SYMBIOTIC NUMBERS ASSOCIATED WITH IRRATIONAL NUMBERS

Clark Kimberling
Dept. of Mathematics, University of Evansville, 1800 Lincoln Ave., Evansville, IN 47722
E-mail: ck6@evansville.edu

(Submitted August 1999-Final Revision November 2000)

INTRODUCTION

The upper symbiotic number $\mathcal{U}\left(R_{1}, R_{2}\right)$ of two linearly-ordered sets R_{1} and R_{2} is here introduced as the greatest number of elements of R_{1} that lie strictly between consecutive elements of R_{2}. Similarly, the lower symbiotic number $\mathfrak{R}\left(R_{1}, R_{2}\right)$ is the least number of elements of R_{1} that lie strictly between consecutive elements of R_{2}. Henceforth in this paper, we shall consider only upper symbiotic numbers. We are interested in pairs of positive irrational numbers α and γ for which $\mathcal{U}\left(R_{1}, R_{2}\right)$ is finite, where $R_{2}=\left\{i+j \alpha: i, j \in Z^{+}\right\}, R_{1}=R_{2}+\gamma$, and Z^{+}denotes the nonnegative integers.

Let $s_{n}=i_{n}+j_{n} \alpha$ be the sequence obtained by arranging the elements of R_{2} in increasing order. The main objective of this study can now be indicated specifically by this question: If γ is rationally independent of α, what is the greatest number of numbers of the form $i+j \alpha+\gamma$ that lie between consecutive numbers $i_{n}+j_{n} \alpha$ and $i_{n+1}+j_{n+1} \alpha$? The special case $\alpha=(1+\sqrt{5}) / 2$, along with some possibly new appearances of Fibonacci numbers, are considered in Example 1 and just after Theorem 3.

1. CONVERGENTS AND THE SEQUENCE s

First, we recall the notation of continued fractions: Write $\alpha=\llbracket a_{0}, a_{1}, a_{2}, \ldots \rrbracket$,

$$
p_{-2}=0, p_{-1}=1, p_{i}=a_{i} p_{i-1}+p_{i-2}
$$

and

$$
q_{-2}=1, q_{-1}=0, q_{i}=a_{i} q_{i-1}+q_{i-2}
$$

for $i \geq 0$. The numbers a_{i}, for $i \geq 0$, are the partial quotients of α, and the rational numbers p_{i} / q_{i}, for $i \geq-2$, are the principal convergents of α. For all nonnegative integers i and j, define

$$
\begin{equation*}
p_{i, j}=j p_{i+1}+p_{i} \quad \text { and } \quad q_{i, j}=j q_{i+1}+q_{i} \tag{1}
\end{equation*}
$$

The fractions $p_{i, j} / q_{i, j}$, for $1 \leq j \leq a_{i+2}-1$, are the $i^{\text {th }}$ intermediate convergents of α, and for $1 \leq j \leq a_{i+2}-2$,

$$
\begin{equation*}
\cdots<\frac{p_{i}}{q_{i}}<\cdots<\frac{p_{i, j}}{q_{i, j}}<\frac{p_{i, j+1}}{q_{i, j+1}}<\cdots<\frac{p_{i+2}}{q_{i+2}}<\cdots<\alpha \text { if } i \text { is even } \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\cdots>\frac{p_{i}}{q_{i}}>\cdots>\frac{p_{i, j}}{q_{i, j}}>\frac{p_{i, j+1}}{q_{i, j+1}}>\cdots>\frac{p_{i+2}}{q_{i+2}}>\cdots>\alpha \text { if } i \text { is odd. } \tag{3}
\end{equation*}
$$

Note that, if $j=a_{i+2}$ in (1), then $p_{i, j}=p_{i+2}$ and $q_{i, j}=q_{i+2}$. This extension of the range of j will enable certain proofs to cover simultaneously the two cases, $1 \leq j \leq a_{i+2}-1$ and $j=a_{i+2}$.

Let s denote the sequence whose terms, $s_{n}=i_{n}+j_{n} \alpha$, for $n=0,1,2, \ldots$, are as given in the Introduction. A difference $|p-q \alpha|$ first occurs at s_{n} if

$$
\begin{equation*}
s_{n}-s_{n-1}=|p-q \alpha| \text { and } s_{m}-s_{m-1} \neq|p-q \alpha| \tag{4}
\end{equation*}
$$

for all $m<n$, and last occurs at s_{n} if conditions (4) hold for all $m>n$. (In these definitions, p / q need not be a convergent to α.)

Define $\Delta_{1}=s_{1}-s_{0}$. Let n_{2} be the least n such that $s_{n}-s_{n-1} \neq \Delta_{1}$, and let $\Delta_{2}=s_{n_{2}}-s_{n_{2}-1}$. Continue inductively, so that n_{h} is, for each $h \geq 2$, the least n such that $s_{n}-s_{n-1}$ is not among the numbers $\Delta_{1}, \Delta_{2}, \ldots, \Delta_{h-1}$, and $\Delta_{h}=s_{n_{h}}-s_{n_{h}-1}$.

It will be helpful to provide single indexing for the doubly-indexed numbers $p_{i j}$ and $q_{i j}$, as follows. Let $P_{j}=p_{0, j}$ and $Q_{j}=q_{0, j}$ for $j=0,1, \ldots, a_{2}-1$, and for $w=1,2, \ldots$, let

$$
P_{a_{2}+a_{3}+\cdots+a_{w+1}+j}=p_{w, j} \quad \text { and } \quad Q_{a_{2}+a_{3}+\cdots+a_{w+1}+j}=q_{w, j}
$$

for $j=0,1, \ldots, a_{w+2}-1$. Below, $\lfloor x\rfloor$ represents the greatest integer $\leq x$, and the fractional part of x is given by $((x))=x-\lfloor x\rfloor$.

Lemma 1: Suppose i is even, $0 \leq j \leq a_{i+2}-1$, and p and q are nonnegative integers such that $0<-p+q \alpha<-p_{i j}+q_{i j} \alpha$; then $q \geq q_{i, j+1}$ if $j<a_{i+2}-1$, and $q \geq q_{i+2}$ if $j=a_{i+2}-1$. Suppose i is odd, $0 \leq j \leq a_{i+2}-1$, and p and q are nonnegative integers such that $0<p-q \alpha<p_{i j}-q_{i j} \alpha$; then $p \geq p_{i, j+1}$ if $j<a_{i+2}-1$, and $p \geq p_{i+2}$ if $j=a_{i+2}-1$.

Proof: In case i is even, $p_{i j} / q_{i j}$ is a best lower approximate to α, as proved in [1], so that $q>q_{i j}$. There are two cases:

Case 1: $j<a_{i+2}-1$. Here, $p_{i, j+1} / q_{i, j+1}$ is a best lower approximate to α; since $q>q_{i j}$, we have $q \geq q_{i, j+1}$.

Case 2: $j=a_{i+2}-1$. Here, p_{i+2} / q_{i+2} is a best lower approximate to α; since $q>q_{i j}$, we have $q \geq q_{i+2}$.

If i is odd, then $p_{i j} / q_{i j}$ is a best upper approximate, and the asserted inequalities follow.
Lemma 2: The differences Δ_{h} are given in three cases:
Case 1: $\alpha<1$. Here, $\Delta_{h}=\left|P_{h-1}-Q_{h-1} \alpha\right|$ for $h=1,2, \ldots$.
Case 2: $\alpha>1$ and $((\alpha))>1 / 2$. Here, $\Delta_{1}=1$ and $\Delta_{h}=\left|P_{h-2}-Q_{h-2} \alpha\right|$ for $h=2,3, \ldots$.
Case 3: $\alpha>1$ and $((\alpha))<1 / 2$. In this case, $\Delta_{1}=1, \Delta_{2}=((\alpha))$,

$$
\Delta_{h}=1-(((h-2) \alpha)) \text { for } h=3,4, \ldots, a_{1}+1
$$

and Δ_{h} has the form $\left|P_{k}-Q_{k} \alpha\right|$ for all $h \geq a_{1}+2$.
Proof: First, suppose i is an even nonnegative integer. It is easy to check that (3) implies

$$
\begin{equation*}
\cdots>-p_{i 0}+q_{i 0} \alpha>-p_{i 1}+q_{i 1} \alpha>\cdots>-p_{i, a_{i+2}-1}+q_{i, a_{i+2}-1} \alpha \tag{5}
\end{equation*}
$$

and (2) implies

$$
\begin{equation*}
\cdots>p_{i+1,0}-q_{i+1,0} \alpha>p_{i+1,1}-q_{i+1,1} \alpha>\cdots>p_{i+1, a_{i+3}-1}-q_{i+1, a_{i+3}-1} \alpha \tag{6}
\end{equation*}
$$

in the former case, for example, (3) implies $p_{i+1}>q_{i+1} \alpha$, so that

$$
(j+1) p_{i+1}+p_{i}-\left(j p_{i+1}+p_{i}\right)>\left((j+1) q_{i+1}+q_{i}-\left(j q_{i+1}+q_{i}\right)\right) \alpha
$$

i.e., $p_{i, j+1}-p_{i j}>\left(q_{i, j+1}-q_{i j}\right) \alpha$, so that $-p_{i j}+q_{i j} \alpha>-p_{i, j+1}+q_{i, j+1} \alpha$ as desired in (5); chain (6) likewise follows from (2).

Since $p_{i+2} / q_{i+2}<\alpha<p_{i+3} / q_{i+3}$, we also have

$$
\begin{equation*}
-p_{i, a_{i+2}-1}+q_{i, a_{i+2}-1} \alpha>p_{i+1,0}-q_{i+1,0} \alpha \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{i+1, a_{i+3}-1}-q_{i+1, a_{i+3}-1} \alpha>-p_{i+2,0}+q_{i+2,0} \alpha \tag{8}
\end{equation*}
$$

Inequalities (5)-(8) are clearly equivalent to the chain

$$
\begin{equation*}
((\alpha))=-p_{0}+q_{0} \alpha=\left|P_{0}-Q_{0} \alpha\right|>\left|P_{1}-Q_{1} \alpha\right|>\left|P_{2}-Q_{2} \alpha\right|>\cdots \tag{9}
\end{equation*}
$$

The numbers $p_{i j} / q_{i j}$, alias P_{h} / Q_{h}, comprise the complete set of best lower and upper approximates to α. Consequently, any difference Δ_{h} not included in chain (9) must exceed (($\left.\alpha\right)$). We consider the following cases:

Case 1: $\alpha<1$. Clearly $s_{1}=\alpha$, so that $\Delta_{1}=s_{1}-s_{0}=\alpha=((\alpha))$. No difference Δ_{h} can exceed Δ_{1} since, for any $s_{n}=u+v \alpha$ where $v \geq 1$, we have

$$
s_{n}-s_{n-1} \leq s_{n}-(u+(v-1) \alpha)=((\alpha))
$$

and, for $s_{n}=u+0 \alpha$, we have

$$
s_{n}-s_{n-1} \leq s_{n}-((u-1)+\lfloor 1 / \alpha\rfloor \alpha)=1-\lfloor 1 / \alpha\rfloor \alpha<\alpha
$$

Thus, $\Delta_{h}=\left|P_{h-1}-Q_{h-1} \alpha\right|$ for $h=1,2, \ldots$.
Case 2: $\alpha>1$ and $((\alpha))>1 / 2$. Write $m=\lfloor\alpha\rfloor$. Then $s_{i}=i$ for $i=1,2, \ldots, m$, and $s_{m+1}=\alpha$. Consequently, $\Delta_{1}=1$ and $\Delta_{2}=\alpha-m=((\alpha))$. Write $m=s_{m}$ and $\alpha=s_{m+1}$, and, for any $n \geq m$, write $s_{n}=u+v \alpha$. If $u \geq m$, then

$$
s_{n+1}-s_{n} \leq u-m+(v+1) \alpha-s_{n}=((\alpha))
$$

whereas, if $u<m$, then

$$
s_{n+1}-s_{n} \leq u+m+1+(v-1) \alpha-s_{n}=m+1-\alpha=1-((\alpha))<((\alpha))
$$

Thus, $\Delta_{h}<\Delta_{2}$ for all $h \geq 3$, so that $\Delta_{h}=\left|P_{h-2}-Q_{h-2} \alpha\right|$ for $h=2,3, \ldots$.
Case 3: $\alpha>1$ and $((\alpha))<1 / 2$. As in Case 2, clearly $\Delta_{1}=1$ and $\Delta_{2}=\alpha-\lfloor\alpha\rfloor=((\alpha))$. It is easy to check that $((j \alpha))=j((\alpha))$ for $j=1,2, \ldots, a_{1}=\left\lfloor 1 /\left(\alpha-a_{0}\right)\right\rfloor$.

We seek conditions under which terms $j \alpha$ and $\lfloor 1+j \alpha\rfloor$ are not consecutive in s : suppose $j \alpha<u+v \alpha<\lfloor 1+j \alpha\rfloor$. Equivalently, $(j-v) \alpha<u<1+\lfloor j \alpha\rfloor-v \alpha$. Such an integer u exists if and only if $\lfloor(j-v) \alpha\rfloor<\lfloor 1+\lfloor j \alpha\rfloor-v \alpha\rfloor$ or, equivalently, $\lfloor(j-v) \alpha\rfloor<\lfloor j \alpha\rfloor-\lfloor v \alpha\rfloor$, or yet again, $(((j-v) \alpha))<((j \alpha))-((v \alpha))$. Since $0<j-v<j$, this last equality, hence the nonexistence of u, is equivalent to the condition $j \geq a_{1}+1$. That is to say, each $\lfloor 1+j \alpha\rfloor-j \alpha$, which is equal to $1-((j \alpha))$, is one of the differences Δ_{h} for $j=1,2, \ldots, a_{1}$, and this fails to be the case for all $j \geq a_{1}+1$.

Every difference Δ_{h} is necessarily of the form $|p-q \alpha|$. By Lemma 1 , if $|p-q \alpha|<((\alpha))$, then $|p-q \alpha|$ is one of the differences Δ_{h}. We have already seen that in addition to these Δ_{h} are the a_{1} numbers $1-((j \alpha))$, for $j=0,1, \ldots, a_{1}-1$. In order to see that there is no other difference Δ_{h}, we consider two possibilities.

Case 3.1: $p-q \alpha>0$. Here, $|p-q \alpha|=1-((q \alpha))$, which exceeds $((\alpha))$ and is a difference Δ_{h} for $q=1,2, \ldots, a_{1}$, and for no other values, as already proved.

Case 3.2: $-p+q \alpha>0$. Here, $|p-q \alpha|=((q \alpha))$. If $((q \alpha))>((\alpha))$, then for any n we have $s_{n}<s_{n}+(-\lfloor\alpha\rfloor+\alpha)=s_{n}+((\alpha))<s_{n}+((q \alpha))$, so that $((q \alpha))$ is not a difference Δ_{h}.

Theorem 1: Suppose α is a positive irrational number. If i is even and $0 \leq j \leq a_{i+2}-1$, then $\left|p_{i j}-q_{i j} \alpha\right|$ first occurs at $q_{i j} \alpha$ and last occurs at $p_{i+1}-1+\left(q_{i j}+q_{i+1}-1\right) \alpha$. If i is odd and $0 \leq j \leq$ $a_{i+2}-1$, then $\left|p_{i j}-q_{i j} \alpha\right|$ first occurs at $p_{i j}$ and last occurs at $p_{i j}+p_{i+1}-1+\left(q_{i+1}-1\right) \alpha$.

Proof: Suppose i is even, and let h be the index for which $\Delta_{h}=\left|p_{i j}-q_{i j} \alpha\right|$. Since i is even, $\Delta_{h}=-p_{i j}+q_{i j} \alpha$. Let m be the index such that $s_{m}=q_{i j} \alpha$, and suppose that Δ_{h} first occurs at $s_{w}=u+v \alpha$, where $w<m$. Then $s_{w-1}=u+p_{i j}+\left(v-q_{i j}\right) \alpha$. Since s_{w-1} is a term of sequence s, we have $v \geq q_{i j}$, but then $u+v \alpha \geq q_{i j} \alpha$, contrary to $s_{w}<s_{m}$. Therefore, Δ_{h} does not occur before s_{m}. Next, we show that

$$
\begin{equation*}
s_{m}-s_{m-1}=\Delta_{h} . \tag{10}
\end{equation*}
$$

Since $s_{m}=q_{i j} \alpha$, it suffices to prove that $s_{m-1}=p_{i j}$. Now $p_{i j}<q_{i j} \alpha$, since i is even. So, suppose, contrary to (10), that $p_{i j}<s_{x}=y+z \alpha<q_{i j} \alpha$ for some nonnegative integers x, y, z. Then $q_{i j} \alpha-$ $p_{i j}>\left(q_{i j}-z\right) \alpha-y>0$, but this is untenable because $p_{i j} / q_{i j}$ is a best lower approxi-mate to α. Therefore, (10) holds.

Turning now to the last occurrence of Δ_{h}, let n be the index such that $s_{n}=p_{i+1}-1+\left(q_{i j}+\right.$ $\left.q_{i+1}-1\right) \alpha$. Then

$$
s_{n}-\Delta_{h}=p_{i+1}+p_{i j}-1+\left(q_{i+1}-1\right) \alpha
$$

and this is clearly a number in the sequence s. We must show that, for any difference $\Delta=\mid-p_{k l}+$ $Q_{k l} \alpha \mid$ less than Δ_{h}, the number $s_{n}-\Delta$ is not in s. (By Lemma 2, the only differences Δ that need be considered are, in fact, of the form $\left|-p_{k l}+q_{k l} \alpha\right|$.)

Case 1: Even k. Here $\Delta=-p_{k l}+q_{k l} \alpha$. By Lemma 2, we have $q_{k l} \geq q_{i, j+1}$ (which is q_{i+1} if $j=a_{i+2}-1$). Then

$$
s_{n}-\Delta=p_{i+1}+p_{k l}-1+\left(q_{i j}+q_{i+1}-1-1_{k l}\right) \alpha,
$$

and the coefficient of α is $\leq q_{i j}+q_{i+1}-1-q_{i, j+1}$, but since this number is -1 , the number $s_{n}-\Delta$ is not in s.

Case 2: Odd k. Here, $\Delta=p_{k l}-q_{k l} \alpha$. By Lemma 2, we have $p_{k l} \geq p_{i, j+1}$ (which is p_{i+1} if $j=a_{i+2}-1$), and

$$
s_{n}-\Delta=p_{i+1}-p_{k l}-1+\left(q_{i j}+q_{i+1}-1+q_{k l}\right) \alpha .
$$

Since $p_{i+1}-p_{k l}-1<0$, the number $s_{n}-\Delta$ is not in s.
We now know that $s_{n}-s_{n-1}=\Delta_{h}$. That is, Δ_{h} occurs at s_{n}. To see that this location in s marks the last occurrence of Δ_{h}, suppose $m>n$. We must show that $s_{m}-s_{m-1}<s_{n}-s_{n-1}$. Write s_{m} as $u+v \alpha$; then one of the following cases holds: (A) $u \geq p_{i+1}$; (B) $v \geq q_{i j}+q_{i+1}$.

Case A: $u \geq p_{i+1}$. Here, the number $u-p_{i+1}+\left(v+q_{i+1}\right) \alpha$ is a term $s_{m^{\prime}}$ in the sequence s. Since $-p_{i+1}+q_{i+1} \alpha<0$, we have $s_{m^{\prime}}=u-p_{i+1}+\left(v+q_{i+1}\right) \alpha<u+v \alpha=s_{m}$, so that $s_{m^{\prime}} \leq s_{m-1}$, and

$$
s_{m}-s_{m-1} \leq s_{m}-s_{m^{\prime}}=u+v \alpha-\left(u-p_{i+1}+\left(v+q_{i+1} \alpha\right)\right)=p_{i+1}-q_{i+1} \alpha<s_{n}-s_{n-1} .
$$

Case B: $v \geq q_{i j}+q_{i+1}$. Here, $q_{i j}+q_{i+1}=(j+1) q_{i+1}+q_{i}=q_{i, j+1}$. Therefore, the number $u+p_{i, j+1}+\left(v-q_{i, j+1}\right) \alpha$ is a term $s_{m^{\prime}}$. Since $p_{i, j+1}-q_{i, j+1} \alpha<0$, we have $s_{m^{\prime}} \leq s_{m-1}$, so that

$$
\begin{aligned}
s_{m}-s_{m-1} \leq s_{m}-s_{m^{\prime}} & =u+v \alpha-\left(u+p_{i, j+1}+\left(v-q_{i, j+1}\right) \alpha\right) \\
& =-p_{i, j+1}+q_{i, j+1} \alpha<s_{n}-s_{n-1}
\end{aligned}
$$

This finishes a proof for even i. A proof for odd i is similar and thus omitted here.
Corollary 1.1: Suppose α is a positive irrational number. Let $n=n(h)$ be the index such that Δ_{h} last occurs at s_{n}. If $\alpha<1$ or $((\alpha))>1 / 2$, the sequence $n(h)$ is strictly increasing. If $\alpha>1$ and $((\alpha))<1 / 2$, the sequence $n\left(a_{1}+2\right), n\left(a_{1}+3\right), n\left(a_{1}+4\right), \ldots$ is strictly increasing.

Proof:

Case 1: i even. Assume first that $\alpha<1$. If $0 \leq j \leq a_{i+2}-2$, then, by Theorem 1, the difference $\Delta_{h}=-p_{i j}+q_{i j} \alpha$ last occurs at $n_{1}=p_{i+1}-1+\left(q_{i j}+q_{i+1}-1\right) \alpha$. By Lemma 2, we obtain $\Delta_{h+1}=$ $-p_{i, j+1}+q_{i, j+1} \alpha$, which last occurs at $n_{2}=p_{i+1}-1+\left(q_{i, j+1}+q_{i+1}-1\right) \alpha$. Since $q_{i, j+1}>q_{i j}$, we have $n_{2}>n_{1}$.

If $j=a_{i+2}-1$, then the difference $\Delta_{h}=-p_{i j}+q_{i j} \alpha$ last occurs at $n_{1}=p_{i+1}-1+\left(q_{i j}+q_{i+1}-1\right) \alpha$ and, by Lemma 1, Δ_{h+1}, namely $p_{i+1}-q_{i+1} \alpha$, last occurs at $p_{i+1}+p_{i+2}-1+\left(q_{i+2}-1\right) \alpha$. We have $\left(q_{i, a_{i+2}-1}+q_{i+1}\right) \alpha<p_{i+2}+q_{i+2} \alpha$, so that

$$
p_{i+1}-1+\left(q_{i, a_{i+2}-1}+q_{i+1}-1\right) \alpha<p_{i+1}+p_{i+2}-1+\left(q_{i+2}-1\right) \alpha
$$

which is to say that the last occurrence of $-p_{i j}+q_{i j} \alpha$ precedes that of $p_{i+1,0}-q_{i+1,0} \alpha$.
Next, assume that $\alpha>1$ and $((\alpha))>1 / 2$. The difference $\Delta_{1}=1$ occurs at $\lfloor\alpha\rfloor$ and is easily seen not to occur thereafter. Clearly, this last occurrence of Δ_{1} precedes the last appearance of $\Delta_{2}=((\alpha))$. The proof given above for the case $\alpha<1$ now applies to all Δ_{h} for $h \geq 2$.

Finally, assume that $\alpha>1$ and $((\alpha))<1 / 2$. By Case 3 of Lemma 2 and the method used in Case 1 above, the sequence $n\left(a_{1}+2\right), n\left(a_{1}+3\right), n\left(a_{1}+4\right), \ldots$ is strictly increasing.

Case 2: i odd. A proof much like that for i even is omitted.
Corollary 1.2: Suppose α is a positive irrational number and $i \geq 0$. If the difference $\left|p_{i j}-q_{i j} \alpha\right|$ last occurs at s_{n}, then the difference $\left|p_{i+1}-q_{i+1} \alpha\right|$ first occurs before s_{n}, and no difference less than $\left|p_{i+2}-q_{i+2} \alpha\right|$ first occurs before s_{n}.

Proof: For the first assertion it suffices, by Theorem 1, to observe that, for even $i \geq 2$,

$$
p_{i+1}<p_{i+1}-1+\left(q_{i j}+q_{i+1}-1\right) \alpha,
$$

and for odd i,

$$
q_{i+1} \alpha<p_{i j}+p_{i+1}-1+\left(q_{i+1}-1\right) \alpha .
$$

For the second assertion, first suppose i is even. The well-known identity $p_{i+1} q_{i}-p_{i} q_{i+1}=1$ implies that $a_{i+3} p_{i} q_{i+1}-p_{i+1} q_{i} \geq-1$, so that

$$
\begin{gathered}
a_{i+2} p_{i+1} q_{i+1}\left(a_{i+3}-1\right)+a_{i+3} p_{i} q_{i+1}-p_{i+1} q_{i}+p_{i+1}+q_{i+1}>0, \\
q_{i+1}\left(a_{i+3}\left(a_{i+2} p_{i+1}+p_{i}\right)+1\right)>p_{i+1}\left(a_{i+2} q_{i+1}+q_{i}-1\right), \\
q_{i+1}\left(a_{i+3} p_{i+2}+1\right)>p_{i+1}\left(q_{i+2}-1\right),
\end{gathered}
$$

from which follows

$$
\frac{p_{i+3}-p_{i+1}+1}{q_{i+2}-1}>\frac{p_{i+1}}{q_{i+1}}>\alpha
$$

so that

$$
\begin{aligned}
p_{i+3} & >p_{i+1}-1+\left(\left(a_{i+2}-1\right) q_{i+1}+q_{i}+q_{i+1}-1\right) \alpha \\
& \geq p_{i+1}-1+\left(q_{i j}+q_{i+1}-1\right) \alpha,
\end{aligned}
$$

and, by Theorem 1 , the difference $p_{i+3}-q_{i+3} \alpha$ first occurs after s_{n}.
It is clear from Theorem 1 that, if a difference Δ first occurs after the difference $-p_{i+2}+q_{i+2} \alpha$ first occurs, then either $\Delta=p_{i+3}-q_{i+3} \alpha$ or else Δ first occurs after $p_{i+3}-q_{i+3} \alpha$ first occurs. We have therefore finished with a proof for even i. A proof for odd i involving the inequality

$$
\frac{p_{i+2}-1}{a_{i+3} q_{i+2}+1}<\alpha
$$

is similar and omitted.

2. THE SPAN OF α

For $n=1,2, \ldots$, let

$$
\begin{equation*}
f(n)=\frac{\max _{k \geq n}\left\{s_{k}-s_{k-1}\right\}}{\min _{k \geq n}\left\{s_{k}-s_{k-1}\right\}} \tag{11}
\end{equation*}
$$

and define the span of α as

$$
s(\alpha)=\sup \{f(n): n=0,1,2, \ldots\}
$$

Theorem 2: Suppose $\alpha=\llbracket a_{0}, a_{1}, \ldots \rrbracket$. Then the span of α is finite if and only if the partial quotients a_{i} are bounded.

Proof: Let n be large enough that the differences $\Delta_{h}=s_{m}-s_{m-1}$ are of the form $\left|p_{i j}-q_{i j} \alpha\right|$ for all $m \geq n$; this is possible by Lemma 2. Then, in (11), the numerator ranges through differences $\Delta_{h}=\left|p_{i j}-q_{i j} \alpha\right|$, where $i \geq 0$ and $1 \leq j \leq a_{i+2}-1$. Now suppose $\left|p_{i j}-q_{i j} \alpha\right|$ last occurs at s_{n} and $\left|p_{i+1}-q_{i+1} \alpha\right|$ last occurs at $s_{n^{\prime}}$. Then $n^{\prime}>n$ by Corollary 1.1, and using Corollary 1.2 we find

$$
\frac{\max _{k \geq n}\left\{s_{k}-s_{k-1}\right\}}{\min _{k \leq n}\left\{s_{k}-s_{k-1}\right\}}=\frac{\left|p_{i j}-q_{i j} \alpha\right|}{\min _{k \leq n}\left\{s_{k}-s_{k-1}\right\}} \leq \frac{\left|p_{i}-q_{i} \alpha\right|}{\min _{k \leq n}\left\{s_{k}-s_{k-1}\right\}} \leq \frac{\left|p_{i}-q_{i} \alpha\right|}{\min _{k \leq n^{\prime}}\left\{s_{k}-s_{k-1}\right\}} \leq \frac{\left|p_{i}-q_{i} \alpha\right|}{\left|p_{i+2}-q_{i+2} \alpha\right|}
$$

so that

$$
\begin{equation*}
s(\alpha) \leq \sup _{i \geq 0} \frac{\left|p_{i}-q_{i} \alpha\right|}{\left|p_{i+2}-q_{i+2} \alpha\right|} \tag{12}
\end{equation*}
$$

From the standard identity

$$
\left|p_{i}-q_{i} \alpha\right|=\frac{1}{r_{1} r_{2} \ldots r_{i+1}}, \text { where } r_{k}:=\left[a_{k}, a_{k+1}, \ldots\right]
$$

we have

$$
\frac{\left|p_{i}-q_{i} \alpha\right|}{\left|p_{i+1}-q_{i+1} \alpha\right|}=a_{i+2}+1 / r_{i+3}
$$

whence

$$
\frac{\left|p_{i}-q_{i} \alpha\right|}{\left|p_{i+2}-q_{i+2} \alpha\right|}=\left(a_{i+2}+1 / r_{i+3}\right)\left(a_{i+3}+1 / r_{i+4}\right),
$$

so that

$$
\begin{equation*}
s(\alpha) \leq \sup _{i \geq 0}\left(a_{i+2}+1\right)\left(a_{i+3}+1\right) \tag{13}
\end{equation*}
$$

Thus, $s(\alpha)$ is finite if and only if the partial quotients a_{j} are bounded.
Example 1: In case $\alpha=(1+\sqrt{5}) / 2=\llbracket 1,1,1, \ldots \rrbracket$, it is easy to verify the following results:
(al) All the convergents are principal convergents, and $p_{i} / q_{i}=F_{i+2} / F_{i+1}$, where F_{k} denotes the $k^{\text {th }}$ Fibonacci number, defined by $F_{0}=0, F_{1}=1, F_{k}=F_{k-1}+F_{k-2}$ for $k=2,3, \ldots$;
(b) $\Delta_{h}=\left|F_{h}-F_{h-1} \alpha\right|=\alpha^{-h-1}$ for $h=1,2,3, \ldots$;
(c) Δ_{h} first occurs at s_{n}, where $n=\left(F_{h-1}+1\right)\left(F_{h}+1\right) / 2$ for $h=2,3,4, \ldots$, and

$$
s_{n}= \begin{cases}F_{h-1} \alpha & \text { if } h \text { is even and } \geq 2 \\ F_{h} & \text { if } h \text { is odd }\end{cases}
$$

(d) Δ_{h} last occurs at s_{n}, where

$$
n= \begin{cases}F_{h+4}\left(F_{h+1}-1\right) / 2 & \text { if } h \text { is even and } \geq 2 \\ 1+F_{h+4}\left(F_{h+1}-1\right) / 2 & \text { if } h \text { is odd }\end{cases}
$$

and

$$
s_{n}= \begin{cases}F_{h+1}-1+\left(F_{h+1}-1\right) \alpha & \text { if } h \text { is even and } \geq 2 \\ F_{h+2}-1+\left(F_{h}-1\right) \alpha & \text { if } h \text { is odd }\end{cases}
$$

(e) $s(\alpha)=\alpha+1 \doteq 2.618034$.

Using the upper bound $\sup _{i \geq 0}\left(a_{i+2}+1 / r_{i+3}\right)\left(a_{i+3}+1 / r_{i+4}\right)$ from the proof of Theorem 3 , we have three more examples.
Example 2: $s(\sqrt{2})=s(\llbracket 1, \overline{2} \rrbracket) \leq\left(2+\frac{1}{1+\sqrt{2}}\right)^{2}=31-12 \sqrt{3} \doteq 10.2153$.
Example 3: $s(\sqrt{3})=s(\llbracket 1, \overline{1,2} \rrbracket) \leq\left(1+\frac{1}{\sqrt{3}+1}\right)\left(2+\frac{2}{\sqrt{3}+1}\right)=2+\sqrt{3} \doteq 3.73205$.
Example 4: $s(\sqrt{5})=s(\llbracket 2, \overline{4} \rrbracket) \leq\left(4+\frac{1}{\sqrt{5}-2}\right)^{2}=41+12 \sqrt{5} \doteq 67.8328$.

3. UPPER SYMBIOTIC NUMBER $\mathbb{F O R}\{i+j a+\gamma\}$ AND $\{i+j a\}$

We return now to the problem stated in the Introduction.
Theorem 3: Suppose α and γ are positive irrational numbers, γ rationally independent of α, and suppose α has bounded partial quotients. Let $R_{2}=\left\{i+j \alpha: i, j \in Z^{+}\right\}$and let $R_{1}=R_{2}+\gamma$. Then $u\left(R_{1}, R_{2}\right) \leq s(\alpha)+1$.

Proof: As before, let s_{n} denote the $n^{\text {th }}$ largest number in R_{2}, after $s_{0}=0$, and assume now that at least one number t in R_{1} lies between s_{n-1} and s_{n}. Let t_{m} and t_{m+w} be the least and greatest such numbers, where $w \geq 0$. We seek an upper bound for the number $w+1$ of numbers t between s_{n-1} and s_{n}. Let m^{\prime} be the index for which $t_{m}=s_{m^{\prime}}+\gamma$. The inequalities

$$
s_{n-1}<t_{m}<t_{m+1}<\cdots<t_{m+w}<s_{n}
$$

imply that

$$
\begin{aligned}
t_{m+w}-t_{m} & =\left(t_{m+1}-t_{m}\right)+\left(t_{m+2}-t_{m+1}\right)+\cdots+\left(t_{m+w}-t_{m+w-1}\right) \\
& =\left(s_{m^{\prime}+1}-s_{m^{\prime}}\right)+\left(s_{m^{\prime}+2}-s_{m^{\prime}+1}\right)+\cdots+\left(s_{m^{\prime}+w}-s_{m^{\prime}+w-1}\right) \\
& \geq w \min _{k \leq n}\left\{s_{m^{\prime}+v}-s_{m^{\prime}+v-1}: 1 \leq v \leq w\right\} \geq w \min _{k \leq n}\left\{s_{k}-s_{k-1}\right\},
\end{aligned}
$$

so that

$$
w \leq \frac{s_{n}-s_{n-1}}{\min _{k \leq n}\left\{s_{k}-s_{k-1}\right\}} \leq s(\alpha)
$$

Experimental sampling suggests that $\mathcal{U}\left(R_{1}, R_{2}\right)=2$ for $\alpha=(1+\sqrt{5}) / 2$ regardless of the value of γ (as long as γ is positive, irrational, and rationally independent of α), and that similar results may hold for other quadratic irrationals. Sampling also suggests, perhaps unsurprisingly in view of the proof of Theorem 3, that $u\left(R_{1}, R_{2}\right)$ may often be considerably less than the span of α.

We conclude with a particularly easy-to-state related unsolved problem. Let

$$
R_{2}=\{1,3,5,9,1525,27, \ldots\}=\left\{i^{i} 5^{j}: i \geq 0, j \geq 0\right\}
$$

and let

$$
R_{1}=\{2,6,10,18,30,50,54, \ldots\}=\left\{2 r: r \in R_{2}\right\} .
$$

Is $U\left(R_{1}, R_{2}\right)$ finite? (For an equivalent formulation of this problem, let $R_{2}=\{i+j \alpha\}$, where $\alpha=\log 5 / \log 3$, and let $R_{1}=\gamma+R_{2}$, where $\gamma=\log 2 / \log 3$.)

REFERENCE

1. Clark Kimberling. "Best Lower and Upper Approximates to Irrational Numbers." Elemente der Mathematik 52 (1997):122-26.

AMS Classification Numbers: 11J70, 11A55, 11B37, 11B39

