COUNTING THE NUMBER OF SOLUTIONS OF EQUATIONS IN GROUPS BY RECURRENCES

Umberto Cerruti
Dipartimento di Matematica, Università di Torino, Via Carlo Alberto 10, 10123 Torino, Italy
e-mail: cerruti@dm.unito.it
Gabriella Margaria
Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy e-mail: margaria@calvino.polito.it
(Submitted May 1999-Final Revision September 1999)

1. THE BASIC THEOREM

Let $G=(G, *, e)$ be a finite group with support $G=\left\{g_{1}, g_{2}, \ldots, g_{n}\right\}$, operation * and identity element $g_{1}=e$. The aim of this paper is to find recurrences for the number $N(T, k, a)$ of solutions of the equation $x_{1} * x_{2} * \cdots * x_{k}=a$, where $a \in G$ and the variables x_{i} are limited to belonging to a given subset T of G. Let θ be the left regular representation of G extended to the group algebra $Z G$. If $T \subset G$, we pose $\gamma(T)=\Sigma_{g \in T} g \in Z G$.

We begin with the following basic result.
Theorem 1.1: Given $T \subset G$, let $A=\theta(\gamma(T)) \in \operatorname{Mat}(n, Z)$. Then
(a) $N\left(T, k, g_{j}\right)=A_{1, j}^{k}$.
(b) The sequence $N\left(T, k, g_{j}\right), k \in N$, is linearly recurrent with characteristic polynomial $f(x)$, where $f(x)$ is any polynomial s.t. $f(A)=0$.
Proof:
(a) Let $T=\left\{g_{i_{1}}, g_{i_{2}}, \ldots, g_{i_{m}}\right\}$, then

$$
(\gamma(T))^{k}=\left(g_{i_{1}}+g_{i_{2}}+\cdots+g_{i_{m}}\right)^{k}=\sum_{j=1}^{n} N\left(T, k, g_{j}\right) g_{j} \text { in } Z G .
$$

Applying θ on both sides:

$$
A^{k}=\sum_{j=1}^{n} N\left(T, k, g_{j}\right) \theta\left(g_{j}\right) .
$$

The first row of $\theta\left(g_{j}\right)$ is $(0, \ldots, 1, \ldots, 0)$ with 1 in the $j^{\text {th }}$ place and 0 elsewhere, and the result follows.
(b) By Theorem 1.6 in [3], the sequence $A_{i j}^{k}$ (for fixed indices i, j) is linearly recurrent with any polynomial $f(x)$ s.t. $f(A)=0$ and initial values $A_{i j}^{0}, A_{i j}^{1}, \ldots, A_{i j}^{m-1}[\operatorname{if} \operatorname{deg}(f(x))=m]$.
Example 1.2: Let $G=S_{n}$ (the symmetric group of degree n), $T=\{n-c y c l e s\}, a \in T$. By Corollary 4.2 of [5],

$$
\begin{equation*}
N(T, k, a)=n!^{-1}(n-1)!^{k} \sum_{h=0}^{n-1}(-1)^{h(k-1)}\binom{n-1}{h}^{1-k} . \tag{1}
\end{equation*}
$$

We know from Theorem 1.1 that this sequence is recurrent. We now find a characteristic polynomial. If n is odd, collecting some terms, we can rewrite (1) as

$$
\begin{equation*}
N(T, k, a)=\sum_{h=0}^{\frac{n-1}{2}} C_{h}\left[(-1)^{h} h!(n-h-1)!\right]^{k-1}, \tag{2}
\end{equation*}
$$

where the coefficients C_{h} are rational numbers. From equation (2) and Theorem C.1. of [6], we see that the sequence $N(T, k, a)$ is recurrent with characteristic polynomial of degree $\frac{n+1}{2}$:

$$
f_{\text {odd }}(n)=\prod_{h=0}^{\frac{n-1}{2}}\left(x-(-1)^{h} h!(n-h-1)!\right)
$$

For example, if $n=7, N(T, k, a)$ is linearly recurrent of fourth degree with characteristic polynomial $x^{4}-612 x^{3}-80928 x^{2}+2073600 x+149299200$ and initial values

$$
\{1,180,153072,106173504\} .
$$

Let us suppose now that n is even. Of course, in this case, when k is even, $N(T, k, a)=0$. We consider the subsequence formed by the terms with k odd, $k=2 s+1$. From equation (1), we obtain

$$
N(T, 2 s+1, a)=\sum_{h=0}^{n-1} D_{h}\left[\left[(-1)^{h} h!(n-h-1)!\right]^{2}\right]^{s},
$$

which can be rewritten as

$$
N(T, 2 s+1, a)=\sum_{h=0}^{\frac{n}{2-1}} D_{h}\left([h!(n-h-1)!]^{2}\right)^{s} .
$$

Then the subsequence $N(T, 2 s+1, a), s=0,1, \ldots$, is recurrent with characteristic polynomial

$$
f_{\text {even }}(n)=\prod_{h=0}^{\frac{n}{2}-1}\left(x-(h!(n-h-1)!)^{2}\right)
$$

of degree $\frac{n}{2}$. For example, if $n=6, N(T, 2 s+1, a)$ is recurrent of third degree with characteristic polynomial $x^{3}-15120 x^{2}+10450944 x-1194393600$ and initial values

$$
\{1,5040,69237504\} .
$$

2. SMALLER DEGREE OF RECURRENCE

As we have seen, the sequence $N(T, k, a)$ is always linearly recurrent with degree at most $n=|G|$ for any subset T in which we confine the variables $x_{1}, x_{2}, \ldots, x_{k}$.

Sometimes we can find recurrences of lower degree.
Definition 2.1: A partition $\mathscr{T}=\left\{T_{1}, T_{2}, \ldots, T_{m}\right\}$ of G is said to be closed if $\forall h, k \in\{1, \ldots, m\}$ the set-product $T_{h} * T_{k}$ is a disjoint union of elements of \mathscr{T}.

We can write

$$
\gamma\left(T_{h}\right) * \gamma\left(T_{k}\right)=\sum \lambda_{h k}^{s} \gamma\left(T_{s}\right)
$$

in the algebra $Z G$, where $\lambda_{h k}^{s}$ is the number of solutions of the equation $x * y=g$, where $x \in T_{h}$, $y \in T_{k}, g \in T_{s}$. This number does not depend on g itself but only on the fact that $g \in T_{s}$. Then $\lambda_{h h}^{s}=N\left(T_{h}, 2, g\right)$ with $g \in T_{s}$. Of course,

$$
\underbrace{\gamma\left(T_{h}\right) * \gamma\left(T_{h}\right) * \cdots * \gamma\left(T_{h}\right)}_{k \text { times }}=\sum N\left(T_{h}, k, g_{s}\right) T_{s} \text {, where } g_{s} \in T_{s}
$$

We abbreviate $N\left(T_{h}, k, g_{s}\right)$ to $N(h, k, s)$.
Now let $A_{h}=\theta\left(\gamma\left(T_{h}\right)\right), h=1, \ldots, m$. Then the set $\mathscr{A}=\left\{A_{h}: h=1, \ldots, m\right\}$ satisfies

$$
\begin{equation*}
\sum_{h=1}^{m} A_{h}=J \text { where } J \text { is the all one matrix. } \tag{3}
\end{equation*}
$$

There exist natural numbers $\lambda_{h k}^{s}$ s.t.

$$
\begin{equation*}
A_{h}^{k}=\sum_{s=1}^{m} \lambda_{h k}^{s} A_{s} \tag{4}
\end{equation*}
$$

The numbers $\lambda_{h k}^{s}$ are those we are searching for, that is,

$$
\begin{equation*}
A_{h}^{k}=\sum_{s=1}^{m} N(h, k, s) A_{s} . \tag{5}
\end{equation*}
$$

If we compute A_{h}^{k}, the $k^{\text {th }}$ power of A_{h}, the number $N(h, k, s)$ appears in the places of the first row of A_{h}^{k}, where A_{s} has ones.

Let us define the set of matrices $\mathscr{B}, \mathscr{B}=\left\{B_{h}: h=1, \ldots, m\right\}$, where $\left(B_{h}\right)_{i j}=\lambda_{h i}^{j}$. By the following theorem, we obtain recurrences of degree lower than $|G|$ when T is an element of a closed partition.

Theorem 2.2: Let $T_{h} \subset G$ be an element of a closed partition \mathscr{T}. Then the sequence $N\left(T_{h}, k, g\right)$, $g \in G$, satisfies a recurrence of degree at most $m=|\mathscr{T}|$ with characteristic polynomial any polynomial $f(x)$ s.t. $f\left(B_{h}\right)=0$, where the matrix B_{h} is defined by $\left(B_{h}\right)_{i j}=\lambda_{h i}^{j}$.

Proof: Again by Theorem 1.6 of [3], it is enough to prove that $N\left(T_{h}, n+1, g\right)=\left(B_{h}^{n}\right)_{h t}$ for every $h=1, \ldots, m$ and $n \geq 1$, with $g \in T_{t}$. We prove this by induction.

For $n=1, N(h, 2, t)=\lambda_{h h}^{t}=\left(B_{h}\right)_{h t}$.
Let us suppose that $N(h, n, t)=\left(B_{h}^{n-1}\right)_{h t}$. Then

$$
\left(A_{h}\right)^{n}=\sum_{t} N(h, n, t) A_{t}=\sum_{t}\left(B_{h}^{n-1}\right)_{h t} A_{t}
$$

and

$$
\begin{aligned}
\left(A_{h}\right)^{n+1} & =\sum_{t}\left(B_{h}^{n-1}\right)_{h t} A_{h} A_{t}=\sum_{t, s}\left(B_{h}^{n-1}\right)_{h t} \lambda_{h t}^{s} A_{s} \\
& =\sum_{t, s}\left(B_{h}^{n-1}\right)_{h t}\left(B_{h}\right)_{t s} A_{s}=\sum_{s}\left(B_{h}^{n}\right)_{h s} A_{s} .
\end{aligned}
$$

It follows that $\left(B_{h}^{n}\right)_{h s}=N(h, n+1, s)$ by equation (5) and the independence of the A_{s}.
Corollary 2.3: Let G and H be, respectively, a finite group and an automorphism group of G. Let $\mathcal{O}=\left\{O_{1}, O_{2}, \ldots, O_{m}\right\}$ be the set of orbits and let $N(h, k, t)$ be the number of solutions of $x_{1} * x_{2} * \cdots * x_{k}=g$, with $x_{i} \in O_{h}$ and $g \in O_{t}$. Then $N(h, k, t)$ is linearly recurrent with characteristic polynomial of degree at most m.

Proof: The proof follows from Theorem 2.2 and the fact that \mathcal{O} is a closed partition.
[aug.

Remark 2.4:

(a) In the case of Corollary 2.3, the matrices A_{h} form an association scheme (see [1]), where $A_{h}^{\prime}=A_{v}$ and A_{v} is the matrix corresponding to the orbit $O_{v}=O_{h}^{-1}$.
(b) The characteristic polynomial can be computed as the minimum polynomial of the matrix B_{h}.
(c) The set of conjugacy classes is a well-known example with $H=\operatorname{Inn}(G)$. The example 1.2 falls in this case, where conjugacy classes are those of n-cycles and transposition. Let us observe that, from Theorem 1.1, we could only suppose a recurrence of degree $n!=\left|S_{n}\right|$. Instead, from Theorem 2.2 and Corollary 2.3, we know that the recurrence degree for equations in S_{n} with variables constrained in conjugacy classes is at most equal to the number of partitions of n.

3. CYCLIC GROUPS AND RANDOM WALKS ON THE CIRCLE

Let Z_{n} be the additive cyclic group $Z_{n}=\{0,1, \ldots, n-1\}$ and $Z_{n}^{*}=\operatorname{Aut}\left(Z_{n}\right)$. If $H \leq Z_{n}^{*}$ acts on Z_{n}, we get m orbits:

$$
O_{0}=O(0), O_{1}=O(1)=H, \ldots, O_{i}=O\left(g_{i}\right), 0 \leq i \leq m-1
$$

with a set of representatives $\mathscr{R}=\left\{g_{0}=0, g_{1}=1, g_{2}, \ldots, g_{m-1}\right\}$. We know that $\mathscr{T}=\left\{O\left(g_{i}\right), 0 \leq i \leq\right.$ $m-1\}$ is a closed partition.

Let us now consider the special case $H=\{ \pm 1\}$.
If n is odd, we have $\frac{n+1}{2}$ orbits with $\mathscr{R}_{\text {odd }}=\left\{0,1, \ldots, \frac{n-1}{2}\right\}$; if n is even, we have $\frac{n+2}{2}$ orbits with $\mathscr{R}_{\text {even }}=\left\{0,1, \ldots, \frac{n}{2}\right\}$.

Let z be the $n \times n$ circulant matrix with first row $[0,0, \ldots, 0,1]$, that is, the permutation matrix corresponding to the n-cycle $(1,2, \ldots, n)$.

The adjacency matrices of the well-known "polygon scheme" determined by the action of H are:
(a) if r is odd,

$$
A_{0}=I_{n}, A_{k}=z^{k}+z^{-k} \text { for } 1 \leq k \leq \frac{n+1}{2}
$$

(b) if r is even,

$$
A_{0}=I_{n}, A_{n / 2}=z^{n / 2}, A_{k}=z^{k}+z^{-k} \text { for } 1 \leq k \leq \frac{n+2}{2} .
$$

We divide the circle in n equal parts labeled $0,1, \ldots, n-1$.
Let $P(k, a)$ be the probability that we get the vertex a starting from 0 and flipping a coin k times to decide whether to move one step clockwise or counterclockwise. Of course,

$$
P(k, a)=\frac{N(O(1), k, a)}{2^{k}} .
$$

Theorem 3.1: Let $g(x)=x^{m}+b_{1} x^{m-1}+\cdots+b_{m}$ be the characteristic polynomial of B_{1}.
The sequence $P(0, a), P(1, a), \ldots, P(k, a), \ldots$ is recurrent with polynomial

$$
f(x)=x^{m}+\sum_{h=1}^{m} \frac{b_{h}}{2^{h}} x^{m-h} .
$$

Proof: From the proof of Theorem 2.2, we know that we find $P(k, a)$ in the first row of $\left(\frac{1}{2} B_{1}\right)^{k}$. The result follows because, if $g(x)$ is the characteristic polynomial of B_{1}, then $f(x)$ is the characteristic polynomial of $\frac{1}{2} B_{1}$.
Example 3.2: Let $n=7$. The matrix $\frac{1}{2} A_{1}$ is the double stochastic transition matrix of the Markov chain associated with this random walk (see [4], p. 82).

$$
A_{1}=\left(\begin{array}{ccccccc}
0 & \frac{1}{2} & 0 & 0 & 0 & 0 & \frac{1}{2} \\
\frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \\
0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 \\
0 & 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\
0 & 0 & 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{2} & 0 & 0 & 0 & 0 & \frac{1}{2} & 0
\end{array}\right)
$$

$C=\frac{1}{2} B_{1}$ is the stochastic matrix

$$
C=\left(\begin{array}{cccc}
0 & \frac{1}{2} & 0 & 0 \\
1 & 0 & \frac{1}{2} & 0 \\
0 & \frac{1}{2} & 0 & \frac{1}{2} \\
0 & 0 & \frac{1}{2} & \frac{1}{2}
\end{array}\right)
$$

We find $P(k, 0)$, that is, the probability that we come back to the origin 0 after k steps, in the place $(1,1)$ of C^{k}.

From Theorem 3.1, the sequence $P(k, 0), k \in N$, is recurrent with polynomial $x^{4}-\frac{1}{2} x^{3}-$ $x^{2}+\frac{3}{8} x+\frac{1}{8}$ and initial values $\left\{1,0, \frac{1}{2}, 0\right\}$.

This recurrence sequence is convergent to $\frac{1}{7}$; in general, the first row of C^{k} converges to

$$
\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right), \text { that is, } \forall a \lim _{k \rightarrow \infty} P(k, a)=\frac{1}{n}
$$

The polygon scheme is a particular polynomial scheme. Then the matrix B_{1} is tridiagonal and has the form

$$
B_{1}=\left\{\begin{array}{ccccc}
* & 1 & \ldots & 1 & 1 \tag{6}\\
0 & 0 & \ldots & 0 & 1 \\
2 & 1 & \ldots & 1 & *
\end{array}\right\}
$$

for n odd, and

$$
B_{1}=\left\{\begin{array}{ccccc}
* & 1 & \ldots & 1 & 2 \tag{7}\\
0 & 0 & \ldots & 0 & 0 \\
2 & 1 & \ldots & 1 & *
\end{array}\right\}
$$

for n even (see [1] for notation).
Let $B_{1}^{(n)}$ be the tridiagonal matrix of the polygon scheme with n vertices, and $g_{n}(x)$ be its minimum polynomial. Then

$$
\begin{equation*}
g_{n}=\prod_{h=0}^{\left[\frac{n}{2}\right]}\left(x-2 \cos \frac{2 \pi h}{n}\right) \tag{8}
\end{equation*}
$$

We now see that g_{n} can be computed easily using recurrence.
Theorem 3.3: The sequence $g_{n}(x)$ is recurrent with polynomial

$$
\begin{equation*}
y^{4}-x y^{2}+1 \tag{9}
\end{equation*}
$$

and initial values $\left\{g_{0}(x), g_{1}(x), g_{2}(x), g_{3}(x)\right\}=\left\{0, x-2, x^{2}-4, x^{2}-x-2\right\}$.

Proof:

$$
B_{1}^{(n)}=\left\{\begin{array}{cccccc}
* & c_{1} & c_{2} & \ldots & c_{d-1} & c_{d} \tag{10}\\
0 & a_{1} & a_{2} & \ldots & a_{d-1} & a_{d} \\
k & b_{1} & b_{2} & \ldots & b_{d-1} & *
\end{array}\right\},
$$

where $c_{1}=c_{2}=\cdots=c_{d-1}=1, a_{1}=a_{2}=\cdots=a_{d-1}=0$, and $k=2, b_{1}=b_{2}=\cdots=b_{d-1}=1$; also, for n odd, $c_{d}=1, a_{d}=1, n=2 d+1$, and for n even, $c_{d}=2, a_{d}=0, n=2 d$.

Let us consider the sequence

$$
F_{0}(x)=1, F_{1}(x)=x+1, F_{i}(x)=\left(x-k+b_{i-1}+c_{i}\right) F_{i-1}(x)-b_{i-1} c_{i-1} F_{i-2}(x)
$$

Then (see [1], p. 202), $(x-2) F_{d}(x)=g_{n}(x)$.
If n is odd, we have

$$
\begin{equation*}
F_{i}=x F_{i-1}(x)-F_{i-2}(x) \tag{11}
\end{equation*}
$$

$\forall i, 2 \leq i \leq d$, which implies immediately that

$$
\begin{equation*}
g_{n}(x)=x g_{n-2}(x)-g_{n-4}(x), \tag{12}
\end{equation*}
$$

and (9) is proved.
If n is even, (11) holds true $\forall i, 2 \leq i<d$, but $F_{d}=(x+1) F_{d-1}-F_{d-2}=x F_{d-1}+F_{d-1}-F_{d-2}$.
Then $(x-2) F_{d}=(x-2)\left(x F_{d-1}-F_{d-2}\right)+(x-2) F_{d-1}$, that is,

$$
\begin{equation*}
g_{n}(x)=g_{n+1}(x)+g_{n-1}(x) \tag{13}
\end{equation*}
$$

with $n=2 d$. Hence,

$$
\begin{equation*}
x g_{n-2}-g_{n-4}=x\left(g_{n-1}+g_{n-3}\right)-\left(g_{n-3}+g_{n-5}\right)=g_{n+1}+g_{n-1}=g_{n} \tag{14}
\end{equation*}
$$

by (13) and (12).
Of course, the sequence $g_{k}(x)$ has a geometrical meaning only if $k \geq 3$; we have extended it adding $g_{0}(x), g_{1}(x)$, and $g_{2}(x)$ by computing the recurrence backward.
Remark 3.4: Let

$$
F_{d}^{\text {even }}=\frac{g_{2 d}}{(x-2)} \quad \text { and } \quad F_{d}^{\text {odd }}=\frac{g_{2 d+1}}{(x-2)}
$$

Theorem 3.3 is equivalent to saying that the sequence $F_{0}^{\text {even }}, F_{1}^{\text {even }}, \ldots$ and $F_{0}^{\text {odd }}, F_{1}^{\text {odd }}, \ldots$ are both recurrent with characteristic polynomial $y^{2}-x y+1$, with initial values, respectively, $\{1, x+1\}$ and $\{0, x+2\}$.

Theorem 3.5: Let C be the matrix

$$
\left(\begin{array}{cc}
x+1 & x+2 \tag{15}\\
-1 & -1
\end{array}\right) .
$$

Then the first row of C^{d} is $\left[F_{d}^{\text {odd }}, F_{d}^{\text {even }}\right] \forall d \geq 0$.

Proof: The characteristic polynomial of C is $y^{2}-x y+1$ which is, by Theorem 3.3 , the recurrence polynomial of both $F_{d}^{\text {odd }}$ and $F_{d}^{\text {even }}$. Then the result follows from Remark 3.4 and Theorem 2.5 of [2], where the ring R is $Z[x]$.

Corollary 3.6: The first row of $(x-2) C^{d}$ is $\left[g_{2 d+1}(x), g_{2 d}(x)\right] \forall d \geq 0$.

4. DIHEDRAL GROUP

Let D_{n} be the group of symmetries of a regular polygon $D_{n}=\left\{\rho^{k}, \tau \rho^{k}, k=0,1, \ldots, n-1\right\}$, where n is the number of sides of the polygon, ρ is a rotation of $2 \pi / n$, and τ is a reflection.

When n is odd, the regular representation θ is a direct sum of irreducible representations:

$$
\theta=\psi_{1}+\psi_{2}+2 \phi_{1}+2 \phi_{2}+\cdots+2 \phi_{\frac{n-1}{2}}
$$

where ψ_{1} is the trivial representation, ψ_{2} is the alternating representation, and ϕ_{l} is the twodimensional representation such that

$$
\phi_{l}\left(\rho^{k}\right)=\left(\begin{array}{cc}
\alpha^{l k} & 0 \\
0 & \alpha^{-l k}
\end{array}\right) \phi_{l}\left(\tau \rho^{k}\right)=\left(\begin{array}{cc}
0 & \alpha^{-l k} \\
\alpha^{l k} & 0
\end{array}\right), \quad \alpha=\exp \frac{2 \pi i}{n}
$$

If n is even,

$$
\theta=\psi_{1}+\psi_{2}+\psi_{3}+\psi_{4}+2 \phi_{1}+2 \phi_{2}+\cdots+2 \phi_{\frac{n-2}{2}}
$$

where $\psi_{3}\left(\rho^{k}\right)=\psi_{4}\left(\rho^{k}\right)=(-1)^{k}$ and $\psi_{3}\left(\tau \rho^{k}\right)=(-1)^{k}, \psi_{4}\left(\tau \rho^{k}\right)=(-1)^{k+1}$.
Let us now consider the case of two reflections which generates D_{n}, τ, and $\tau \rho$, that is, suppose $T=\{\tau, \tau \rho\}$ and $a \in D_{n}$.

Theorem 4.1:
(a) The sequence $N(T, k, a)$ is recurrent with polynomial

$$
\begin{equation*}
p_{n}(x)=\frac{g_{2 n}^{2}(x)}{x^{2}-4} \tag{16}
\end{equation*}
$$

(b) The sequence $p_{n}(x)$ for $n=1,2, \ldots$ is recurrent with polynomial

$$
\begin{equation*}
y^{4}-y^{3} x^{2}+\left(2 x^{2}-2\right) y^{2}-x^{2} y+1 \tag{17}
\end{equation*}
$$

and initial values $\left\{x^{2}-4, x^{4}-4 x^{2},-4+9 x^{2}-6 x^{4}+x^{6},-16 x^{2}+20 x^{4}-8 x^{6}+x^{8},-4+25 x^{2}-50 x^{4}+\right.$ $\left.35 x^{6}-10 x^{8}+x^{10}\right\}$.

Proof:
(a) From the decomposition of θ, if n is even,

$$
\begin{equation*}
p_{n}(x)=x^{2}(x-2)(x+2) \prod_{h=1}^{\frac{n-2}{2}}\left(x^{2}-4 \cos ^{2} \frac{2 \pi h}{n}\right)^{2} \tag{18}
\end{equation*}
$$

and if n is odd,

$$
\begin{equation*}
p_{n}(x)=(x-2)(x+2) \prod_{h=1}^{\frac{n-1}{2}}\left(x^{2}-4 \cos ^{2} \frac{2 \pi h}{n}\right)^{2} \tag{19}
\end{equation*}
$$

Collecting appropriate terms and using equation (8), we find (16).
(b) By remark 3.4, $p_{n}(x)=\frac{x-2}{x+2}\left(F_{n}^{\text {even }}(x)\right)^{2}$. In the ring $Z(x) \frac{x-2}{x+2}$ is constant and the sequence $p_{n}(x)$ is recurrent with the same recurrence of $\left(F_{n}^{\text {even }}(x)\right)^{2}$. By the same remark $F_{n}^{\text {even }}(x)$ is recurrent with polynomial $y^{2}-x y+1$ whose companion matrix is

$$
C=\left(\begin{array}{cc}
0 & -1 \\
1 & x
\end{array}\right) .
$$

By Theorem 2.6 of [2], $\left(F_{n}^{\text {even }}(x)\right)^{2}$ is recurrent with the characteristic polynomial of the Kronecker product $C \otimes C$, that is, $y^{4}-y^{3} x^{2}+\left(2 x^{2}-2\right) y^{2}-x^{2} y+1$.

For example, if $n=7$, the sequence $N(T, k, e)$ is recurrent with polynomial $-4+49 x^{2}-$ $196 x^{4}+294 x^{6}-210 x^{8}+77 x^{10}-14 x^{12}+x^{14}$ and initial values

$$
\{0,2,0,6,0,20,0,70,0,252,0,924,0,3434\}
$$

We now consider the case of the basic rotation ρ and the reflection τ, that is, $T=\{\rho, \tau\}$ and $a \in D_{n}$.

Theorem 4.2:

(a) The sequence $N(T, k, a)$ is recurrent with polynomial

$$
\begin{equation*}
p_{n}^{\text {odd }}(x)=\frac{g_{n}^{2}}{(x-2)} x^{n} \tag{20}
\end{equation*}
$$

if n is odd, and

$$
\begin{equation*}
p_{n}^{\text {even }}(x)=\frac{g_{n}^{2}}{(x-2)(x+2)} x^{n} \tag{21}
\end{equation*}
$$

if n is even.
(b) The subsequences $p_{2 s+1}^{\text {odd }}$ and $p_{2 s}^{\text {even }}$ are recurrent with polynomial

$$
\begin{equation*}
y^{4}-y^{3} x^{4}+\left(2 x^{6}-2 x^{4}\right) y^{2}-x^{8} y+x^{8} \tag{22}
\end{equation*}
$$

and initial values, respectively,

$$
\left\{x^{2}-2 x,-2 x^{3}-3 x^{4}+x^{6},-2 x^{5}+5 x^{6}-5 x^{8}+x^{10},-2 x^{7}-7 x^{8}+14 x^{10}-7 x^{12}+x^{14}\right\}
$$

and

$$
\begin{aligned}
\left\{-4 x^{6}+x^{8},-4 x^{6}+\right. & 9 x^{8}-6 x^{10}+x^{12},-16 x^{10}+20 x^{12}-8 x^{14}+x^{16} \\
& \left.-4 x^{10}+25 x^{12}-50 x^{14}+35 x^{16}-10 x^{18}+x^{20}\right\} .
\end{aligned}
$$

Proof:

(a) From the decomposition of θ, we find

$$
\begin{equation*}
p_{n}^{\text {even }}(x)=x(x-2)(x+2) \prod_{h=1}^{\frac{n-2}{2}} x^{2}\left(x-2 \cos \frac{2 \pi h}{n}\right)^{2} \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{n}^{\text {odd }}(x)=x^{2}(x-2) \prod_{h=1}^{\frac{n-1}{2}} x^{2}\left(x-2 \cos \frac{2 \pi h}{n}\right)^{2} \tag{24}
\end{equation*}
$$

Equations (20) and (21) follow from (8).
(b) In the ring $Z[x], p_{2 s+1}^{\text {odd }}(x)$ is equal to $x(x-2)$ multiplied by $\left(F_{s}^{\text {odd }}(x)\right)^{2} x^{2 s}$. Furthermore, $\left(F_{s}^{\text {odd }}(x)\right)^{2}$ is recurrent by characteristic polynomial $y^{4}-y^{3} x^{2}+\left(2 x^{2}-2\right) y^{2}-x^{2} y+1=u(x)$ and $x^{2 s}$ by $y-x^{2}$. We again use Theorem 2.6 of [2]: the characteristic polynomial of $x^{2} U$, where U is the companion matrix of $u(x)$, is precisely $y^{4}-y^{3} x^{4}+\left(2 x^{6}-2 x^{4}\right) y^{2}-x^{8} y+x^{8}$.

The same holds for $p_{2 s}^{\text {even }}(x)$.
For example, if $n=7$, the sequence $N(T, k, e)$ is recurrent with polynomial $-2 x^{7}-7 x^{8}+$ $14 x^{10}-7 x^{12}+x^{14}$ and initial values

$$
\{0,1,0,3,0,10,1,35,9,126,55,462,286,1717\}
$$

If $n=8$, the sequence $N(T, k, e)$ is recurrent with polynomial $-16 x^{10}+20 x^{12}-8 x^{14}+x^{16}$ and initial values

$$
\{0,1,0,1,0,3,0,10,0,36,0,136,0,528,0,2080,0,8256\}
$$

REFERENCES

1. E. Bannai \& T. Ito. Algebraic Combinatorics. I. Association Schemes. Canada: Benjamin/ Cummings Co., 1984.
2. U. Cerruti \& F. Vaccarino. "R-Algebras of Linear Recurrent Sequences." J. Algebra 175 (1995):332-38.
3. U. Cerruti \& F. Vaccarino. "Matrices, Recurrent Sequences and Arithmetics." In Applications of Fibonacci Numbers 6:53-62. Ed. G. E. Bergum et al. Dordrecht: Kluwer, 1996.
4. K. L. Chung. Elementary Probability Theory with Stochastic Processes. New York: Springer Verlag, 1979.
5. D. M. Jackson. "Some Combinatorial Problems Associated with Products of Conjugacy Classes of the Symmetric Group." J. Comb. Theory 49 (1987):363-69.
6. T. N. Shorey \& R. Tijdeman. Exponential Diophantine Equations. Cambridge: Cambridge University Press, 1986.
AMS Classification Number: 11B37
8%

FERMAT'S BIRTHDAY

August 20, 2001 marks the 400th anniversary of Fermat's birth.

