T, k, e) is recurrent with polynomial $-2x^7 - 7x^8 + 14x^{10} - 7x^{12} + x^{14}$ and initial values

{0,1,0,3,0,10,1,35,9,126,55,462,286,1717}.

If n = 8, the sequence N(T, k, e) is recurrent with polynomial $-16x^{10} + 20x^{12} - 8x^{14} + x^{16}$ and initial values

 $\{0, 1, 0, 1, 0, 3, 0, 10, 0, 36, 0, 136, 0, 528, 0, 2080, 0, 8256\}.$

REFERENCES

- 1. E. Bannai & T. Ito. *Algebraic Combinatorics*. I. *Association Schemes*. Canada: Benjamin/ Cummings Co., 1984.
- U. Cerruti & F. Vaccarino. "R-Algebras of Linear Recurrent Sequences." J. Algebra 175 (1995):332-38.
- 3. U. Cerruti & F. Vaccarino. "Matrices, Recurrent Sequences and Arithmetics." In *Applications of Fibonacci Numbers* 6:53-62. Ed. G. E. Bergum et al. Dordrecht: Kluwer, 1996.
- 4. K. L. Chung. *Elementary Probability Theory with Stochastic Processes*. New York: Springer Verlag, 1979.
- 5. D. M. Jackson. "Some Combinatorial Problems Associated with Products of Conjugacy Classes of the Symmetric Group." J. Comb. Theory 49 (1987):363-69.
- 6. T. N. Shorey & R. Tijdeman. *Exponential Diophantine Equations*. Cambridge: Cambridge University Press, 1986.

AMS Classification Number: 11B37

FERMAT'S BIRTHDAY

August 20, 2001 marks the 400th anniversary of Fermat's birth.