PENTAGONAL NUMBERS IN THE ASSOCIATED PELL SEQUENCE AND DIOPHANTINE EQUATIONS $x^{2}(3 x-1)^{2}=8 y^{2} \pm 4$

V. Siva Rama Prasad and B. Srinivasa Rao
Dept. of Math., Osmania University, Hyderabad-500 007, A. P. India
(Submitted May 1999-Final Revision February 2000)

1. INTRODUCTION

It is well known that a positive integer N is called a pentagonal (generalized pentagonal) number if $N=m(3 m-1) / 2$ for some integer $m>0$ (for any integer m).

Luo Ming [2] has proved that 1 and 5 are the only pentagonal numbers in the Fibonacci sequence $\left\{F_{n}\right\}$, and later shown in [3] that 2,1 , and 7 are the only generalized pentagonal numbers in the Lucas sequence $\left\{L_{n}\right\}$.

In this paper we consider the associated Pell sequence $\left\{Q_{n}\right\}$ defined in [1] as

$$
\begin{equation*}
Q_{0}=Q_{1}=1 \text { and } Q_{n+2}=2 Q_{n+1}+Q_{n} \text { for any integer } n \tag{1}
\end{equation*}
$$

and establish that $Q_{0}=Q_{1}=1$ and $Q_{3}=7$ are the only generalized pentagonal numbers in it.

2. PRELIMINARY RESULTS

We recall that the Pell sequence $\left\{P_{n}\right\}$ is defined by

$$
\begin{equation*}
P_{0}=0, P_{1}=1, \text { and } P_{n+2}=2 P_{n+1}+P_{n} \text { for any integer } n \tag{2}
\end{equation*}
$$

and that it is closely related to the sequence $\left\{Q_{n}\right\}$. The following properties of these sequences are well known. For all integers n :

$$
\begin{gather*}
P_{-n}=(-1)^{n+1} P_{n} \text { and } Q_{-n}=(-1)^{n} Q_{n} ; \tag{3}\\
P_{n}=\frac{\alpha^{n}-\beta^{n}}{2 \sqrt{2}} \text { and } Q_{n}=\frac{\alpha^{n}+\beta^{n}}{2}, \tag{4}
\end{gather*}
$$

where $\alpha=1+\sqrt{2}$ and $\beta=1-\sqrt{2}$;

$$
\begin{align*}
& Q_{n}^{2}=2 P_{n}^{2}+(-1)^{n} ; \tag{5}\\
& Q_{2 n}=2 Q_{n}^{2}-(-1)^{n} . \tag{6}
\end{align*}
$$

As a direct consequence of (4), we have

$$
\begin{equation*}
Q_{m+n}=2 Q_{m} Q_{n}-(-1)^{n} Q_{m-n} \text { for all integers } m \text { and } n \tag{7}
\end{equation*}
$$

The following congruence relation of $\left\{Q_{n}\right\}$ is very useful.
Lemma 1: If m is even and n, k are integers, then $Q_{n+2 k m} \equiv(-1)^{k} Q_{n}\left(\bmod Q_{m}\right)$.
Proof: If $k=0$, the lemma is trivial. For $k>0$, we use induction on k. By (7), $Q_{n+2 m}=$ $2 Q_{n+m} Q_{m}-(-1)^{m} Q_{n}$, which gives the lemma for $k=1$ since m is even.

Assume that the lemma holds for all integers $\leq k$. Again by (7) and the induction hypothesis, we have

$$
\begin{align*}
Q_{n+2(k+1) m} & =2 Q_{n+2 k m} Q_{2 m}-Q_{n+2(k-1) m} \\
& \equiv 2(-1)^{k} Q_{n} Q_{2 m}-(-1)^{k-1} Q_{n}\left(\bmod Q_{m}\right) \tag{8}\\
& \equiv(-1)^{k}\left(2 Q_{2 m}+1\right) Q_{n}\left(\bmod Q_{m}\right) .
\end{align*}
$$

But since m is even, it follows from (6) that

$$
\begin{equation*}
2 Q_{2 m}+1 \equiv-1\left(\bmod Q_{m}\right) . \tag{9}
\end{equation*}
$$

Now (8) and (9) together prove the lemma for $k+1$. Hence, by induction, the lemma holds for $k>0$.

If $k<0$, say $k=-r$, where $r>0$, we have by (7) and (3) that

$$
Q_{n+2 k m}=2 Q_{n} Q_{2 r m}-Q_{n+2 r m} \equiv 2 Q_{n}(-1)^{r}-(-1)^{r} Q_{n}\left(\bmod Q_{m}\right) \equiv(-1)^{r} Q_{n}\left(\bmod Q_{m}\right)
$$

which proves the lemma completely.

3. PENTAGONAL NUMBERS $\operatorname{IN}\left\{Q_{n}\right\}$

Note that $N=m(3 m-1) / 2$ if and only if $24 N+1=(6 m-1)^{2}$ so that N is generalized pentagonal if and only if $24 N+1$ is the square of the form $6 m-1$. Therefore, we have to first identify those n for which $24 Q_{n}+1$ is a perfect square. We prove in this section that $24 Q_{n}+1$ is a perfect square only when $n=0,1$, or 3 . We begin with

Lemma 2: Suppose $n \equiv 0$ or $1(\bmod 36)$. Then $24 Q_{n}+1$ is a perfect square if and only if $n=0$ or 1 .

Proof: If $n=0$ or 1 , then $24 Q_{n}+1=5^{2}$. Conversely, suppose $n \equiv 0$ or $1(\bmod 36)$. If $n \notin$ $\{0,1\}$, then n can be written as $n=2 \cdot 3^{2} \cdot 2^{r} \cdot g+\varepsilon$, where $r \geq 1, g$ is odd, and $\varepsilon=0$ or 1 . Write

$$
m= \begin{cases}3^{2} \cdot 2^{r} & \text { if } r \equiv 3 \text { or } 8(\bmod 10) \\ 3 \cdot 2^{r} & \text { if } r \equiv 1 \text { or } 6(\bmod 10), \\ 2^{r} & \text { otherwise }\end{cases}
$$

so that $n=2 k m+\varepsilon$, where k is odd.
Now, by Lemma 1 and (3), we have $24 Q_{n}+1=24 Q_{2 k m+\varepsilon}+1 \equiv 24(-1)^{k} Q_{\varepsilon}+1\left(\bmod Q_{m}\right) \equiv$ $24(-1)+1\left(\bmod Q_{m}\right) \equiv-23\left(\bmod Q_{m}\right)$. Hence, the Jacobi symbol

$$
\begin{equation*}
\left(\frac{24 Q_{n}+1}{Q_{m}}\right)=\left(\frac{-23}{Q_{m}}\right)=\left(\frac{-1}{Q_{m}}\right)\left(\frac{23}{Q_{m}}\right)=\left(\frac{-1}{Q_{m}}\right)\left(\frac{Q_{m}}{23}\right)\left(\frac{-1}{Q_{m}}\right)=\left(\frac{Q_{m}}{23}\right) . \tag{10}
\end{equation*}
$$

Also, since $2^{t+10} \equiv 2^{t}(\bmod 22)$ for $t \geq 1$, it follows that

$$
\begin{equation*}
m \equiv \pm 4, \pm 6, \pm 10(\bmod 22) . \tag{11}
\end{equation*}
$$

Note that, modulo 23, the sequence $\left\{Q_{n}\right\}$ is periodic with period 22. It follows from (11) and (3) that $Q_{m} \equiv Q_{4}, Q_{6}$, or $Q_{10}(\bmod 23)$. That is, $Q_{m} \equiv 17,7$, or $5(\bmod 23)$, so that

$$
\left(\frac{Q_{m}}{23}\right)=\left(\frac{17}{23}\right),\left(\frac{7}{23}\right) \text {, or }\left(\frac{5}{23}\right)
$$

and, in any case, we have $\left(\frac{Q_{m}}{23}\right)=-1$. This, together with (10) gives

$$
\left(\frac{24 Q_{n}+1}{Q_{m}}\right)=-1 \text { for } n \notin\{0,1\}
$$

showing that $24 Q_{n}+1$ is not a square. Hence the lemma.
Lemma 3: Suppose $n \equiv 3(\bmod 252)$. Then $24 Q_{n}+1$ is a perfect square if and only if $n=3$.
Proof: If $n=3$, then $24 Q_{n}+1=24 \cdot 7+1=13^{2}$. Conversely, if $n \equiv 3(\bmod 252)$ and $n \neq 3$, then we can write n as $n=2 \cdot 3^{2} \cdot 7 \cdot 2^{r} \cdot g+3$, where $r \geq 1$ and g is odd. Writing

$$
k= \begin{cases}7 \cdot 3 \cdot 2^{r} & \text { if } r \equiv 11 \text { or } 52(\bmod 82), \\
7 \cdot 2^{r} & \text { if } r \equiv 21,26,31, \text { or } 67(\bmod 82) \\
3^{2} \cdot 2^{r} & \text { if } r \equiv 1,4,16,17,20,28,33,42,45 \\
& \quad 57,58,61,69, \text { or } 74(\bmod 82) \\
3 \cdot 2^{r} & \text { if } r \equiv 3,5, \pm 6,7, \pm 10,12, \pm 18,19, \pm 23,32 \\
& \begin{array}{c}
\pm 35,44,46,48,51,53,60, \text { or } 73(\bmod 82) \\
2^{r}
\end{array} \\
\text { otherwise }\end{cases}
$$

we find that $n=2 k m+3$, where k is odd (in fact, $k=3 \cdot g, 3^{2} \cdot g, 7 \cdot g, 3 \cdot 7 g$, or $3^{2} \cdot 7 \cdot g$). Therefore, by Lemma 1 and the facts that $Q_{3}=7, k$ is odd, we have

$$
24 Q_{n}+1=24 P_{2 k m+3}+1 \equiv 24(-1)^{k} Q_{3}+1\left(\bmod Q_{m}\right) \equiv-167\left(\bmod Q_{m}\right)
$$

Hence,

$$
\begin{equation*}
\left(\frac{24 Q_{n}+1}{Q_{m}}\right)=\left(\frac{-167}{Q_{m}}\right)=\left(\frac{-1}{Q_{m}}\right)\left(\frac{167}{Q_{m}}\right)=\left(\frac{-1}{Q_{m}}\right)\left(\frac{Q_{m}}{167}\right)\left(\frac{-1}{Q_{m}}\right)=\left(\frac{Q_{m}}{167}\right) \tag{12}
\end{equation*}
$$

Since $2^{t+82} \equiv 2^{t}(\bmod 166)$ for $t \geq 1$, it follows that

$$
\begin{align*}
m \equiv & \pm 4, \pm 14, \pm 18, \pm 20, \pm 22, \pm 24, \pm 26, \pm 40, \pm 42, \pm 50, \pm 52, \pm 58 \\
& \pm 62, \pm 66, \pm 70, \pm 72, \pm 74, \pm 76, \pm 78, \text { or } \pm 82(\bmod 166) \tag{13}
\end{align*}
$$

But, modulo 167, the sequence $\left\{Q_{n}\right\}$ has period 166. This, together with (13) and (3), gives that

$$
\begin{gathered}
Q_{m} \equiv \\
17,15,153,55,10,5,20,37,95,30,131,123,86 \\
\\
129,125,151,113,26,43, \text { or } 13(\bmod 167)
\end{gathered}
$$

and it can be seen that $\left(\frac{Q_{m}}{167}\right)=-1$ in all cases. Using this in (12), we get $\left(\frac{24 Q_{n}+1}{Q_{m}}\right)=-1$, proving the theorem.

A consequence of Lemmas 2 and 3 is the following.
Lemma 4: Suppose $n \equiv 0,1$, or $3(\bmod 2520)$. Then $24 Q_{n}+1$ is a perfect square only for $n=0$, 1 , or 3.

Lemma 5: $24 Q_{n}+1$ is not a perfect square if $n \neq 0,1$, or $3(\bmod 2520)$.
Proof: We prove the lemma in different steps, eliminating at each stage certain integers n modulo 2520 for which $24 Q_{n}+1$ is not a square. In each step, we choose an integer m such
that the period $k\left(\right.$ of the sequence $\left.\left\{Q_{n}\right\} \bmod m\right)$ is a divisor of 2520 and thereby eliminate certain residue classes modulo k. Table A gives the various choices of the modulo m, the corresponding period k of Q_{n} modulo m, the values of $n(\bmod k)$ for which the Jacobi symbol $\left(24 Q_{n}+1 / m\right)$ is -1 and the values of $n(\bmod k)$ remaining at each stage. For example,
Modulo 7: The sequence $\left\{Q_{n}\right\}$ has period 6 so that, if $n \equiv 2,4$, or $5(\bmod 6)$, then $Q_{n} \equiv Q_{2}, Q_{4}$, or $Q_{5}(\bmod 7)$. Thus, we have $Q_{n} \equiv 3$ or $6(\bmod 7)$; hence, $24 Q_{n}+1 \equiv 3$ or $5(\bmod 7)$. Therefore,

$$
\left(\frac{24 Q_{n}+1}{7}\right)=\left(\frac{3}{7}\right) \text { or }\left(\frac{5}{7}\right),
$$

showing that $\left(24 Q_{n}+1 / 7\right)=-1$ and, hence, $24 Q_{n}+1$ is not a square. Thus, $24 Q_{n}+1$ is not a square if $n \equiv 2,4$, or $5(\bmod 6)$. So there remain the cases $n \equiv 0,1$, or $3(\bmod 6)$; equivalently, the cases $n \equiv 0,1,3,6,7$, or $9(\bmod 12)$.

TABLE A

$\left\lvert\, \begin{gathered} \text { Period } \\ k \end{gathered}\right.$	Modulus m	Values of n where $\left[\frac{24 Q_{n}+1}{m}\right]=-1$	Left out values of m (mod t) where t is a positive integer
6	7	± 2 and 5.	0,1 or $3(\bmod 6)$
12	5	6,7 and 9.	0,1 or $3(\bmod 12)$
24	11	12 and 13.	$0,1,3$ or $15(\bmod 24)$
72	179	15,25 and 51.	
	73	$\pm 24,39$ and 49.	$0,1,3,27$ or $63(\bmod 72)$.
504	1259	$\begin{aligned} & \hline 75, \quad 99, \quad 135, \quad 145, \quad 171, \\ & \pm 216,217,219,243, \\ & 359, \\ & 351, \end{aligned} 31,433 \text { and } 459 .$	$\begin{gathered} 0,1,3,63,147 \text { or } 315 \\ (\bmod 504) \end{gathered}$
56	337	$\begin{aligned} & 11, \pm 16,17, \pm 24,39,47 \\ & \text { and } 55 . \end{aligned}$	
	113	31 and 51.	
42	4663	27.	
126	127	57.	
10	41	7.	0,1 or $3(\bmod 2520)$.
20	29	± 4 and 15.	
30	31	9 and 19.	
60	269	25 and 51.	
40	19	33.	
	59	± 8 and 23.	
280	139	203.	

We are now able to prove the following theorem.
Theorem 1: (a) Q_{n} is a generalized pentagonal number only for $n=0,1$, or 3 , and (b) Q_{n} is a pentagonal number only for $n=0$ or 1 .

Proof: Part (a) of the theorem follows from Lemmas 4 and 5. For part (b), since an integer N is pentagonal if and only if $24 N+1=(6 m-1)^{2}$, where m is a positive integer, and since $Q_{3}=7$, we have $24 Q_{3}+1 \neq(6 m-1)^{2}$ for positive integer m, it follows that Q_{3} is not pentagonal.

4. SOLUTIONS OF CERTAIN DIOPHANTINE EQUATIONS

It is well known that, if $x_{1}+y_{1} \sqrt{D}$ is the fundamental solution of Pell's equation $x^{2}-D y^{2}=$ ± 1, where D is a positive integer which is not a perfect square, then $x_{n}+y_{n} \sqrt{D}=\left(x_{1}+y_{1} \sqrt{D}\right)^{n}$ is also a solution of the same equation; conversely, every solution of $x^{2}-D y^{2}= \pm 1$ is of this form.

Now, by (5), we have $Q_{n}^{2}=2 P_{n}^{2}+(-1)^{n}$ for every n. Therefore, it follows that

$$
\begin{equation*}
Q_{2 n}+\sqrt{2} P_{2 n} \text { is a solution of } x^{2}-2 y^{2}=1, \tag{14}
\end{equation*}
$$

while

$$
\begin{equation*}
Q_{2 n+1}+\sqrt{2} P_{2 n+1} \text { is a solution of } x^{2}-2 y^{2}=-1 \tag{15}
\end{equation*}
$$

Theorem 2: The solution set of the Diophantine equation

$$
\begin{equation*}
x^{2}(3 x-1)^{2}=8 y^{2}+4 \tag{16}
\end{equation*}
$$

is $\{(1,0)\}$.
Proof: Writing $X=x(3 x-1) / 2$, equation (16) reduces to the form

$$
\begin{equation*}
X^{2}-2 y^{2}=1 \tag{17}
\end{equation*}
$$

whose solutions are, by (14), $Q_{2 n}+\sqrt{2} P_{2 n}$ for any integer n.
Now $x=a, y=b$ is a solution of $(16) \Leftrightarrow\{a(3 a-1) / 2\}+\sqrt{2} b$ is a solution of $(17) \Leftrightarrow$ $a(3 a-1) / 2=Q_{2 n}$ and $b=P_{2 n}$ for some integer n.

Therefore, by Theorem $1(\mathrm{a})$, the ordered pair $\left(\frac{a(3 a-1)}{2}, b\right)=\left(Q_{0}, P_{0}\right)$, giving that $(a, b)=(1,0)$ and proving the theorem.

Similarly, we can prove the following theorem.
Theorem 3: The solution set of the Diophantine equation

$$
\begin{equation*}
x^{2}(3 x-1)^{2}=8 y^{2}-4 \tag{18}
\end{equation*}
$$

is $\{(1, \pm 1),(-2, \pm 5)\}$.

REFERENCES

1. W. L. McDaniel. "Triangular Numbers in the Pell Sequence." The Fibonacci Quarterly 34.2 (1996):105-07.
2. Luo Ming. "Pentagonal Numbers in the Fibonacci Sequence." In Fibonacci Numbers and Their Applications 6. Ed. G. E. Bergum et al. Dordrecht: Kluwer, 1996.
3. Luo Ming. "Pentagonal Numbers in the Lucas Sequence." Portugaliae Mathematica 53.3 (1996):325-29.

AMS Classification Numbers: 11B39, 11D25, 11B37

