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In [2], Rieger showed a relationship between the golden section, g = (-*/5 -1) / 2, and Newton 
approximation. In other words, he constructed a function so that every trial value in Newton 
approximation coincides with the even convergent of continued fraction expansion ofg. In this 
note we give a more general result. 

As usual, 0 - [a0; al9 a2,...] denotes the continued fraction expansion of 0, where 
0 = ao + 0o, aQ = l0i 

l/0n_l=an+0n, O ^ L l / ^ J (H = l,2,...). 

The &* convergent pklqk = [a0; au..., ak] of 0 is then given by the recurrence relations 

Pk=akPk-l + Pk-2 (* = 0,1,...), P_2 = 0, /Li = l, 
ak=ak(lk-i+<lk-2 (* = 0,1,...), «r_2 = l, g_i = 0. 

Let a and 6 be positive integers and D = ab(ab + 4). Set 

0 = [O;a,b,a,b,...] = [O;aJb] = (jD-ab)/(2a), 

satisfying ad2 +ab0 = b. Then 0=02 = 04 = --- and 

0t = 03 = 05 =... = [0; 6^] = ( ^ - aZ>) / (2Z>) • 
Also, set 

e={4D+ab)l{2a) = 6+b = e-l
l and ^ = {-JB+ab)/(2b) = 0x+a = 0~\ 

Notice that 0+0 = VZ> la, 0l + 0l = JI)/b, dd = bla,snA6l0l = alb. 

The arbitrary function H: [0, g] -> U of class C2 may satisfy H(0) = 1, #(#) = 0, H'(x) < 0, 
H"(x)>0 (0<x<g). Let 

Then Newton approximation applies with 
xo = °> xn+i = N(x

n)>x
n (n = 0,1,2,...), limx„ = 6>. 

X-»oo 

We shall give H explicitly to show the following. 

Theorem: xn =&*- (n = 0,1,2,...). 

If we put a = b = l, this is exactly the same as Rieger's case. It is clear that x0 = 0 = p0 /q0. 
Because ap2n = bq2n_x and p2n+l = q2n (n = 0,1,2,...), 
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Pln+2 _ fyWl + Pin _ 6g2„ + ft„ ^ + 
Pin 
<*2n 

q2n+2 bq2n+l + q2n h(aq2n + q2n_x) + q2n ab + l+a^ 

and 

Thus, we set 

Pln+3 - aP2n+2 + Pln+l _ %,-*-! + f2n+l * + 

<l7n 

Pln+l 

l2n+3 aq2n+1+q2n+l a(bq2n+l + q2n) + q2n+1 ab + l + af^-

N(X): b + X 

ab + l + ax 
so Newton approximation applies with xn+l = N(x„) (w = 0,1,2,...), l i m ^ ^ xn = 0. y- N(x) is 
a hyperbola with asymptotes x = -{ab +1 ) / a , y = l/a; N(0) = 9, Nf(x) = \l(ab +1 + ax)2 > 0. 
We take 

Drx\ = Ar/X) x=b~abx-ax2
 =a(0- x)(§ + y) = ft(l + ^x)( l - fly) 

a^-t-l + a r ab + l+ax ab + l + ax 

y = D(x) is a hyperbola with asymptotes x = -(ab + l)/a, x + y = l/a; 

D(-§) = D(0) = O, D(0) = -^~y D(x)>0 (-§<x<0). 
ab + \ 

Since 

we can choose 

so that 

VZ) _ (ab +1)0! - a (ab + l)§l+a 
D ( x ) ~ 1-f-^x 1 - 0 * ' 

= (1 + 6»1x)(a6+1-^)/V5 (1 - eixfab+l+ae)l4B (0 < x < 0) 

¥&- = l— (O<x<0). 

We see that H(x) > 0, H'(x) < 0 (0 < x < g), H(g) = 0, and # ' (g) = 0. It follows that /f" (x) > 0 
(0 < x < g). We also note that 

Of course, N(x) keeps the property of mediants. Let integers a,P,y, and 8 be /? > 0, £ > 0, 
Py-a8 = 1, then (a, yS) = (j, 8) = 1, and 

a .a+y y 
P p+S 8' 

Let a' = hp+a, P' = (ab + l)P+aa>0, y' = bS+y, and 8'= (ab + \)8 + ay > 0 . Then 

(a', ,0') = (ty? + a, {ab + \)p+aa) = (ty? + a, ft) = (a, p) = 1, <j', 8') = \, 
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[fij fi" [fi+fi) P'+s" [srs'-
Remark: If we set x0 = 1 la as the initial value, then 

xn+i = N(x„) <x„ (n = 0,1,2,...), lira x„ = 0, 

and xn = p2n+l Iq2n+l (« = 0,1,2,...). However, the corresponding H(x) does not exist for x > 9. 
Indeed, 

% ® % <J2n+l 

Further generalization seems nearly impossible. For example, if 0 = [O;a,b,c9d], p4n+4/q4n+4 
cannot be expressed by the linear relation of p4n and q4n. Hence, we cannot give N(x) as well as 
D(x) and H(x). 

A different aspect of this topic can be seen in [1]. 
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