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1. INTRODUCTION 

The Lucas sequences, which Include the Fibonacci numbers as a special case, arise as solu-
tions to the recursion relation 

yn+i=®yn+byn_h «>1, (1) 

where a, b and (yn)n>o take values in some specified ring and a and b are fixed elements which do 
not depend on the Integer index n. A solution (yn)„^0 ^s completely specified once the values of 
yQ and yx are given. It is customary to denote by Fn(a, b) the solution corresponding to the 
choice y0 = 0, yt = l, and by Ln(a, b) the solution corresponding to the choice y0 = 2, yx = a. 
Loosely speaking, in cases of interest the general solution of (1) can be expressed as a linear com-
bination of these two linearly independent solutions. 

Choosing a = x to be an indeterminate and b to be some fixed integer, each of these solutions 
defines an infinite sequence of polynomials over Z. More specifically, four distinct polynomial 
sequences of this type will be considered in the present paper, namely, Un(x) = Fn(x, 1), V„(x) = 
Ln(x,T), Cn(x) = Fn(x, -1), and Dn(x) = Ln(x, -1). The polynomials Un(x) are known as the 
Fibonacci polynomials (Un(l) are the Fibonacci numbers), Vn(x) are termed the Lucas polyno-
mials (Vn(T) are the Lucas numbers), while C„(x) and Dn(x) are related to the Chebyshev poly-
nomials. Hereinafter, Fibonacci polynomials" will be used as a collective name for Un(x), Vn{x), 
Q(x), and £>„(*). 

The main result of the paper is the prime factorization of the Fibonacci polynomials over the 
field of rational numbers Q. Webb and Parberry [5] have observed that while Un(x) enjoy all 
the well-known divisibility properties of the Fibonacci numbers, they possess a general property 
which the U„(l) lack, namely, that Up(x) is irreducible over Q iffp Is a prime. We recall that 
the prime factorization of Tn(x) = J^'QX1 over Q Is well known [4] and, in particular, Tp(x) Is 
Irreducible over Q iffp is a prime. The irreducible factors are the cyclotomic polynomials <&m(x), 
which are given by 

k=i ( 2 ) 

01(JC) = ( X - 1 ) , m = l 

The prime factorization of Tn(x) is given by 

Tn{x) = U%(x), n>\. (3) 
d\n 
d>\ 

Multiplying (3) by x - 1 gives the equivalent form 
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d\n 

Relation (4) can be "Inverted" with the help of the Moblus function in order to obtain an explicit 
expression for the rfi cyclotomic polynomial: 

On(x) = H(xd-ir^, n>\. (5) 
d\n 

As we shall see, the structure of the prime factors of the Fibonacci polynomials over Q Is similar, 
and the proof of their irreducibility follows the textbook proof of the irreducibillty of the cyclo-
tomic polynomials. 

2. RELEVANT PROPERTIES OF FIBONACCI POLYNOMIALS 

Let Q[i] denote the field of rational Gaussian numbers, i.e., the quadratic extension of Q by 
/ = V- l . Looking at the Fibonacci polynomials over this field, the following relations are easy to 
establish. 

Lemma 1: For all n > 0, Cn(x) = f-lUn{~ix), and Dn(x) = inVn{-ix). 

Proof: By induction on n using (1) and the initial conditions. D 

The following proposition lists some well-known Identities satisfied by the Fibonacci polyno-
mials (for a generalization of some of these Identities to Fn(aP b) and L„(a, h), see [3]). 

Proposition 1: Let: 

x W x 2 + 4 _ x -Vx 2 +4 x W x 2 - 4 ,_ x-^x2-4 
w = • w = , z- - , andz = . 

2 2 2 2 
» ^ c > w = £ ^ | l . (6 ) 
w-w z-z 

V„(x) = w"+W"; D„(x) = z" + z". (7) 

U*(x) = £ A("> m)x"-2m-1 and C„(x) = £ (-l)mA(n, rri)xn-2m-\ 
m=0 m=0 

where 
[¥] 

where 

\r \ 4m vY n YA (n-m-\\ 

[f] [f] 
V„(x) = £E(H,m)x"~2 m and Dn{x) = £(-l)mE(«,m)x"-2m, 

^^^SfcX^K-i-H"-"!1) (8) 

^ ( * ) = t/a W(x)- ( - l )* t / a _ 6 (x) . (9) 
Ua+b(x) = Ub(x)Va(x) + (-l)bUa_b(x). (10) 
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Ua+b(x) = Ua^(x)Ub(x)+Ua(x)Ub+l(x). (11) 
Qrt(*) - Ca(x)Db (x) - Ca_b(x). (12) 
Ca+b(x) = Cb(x)Da(x) + Ca_b(x). (13) 
Ca»(x) = Q(x)Q+1(x)-Q_1(x)Q(x). (14) 

Proof: Most of the claims concerning U„(x) and J^(x) are quoted from Webb and Parberry 
using their notation, and the reader is referred to their proofs [5]. Equation (11) can be proved by 
induction on b > 0, where b - 0,1 cases are clear from the initial conditions and the recursive 
relation Ua+1(x) = xUa(x) + Ua_l(x). The analog statements concerning Cn(x) and Dn(x) follow 
easily from Lemma 1. • 

Remark: In equations (9)-(10) and (12)-(13), a and b can take any integer value if we define, for 
all n > 0, U_n{x) = (-lf-%(x), V_(x) = {-l)"Vn(x), C_„(x) = -C„(x), and D_„(x) = Dn(x). This 
definition is also consistent with equations (1), (6), and (7). 

Corollary 1: Letp be an odd prime, then 

Vp(x) = Dp(x) = xp (mod/?)- (15) 

Proof: Consider equation (8). We have 

Since p is odd we have, for 0 < j < [-f ] < -f, the inequality 0 < 2j < p and in this range (2
Pj) = 0 

(mod p). Consequently, E(p, m) = 0 (mod p) if m > 0. For m = 0, the only nonzero (mod p) 
term in the sum is the 7 = 0 term. By Fermat's theorem (see [1]), 2p~l = 1 (modp) so E(/?, 0) = 1 
(mod |?) and (15) follows. D 

Over the field of complex numbers, U„(x) is a product of n-1 distinct linear factors (see [5], 
Theorem 2): 

n-lf (7rk\\ 
U„(x) = Yl x-2icos — , n>\. (16) UK V n 

This result can be derived from (6) by substituting x = 2*'cos0 and studying the solutions of 
Un(2icos0) = 0. Note that all the nonzero roots are purely imaginary, and since Un(x) have real 
coefficients this implies that the nonzero roots come in pairs (a, - a) whose members have equal 
absolute values and opposite signs. Using (16), Lemma 1, and the last observation, it is also easy 
to show that 

n'ir (nV Q(x)=n^-2cos[-w n>\. 

Lemma 2: Let n be a positive integer, f(x) e C[x], 0 e R. If 2i co§(n0)(2cos(n0)) is a root of 
/ , then 2/cos 0(2 cos 0) is a root of f(i~("-l)Vn(x))(f(Dn(x))). 

Proof: Substituting x = 2icos0 in the expression for V„(x) in (7), we obtain 
Vn(2icos0) = in2cos(n6) = rticos(«0). 
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Hence, / ( / ^n l^V„(2i cos 0)) = f(2i cosn&) and the first claim follows. The proof of the second 
claim is similar. • 

Lemma 3: The following expression for the derivative of the ntli Fibonacci polynomial holds over 
any extension field of Zp for any prime/?: 

and similarly, 
{x2+A)U'n{x) = nVn(x)-xUn{x), 

(x2-4)C>(x) = nD„(x)-xC„(x). 

(17) 

(18) 

Proof: First view the Fibonacci polynomials as real valued functions and differentiate using 
relations (6) and (7) in order to prove the validity of (17) and (18) over the reals. Next, consider 
the ring homomorphism Z[x] —» Z [x], f(x) h-» f(x), where f(x) is the polynomial whose coef-
ficients are the remainders modulo p of the coefficients of f(x). Since both sides of equations 
(17) and (18) are polynomials over Z [U'n(x) is the formal algebraic derivative of Un{x)\ both 
equations remain valid when we replace each side with its image under this homomorphism. D 

3e FACTORIZATION OF THE FIBONACCI POLYNOMIALS OVER Q 

The following definition is inspired by the definition of the cyclotomic polynomials [see equa-
tion (2)]. 

Definition 1: The fibotomic polynomials Pm(x), Q2m(x), Q2Sl+i(*)> and Q^+iW a r e defined by: 
m-l 

pmM= n 
k=i 

gcd(k,m)=l 

Pi(x) = i; 
2m-l 

&*(*) = 11 
k=l 

gcd(£,2/w)=l 

X-2JCOS — 
\̂  m 

m>\: 

x-2cos — , m>\ 
v 

GCi(*)= 
m-\ 

n 
Ar=0 

gcd(2fc+r,2/w+l)=l 

2m) 

x_2 c o S|(f±i i-
2/w + l 

m>h 

n k=l 
gcd(fc,2m+l)=l 

x-2cosj 2kn 
2/w + l m>\: 

Recall that the set Z* = {1 < k < n- l|gcd(£, n) = 1}, n > 2, is a group with respect to multipli-
cation modulo n and that \Z* |= (j){n), where $ is the Euler totient function (see [1]). Let 

( Z « )odd = im G Z» I m i S °dd} a t l d ( Z « L e n = {M G Zn I M i s e V e n } ' 

Lemma 4: Let fi * 3, n > 1, be an integer and let / e Z* be arbitrary, then Z* is generated by the 
action of (Z„*)odd on/, i.e., Vx G Z ; there exist &,...,& e(Z;)odd such that ( a - & ) - / = x. 
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Proof: If n is even, it is obvious that Z* = (Z*)odd and the claim follows. If n is odd, then 
x H> n - x is a bijection between the sets (Z*)odd and (Z*)even; therefore, 

| (Z«)odd I = I (Z«*Len | = 2"| K | = j ^ ' 

Now suppose that (Z*)odd is not a subgroup of Z*. In this case (Z*)odd generates Z* and there-
fore the action of (Z*)odd on any Z* element generates Z*. On the other hand, we will show that 
the assumption that (Z*)odd is a subgroup of Z* leads to a contradiction. For any x e (Z*)even, we 
have the left coset decomposition Z* = (Z*)odd u x(Z*)odd. Since distinct left cosets are disjoint, 
this implies (Z*)even = x(Z*)odd, Vx e(Z*)even. Let w = 2* +1 with k>2. Choose x = 2 e (Z*)even. 
By Bertrand's postulate [1], there exists a prime number k <p<2k. The inequality p>k>2 
implies that/? is odd and that p\2k + \ = n so p e(Z*)odd. However, since 2k < 2p< 4k, we 
have n < 2p < 2n. Therefore, 2p = s+n = $ (mod n); 1 < s < n -1, where s is odd. This contra-
dicts 2(z„*)odd = (z;)even. • 

Remark: (Z3)odd = {1} is a proper subgroup of Z%; therefore, the claim of Lemma 4 does not hold 
in this case. 

Lemma 5: The factorization of the Fibonacci polynomials in terms of the fibotomic polynomials 
is given by 

Un{x) = Y{Pd(x), n>\; (19) 
d\n 

C„+1(x)-C„_1(x)= n QJ?\ n>\- (20) 
d\n 

j is odd 

Cn+l(x)-C„(x)= J ! &%(*)> n>0- (21) 
2</+l|2w+l 

C„+l(x) + Cn(x)= J ] 6 S S W . »*<>. (22) 
2</+1|2M+1 

Proof: Equation (19) [which is the analog of (4)] follows from (16) and the definition of 
Pd(x). To obtain (20)-(22), note that C2n(x) = Q(x)(C„+1(x) -C^^x) ) . [Substitute a = h = n in 
(14)] and C2w+1(x) = (Q+1(x)-Q(x))(Q+1(x) + Q(x)) [a = n + l,b = n in (14)]. Using the first 
relation, we get 

c-«-c-«=t$=n(*-2cos(f)) 
k odd 

Equation (20) now follows from the definition of Q2d{x)- T o prove (21)-(22), we need the com-
plex roots of C„+1(x)±Q(x). For example, substituting (6) in Cn+l(x) - Cn(x) = 0 gives z"+1-
zn+l -zn + zn = 0, provided that z * z. Since zz = 1, we get z2w+1 = - 1 , which gives 

Similarly, 

cn+1(x)-c„(x) = f[ ^ - 2 c o s ( ^ r r ) 
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C„+1(x) + C„(x) = ft [x - 2 c o s Q ^ J). 

Next, note that the proof of Lemma 4 gives deg Q^ii (x) = deg Q^+i (x) = \ <t>(2m + l),m>\. In 
order to prove (21), observe that every linear factor, 

'(2j + l)^ 
x-2cos ^ 

2w + l 
°f Q+i(x) " Q( x ) divides a Q^+iW on the right-hand side (r.h.s.) of (21), where 

2</ + l = 22+1 
gcd(2j + l,2w + l) 

Since all these linear factors are distinct, (21) will follow if both sides have equal degrees. On the 
left-hand side (l.h.s.) of (21), use deg(Cw+1(jc)-Cw(x)) = degCw+1(jc) = «. On the r.h.s., use the 
identity 

X U(2d + l) = n. 
2d+l\2n+lZ 

d>Q 

Equation (22) may be proved in a similar fashion and will not be presented here. • 

Equations (19)-(22) can be inverted with the help of the Mobius function to obtain the ana-
logs of (5) for the fibotomic polynomials. Note that the conditions d\n, f is odd in equation (20) 
imply that if n = 2ynf, where ri is an odd integer and v a nonnegative integer, then d-2vd\ 
where df is odd and d'\n'. Hence, we can rewrite (20) as follows: 

c
2 v + i«- c

2 v>)=ne 2 v + v (*) . 
d>\n> 

The resulting expressions for the fibotomic polynomials in terms of Fibonacci polynomials are 
summarized in the following lemma. 

Lemma 6: 
Ai) PM^HUdK n*l; (23) 

d\n 

Mm) 
2d+l\2n+l e2ld.w= n (Q+i(*)-Q(*)rM+,;, »m (24) 
2J+1|2«+1 

ffiiW= I I (Q+i(*) + Q(*))"( f t S ) , n>\; (25) 
2d+l\2n+l 

a - ( * ) = n ( c 2 ^ + i ( x ) - c 2 v - i ( * ) ^ ( * ) - n*l> <26> 
d\n' 

where, in (26), n = 2vn' and nf is odd. D 

Corollary 2: The fibotomic polynomials are monic polynomials with integer coefficients. 

Proof: The fact that the fibotomic polynomials are monic is clear from their definition. By 
(23)-(26), each fibotomic polynomial is a quotient of two monic polynomials over Z whence the 
claim follows. • 

3 1 4 [AUG. 



THE IRREDUCIBLE FACTORIZATION OF FIBONACCI POLYNOMIALS OVER Q 

The next lemma lists some more elementary properties of the fibotomic polynomials. 

Lemma 7: 
(a) \/n>3,P„(-x) = Pn(x). 
(h) V/i > 1, P2„(x) = i^2n)Q2„(-ix) and, consequently, V« > 2, Q2n(-x) = Q2„(x). 

(c) V/i > 1, Q&^-x) = (-l)^(2n+1)e2
e;S(*) • 

(d) v»>i, p2„+1(x)=(-i)^2n+1)e2
o^(-^)e2

e„vs(-^)-
Proof: 
(a) By Corollary 2, the coefficients of P„(x) are real. Applying the remark that follows 

equation (16), we see that for n > 3 the roots of P„(x) also come in pairs of opposite signs; hence, 
Pn(x) is a product of factors of the form (x - a)(x + a) = x2-a2 which are even functions of x. 

(b) Compare the definitions of Q2n(x) and P2n(x). Note that x-a is a linear factor of 
Q2n{x) iWx-ia is a linear factor of P2n(x). The result follows from x-ia= i(-ix - a) and from 
the fact that degQ2n{x) = deg P2n{x) - $(2ri). 

(c) Using deg Q2^x(x) = deg Q2
v
nTi(x) = i$(2n +1) (see proof of Lemma 5), we get 

sa<-*>- ft t-^m1)) 
gcd(2fc+l,2«+l)=l 

. ( - •^ ft (~*~(^)) 
gcd(2fc+l,2«+l)=l 

=(-OM-» ft ( , . 2^.^ai)) 

4#(2/ i+l ) 

fc=0 
gcd(2Jfc+l,2«+l) = l 

=(_!)**"«> f t ^ - 2 c o s [ ^ ^ J=(-i)^( 2 n + 1 )e2ri w . 
gcd(2fc+l,2w+l)=l 

f<9 Separating the odd and even values of* in the product that defines P2n+i(x),. n>l, gives 

'«w- ft (*-*«(^i)) 
gcd(fc,2«+l) = l 

gcd(2fc+l,2w+l)=l gcd(^, 2»+l) = 1 

= ft < — ( « ) ) ft <-—{^) 
gcd(2fc+l,2/?+l)=l gcd(Jt,2n+l)=l 
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Remark: (_i)2«K2»+1) = i if 2« +1 has two or more distinct prime factors, or is a power of a prime 
p satisfying p = 1 (mod 4), while otherwise (-l)2^2w+1) = _ i . 

4, IRREDUCIBILITY OF THE FIBOTOMIC POLYNOMIALS 

In the following, Fn(x) will stand for any of the four fibotomic polynomials Pn+l(x), Q2n(x), 
Q£d

+1(x),mdQ™(x). 

Theorem 1: The fibotomic polynomials Fn(x) are irreducible over Q for all n > 1. 

Proof: The deducibility of P2(x) = Q2(x) = x, g3
odd (x) = x -1, and (gven (x) = x +1 is clear; 

hence, we can assume n>2. In particular, the roots of the fibotomic polynomials under consider-
ation are nonzero. 

Let f(x) be a monic irreducible factor of Fn(x) over Q. We can assume, without loss of 
generality, that f(x) e Z[x\. The set of complex roots of f(x) must be a subset of Rn, the set of 
complex roots of Fn(x), and since deg/(x) > 1, this subset is not empty. Proving irreducibility of 
Fn(x) is equivalent to showing that every (3 GRn is a root of f(x). Let a denote a given root of 
f{x), and consider the various polynomials: 

* e Z ^ k a = /3l. 1. F„(x) = P„+l(x\ Rn = \fik = 2 / c o s ^ 

Since f(x) e Z[x], -a is also a root of f(x). If n = 2, we get f(x) - P3(x). To prove the 
claim of Theorem 1 for n> 2, it is sufficient to show that either fik or -fik is a root of f(x) for 
all k e Z*+1. By Lemma 4, there exists a product j of (Z*+1)odd elements such that jl = k (mod 
« +1) and therefore 2/ cos(^y) = ±/?fc. Hence, it is sufficient to show that 2/ c o s ( ^ ) is a root of 
/ (x ) for any j e (Z*+1)odd. The last statement will follow from the statement that 2? c o s ( ^ ) is a 
root of f(x) for any odd primep such that p \n +1. 

*e 22*r> a = ^ -2. F„(x) = Qta(x),^l = U = 2 c o s ^ 

In this case, Z2n = (Z2*„)odd. For any * e(Z2w)odd, there exists j e(Z2n)odd such that l-j = 
k+s-2n for some integer s. If s is even, /?£ = 2 c o s ( ^ ) . If s is odd, then l(2n-j) = -fc + 
(l-s)-2n, where / - s is even; hence, ^ = 2 cos((2"2^'/;r). This proves that, for any k e (Z2w)odd, 
there exists j e (Z2„)odd such that 2 cos(|^-) = 2 cos (^ ) . Therefore, it is sufficient to prove that 
2 cos (*£) is a root of f(x) for any primes such that /?|2w (in particular, p is odd). 

Again, by Lemma 4, for any k e (Z2w+1)odd there exists a product y of (Z*+1)odd elements such 
that lj = fc + s-(2n +1) for some integer s. Since /, k, and j are all odd, s must be even, so pk -
2 cos(^j-). Hence, it will suffice to prove that 2 cos(^-) is a root of f(x) for any odd prime p 
such that p\2n + \. 
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4. F„(x) = Q™(x), R„ = \f3k =2coJ kn 
" G (^2«+l)even f > a ~ Pi 2/1 + 1, 

Due to Lemma 4, for any k e (Z2W+1)even, there exists a product j of (Z*+1)odd elements such 
that I-j = k + s- (In +1) for some integer s. Since / and k are even, s must be even, resulting in 
Pk =2cos(^j-). Hence, it will suffice to prove that 2cos(^-) is a root of f(x) for any odd 
primep such that p\2n + \. 

Suppose then that 2SFQOS(0F) is a root of f(x), where £F and $F depend on the particular 
F„(x) under consideration [e.g., if i^(x) = Pn+1(x), eF=i, and 0F=^\ and that, contrary to 
what we want to prove, there exists some odd prime p not dividing the denominator of 0F such 
that 2sF cos(p-0F) is not a root of f(x). Hence, there exists a polynomial g(x) e Z[x] such that 
F„(x) = f(x)g(x) and 2% co$(p°0F) is a root of g(x). By Lemma 2, 2£> cos($F) is a root of 
^(i"(p-1)J^(x)) if i^(x) = i^+1(x) and a root of g(D (x)) in the other cases. Therefore, gcd(/(x), 
gQ-^Vpix))) * 1 if F„(x) = Pn+l(x) and gcd(f(x),g(Dp(x))) * 1 in the other cases. Under Z[x] 
-> ^pM, / (* ) h-> / (* ) (see proof of Lemma 3), we have gcd(/(x),g(r(/?_1)^(x))) h»gcd(/(x), 
F C r ^ ^ C x ) ) ) and gcd(/(x)^(Dp(x)))H>gcd(/(x), g(Dp(x))). As gcd(/(x), g(r^Vp(x))) 
and gcd(/(x), g(Dp(x))) are nonscalar monic polynomials, so are gcd(/(x), gQ'^'^V^x))) and 
gcd( / (x) , f (^(x))) . Using Corollary 1, Vp(x)^Dp(x)^xp (mod p) so that g(i~(p~l%(x)) s 
g(Dp(x)) = g(xp) (mod/?). Note that the congruence 

£ ( / - ^ ( x ) ) s f((-l)~(^V) s f(xO (mod/?) 

in the case i^(x) = i^+1(x) is justified by the fact that g, and therefore g, is an even polynomial, g 
is even since g e Z[x]3 its roots are also roots of Un+l(x), and therefore the argument used in the 
proof of the first claim of Lemma 7 applies. We conclude that deg(gcd(/(x), g(xp))) > 0; thus, 
due to Frobenius' field automorphism, Zp[x] -> Z [x], x h-» xp, deg(gcd(/(x), (g(x))p)) > 0, and 
hence deg(gcd(/(x), g(x))) > 0. Consequently, f(x)g(x) has a multiple root in some extension 
field of Z [x] [note that degd > 0, where d = gcd(f(x)g(x)), remains true in any extension field 
and that d2\f(x)g(x)}. This implies that Fn (x) has a multiple root in some extension field of 
Zp[x]. However, since Fn(x) divides some Fibonacci polynomial, this implies there is a prime 
p>3 and an integer m>4 such that p\m and Um(x) or Cm(x) has a multiple root in some 
extension field of Zp[x]. By proving the impossibility of this last statement, we will obtain the 
desired contradiction. 

Any multiple root of Um(x)(Cm(x)) is also a root of the formal derivative 0^(x)(Q(x)). For 
p>39 p\my we have mVm(x)^Q and MDm(x)*0. Hence, by equations (17)-(18), a multiple 
root of Um(x)(Cm(x)) is also a root of Vm(x)(Dm(x)). Now, taking a = m and h = m-l in (9)-
(10) and in (12)-(13), and taking the difference of the two equations in each pair, we get 

Um-l(x)Vm(x)-Um(x)Vm_1(x) = 2(-\r and Cm_1(x)Dm(x)-Cm(x)Dm_l(x) = -2. 

Since the characteristic of the fields of interest is different from 2, the preceding two equations 
imply 
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gcd(Um(x),Vm(x)) = l and gcd(Cm(x),Dm(x)) = l; 

thus, Um(x) and Vm(x) do not have a common root? nor do Cm(x) and Dm(x). D 

Theorem 1 can be generalized to the field Q[i] in the following way. 

Theorem 2: The fibotomic polynomials P2n(x), Q2n(x), Qg&Ot), QTnT\ix) 
are irreducible over 

g[i]forallw>L 
Proof: It is not hard to see that the proof of Theorem 1 is applicable in this case, with minor 

modifications, for Q[i]. The main point that requires attention is the claim that, if f(x) is a factor 
of Pm(x) and (3 is a root of / (x ) , then -/? is also a root of f(x). This claim is not valid anymore 
as it was based on the assumption that the coefficients of f(x) are real If we look closely at the 
use of this claim in the proof, we see that it is needed only for odd m values. For even m values, 
we can show that, if 

a = 2* cos 

where / e X*m is some fixed value, then for any i e Z * there exists j e (Z^)odd such that 

/? = 2 / c o s f ^ l = 2 / c o s ( ^ l 
\ m ) y m ) 

by the same argument that was used in the Q2m(x) case. In fact, P2n+\{x) is reducible over Q[i] 
for all n> 1, as is evident from claim (d) of Lemma 7, which gives its prime factorization over 
eta n 

5. CONCLUDING REMARKS 
Formulas (19)-(22) give the prime factorization of Un(x) and Cn(x) over Q. The prime fac-

torization of Vn (x) and Dn(x) over Q can be deduced from the prime factorization of Un(x) and 
Cn(x) over Q with the help of equations (10) and (12). Taking a = b = n in these equations gives 

K(*) = %§ and W%$. 
and the r.h.s. of the last two relations can be expressed as products of fibotomic polynomials. 

Returning to the more general solutions of (1), we find that the g-irreducible factorization of 
the one-variable polynomials Fn(x9b) and Ln{x, b), where b is some fixed nonzero integer, can be 
obtained from our previous results. This follows from the observation that if b > 0, then 

Fn{x,b) = {STlUn{-^ and Zw(x,ft) = ( ^ ) " K „ ^ , 

while if b <0, then 

Fn(x,b) = (J=brlC„[:]=j and Ln(x,b) = (^)"D„(-^j. 

For instance, note that if n is odd then (j¥)n~l is an integer and all irreducible factors of U„(x) 
are in fact polynomials in x2 [see Lemma 7(a)]. Hence, using equation (19) for the r.h.s. of 

Fn(x,b)=(Sriu„(j^ 

s> 
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gives the irreducible factorization of the l.h.s. over Q. If n is even, we Irst "pull out" a factor 
•j= from Un{-j^) and then apply a similar argument. 

Finally, I would like to point out a relation between the present work and certain formulas 
used in the work of Brillhart, Montgomery, and Silverman [2] for the preparation of factorization 
tables of Fibonacci and Lucas numbers. These authors use the two-variable homogenous cyclo-
tomic polynomials 

[see equations (2)-(4)] in order to express the Fibonacci numbers as products of "primitive parts." 
This is done in the following way. Using (4), we have 

d\n 

Substituting x' = w, y' = W (see Proposition 1) and using equation (6), we get 

(w-W)Un(x) = wn -Wn - J I ^ ( w ? W). 
d\n 

By Mobius inversion, one gets 

S\d 

The reason that the-factor (w-w) which multiplied Un(x) "disappeared" from the r.h.s. is that 
two possible nonzero values of the Mobius function, ±1, occur an equal number of times in 
the product. In the terminology of [2], <&d(w,W), d>2, is called the primitive part of Ud(x). 
(Strictly speaking, [2] focuses only on the case x = 1.) Comparing with equation (23), we obtain 
the following direct relation between the cyclotomic and fibotomic polynomials: 

Pn(x) = mn(wyWX n>2. 
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