PENTAGONAL NUMBERS IN THE ASSOCIATED PELL SEQUENCE AND DIOPHANTINE EQUATIONS $x^2(3x-1)^2 = 8y^2 \pm 4$

V. Siva Rama Prasad and B. Srinivasa Rao

Dept. of Math., Osmania University, Hyderabad-500 007, A. P. India (Submitted May 1999-Final Revision February 2000)

1. INTRODUCTION

It is well known that a positive integer N is called a **pentagonal (generalized pentagonal)** number if N = m(3m-1)/2 for some integer m > 0 (for any integer m).

Luo Ming [2] has proved that 1 and 5 are the only pentagonal numbers in the Fibonacci sequence $\{F_n\}$, and later shown in [3] that 2, 1, and 7 are the only generalized pentagonal numbers in the Lucas sequence $\{L_n\}$.

In this paper we consider the associated Pell sequence $\{Q_n\}$ defined in [1] as

$$Q_0 = Q_1 = 1 \text{ and } Q_{n+2} = 2Q_{n+1} + Q_n \text{ for any integer } n \tag{1}$$

and establish that $Q_0 = Q_1 = 1$ and $Q_3 = 7$ are the only generalized pentagonal numbers in it.

2. PRELIMINARY RESULTS

We recall that the **Pell sequence** $\{P_n\}$ is defined by

$$P_0 = 0, P_1 = 1, \text{ and } P_{n+2} = 2P_{n+1} + P_n \text{ for any integer } n$$
 (2)

and that it is closely related to the sequence $\{Q_n\}$. The following properties of these sequences are well known. For all integers *n*:

$$P_{-n} = (-1)^{n+1} P_n$$
 and $Q_{-n} = (-1)^n Q_n$; (3)

$$P_n = \frac{\alpha^n - \beta^n}{2\sqrt{2}}$$
 and $Q_n = \frac{\alpha^n + \beta^n}{2}$, (4)

where $\alpha = 1 + \sqrt{2}$ and $\beta = 1 - \sqrt{2}$;

$$Q_n^2 = 2P_n^2 + (-1)^n; (5)$$

$$Q_{2n} = 2Q_n^2 - (-1)^n. (6)$$

As a direct consequence of (4), we have

$$Q_{m+n} = 2Q_m Q_n - (-1)^n Q_{m-n} \text{ for all integers } m \text{ and } n.$$
(7)

The following congruence relation of $\{Q_n\}$ is very useful.

Lemma 1: If *m* is even and *n*, *k* are integers, then $Q_{n+2km} \equiv (-1)^k Q_n \pmod{Q_m}$.

Proof: If k = 0, the lemma is trivial. For k > 0, we use induction on k. By (7), $Q_{n+2m} = 2Q_{n+m}Q_m - (-1)^m Q_n$, which gives the lemma for k = 1 since m is even.

Assume that the lemma holds for all integers $\leq k$. Again by (7) and the induction hypothesis, we have

2001]

PENTAGONAL NUMBERS IN THE ASSOCIATED PELL SEQUENCE AND DIOPHANTINE EQUATIONS

$$Q_{n+2(k+1)m} = 2Q_{n+2km}Q_{2m} - Q_{n+2(k-1)m}$$

$$\equiv 2(-1)^k Q_n Q_{2m} - (-1)^{k-1} Q_n \pmod{Q_m}$$

$$\equiv (-1)^k (2Q_{2m} + 1)Q_n \pmod{Q_m}.$$
(8)

But since m is even, it follows from (6) that

$$2Q_{2m} + 1 \equiv -1 \pmod{Q_m}.$$
 (9)

Now (8) and (9) together prove the lemma for k+1. Hence, by induction, the lemma holds for k > 0.

If k < 0, say k = -r, where r > 0, we have by (7) and (3) that

$$Q_{n+2km} = 2Q_nQ_{2rm} - Q_{n+2rm} \equiv 2Q_n(-1)^r - (-1)^rQ_n \pmod{Q_m} \equiv (-1)^rQ_n \pmod{Q_m}$$

which proves the lemma completely.

3. PENTAGONAL NUMBERS IN $\{Q_n\}$

Note that N = m(3m-1)/2 if and only if $24N + 1 = (6m-1)^2$ so that N is generalized pentagonal if and only if 24N + 1 is the square of the form 6m-1. Therefore, we have to first identify those n for which $24Q_n + 1$ is a perfect square. We prove in this section that $24Q_n + 1$ is a perfect square only when n = 0, 1, or 3. We begin with

Lemma 2: Suppose $n \equiv 0$ or 1 (mod 36). Then $24Q_n + 1$ is a perfect square if and only if n = 0 or 1.

Proof: If n = 0 or 1, then $24Q_n + 1 = 5^2$. Conversely, suppose $n \equiv 0$ or 1 (mod 36). If $n \notin \{0, 1\}$, then *n* can be written as $n = 2 \cdot 3^2 \cdot 2^r \cdot g + \varepsilon$, where $r \ge 1$, g is odd, and $\varepsilon = 0$ or 1. Write

$$m = \begin{cases} 3^2 \cdot 2^r & \text{if } r \equiv 3 \text{ or } 8 \pmod{10}, \\ 3 \cdot 2^r & \text{if } r \equiv 1 \text{ or } 6 \pmod{10}, \\ 2^r & \text{otherwise,} \end{cases}$$

so that $n = 2km + \varepsilon$, where k is odd.

Now, by Lemma 1 and (3), we have $24Q_n + 1 = 24Q_{2km+\varepsilon} + 1 \equiv 24(-1)^k Q_{\varepsilon} + 1 \pmod{Q_m} \equiv 24(-1) + 1 \pmod{Q_m} \equiv -23 \pmod{Q_m}$. Hence, the Jacobi symbol

$$\left(\frac{24Q_n+1}{Q_m}\right) = \left(\frac{-23}{Q_m}\right) = \left(\frac{-1}{Q_m}\right) \left(\frac{23}{Q_m}\right) = \left(\frac{-1}{Q_m}\right) \left(\frac{Q_m}{23}\right) \left(\frac{-1}{Q_m}\right) = \left(\frac{Q_m}{23}\right).$$
(10)

Also, since $2^{t+10} \equiv 2^t \pmod{22}$ for $t \ge 1$, it follows that

$$m \equiv \pm 4, \pm 6, \pm 10 \pmod{22}$$
. (11)

Note that, modulo 23, the sequence $\{Q_n\}$ is periodic with period 22. It follows from (11) and (3) that $Q_m \equiv Q_4$, Q_6 , or $Q_{10} \pmod{23}$. That is, $Q_m \equiv 17$, 7, or 5 (mod 23), so that

$$\left(\frac{\underline{Q}_m}{23}\right) = \left(\frac{17}{23}\right), \left(\frac{7}{23}\right), \text{ or } \left(\frac{5}{23}\right)$$

[AUG.

and, in any case, we have $\left(\frac{Q_m}{23}\right) = -1$. This, together with (10) gives

$$\left(\frac{24Q_n+1}{Q_m}\right) = -1 \text{ for } n \notin \{0,1\},$$

showing that $24Q_n + 1$ is not a square. Hence the lemma.

Lemma 3: Suppose $n \equiv 3 \pmod{252}$. Then $24Q_n + 1$ is a perfect square if and only if n = 3.

Proof: If n = 3, then $24Q_n + 1 = 24 \cdot 7 + 1 = 13^2$. Conversely, if $n \equiv 3 \pmod{252}$ and $n \neq 3$, then we can write n as $n = 2 \cdot 3^2 \cdot 7 \cdot 2^r \cdot g + 3$, where $r \ge 1$ and g is odd. Writing

$$k = \begin{cases} 7 \cdot 3 \cdot 2^r & \text{if } r \equiv 11 \text{ or } 52 \pmod{82}, \\ 7 \cdot 2^r & \text{if } r \equiv 21, 26, 31, \text{ or } 67 \pmod{82}, \\ 3^2 \cdot 2^r & \text{if } r \equiv 1, 4, 16, 17, 20, 28, 33, 42, 45, \\ 57, 58, 61, 69, \text{ or } 74 \pmod{82}, \\ 3 \cdot 2^r & \text{if } r \equiv 3, 5, \pm 6, 7, \pm 10, 12, \pm 18, 19, \pm 23, 32, \\ \pm 35, 44, 46, 48, 51, 53, 60, \text{ or } 73 \pmod{82}, \\ 2^r & \text{otherwise}, \end{cases}$$

we find that n = 2km + 3, where k is odd (in fact, $k = 3 \cdot g$, $3^2 \cdot g$, $7 \cdot g$, $3 \cdot 7g$, or $3^2 \cdot 7 \cdot g$). Therefore, by Lemma 1 and the facts that $Q_3 = 7$, k is odd, we have

$$24Q_n + 1 = 24P_{2km+3} + 1 \equiv 24(-1)^k Q_3 + 1 \pmod{Q_m} \equiv -167 \pmod{Q_m}.$$

Hence,

$$\left(\frac{24Q_n+1}{Q_m}\right) = \left(\frac{-167}{Q_m}\right) = \left(\frac{-1}{Q_m}\right) \left(\frac{167}{Q_m}\right) = \left(\frac{-1}{Q_m}\right) \left(\frac{Q_m}{167}\right) \left(\frac{-1}{Q_m}\right) = \left(\frac{Q_m}{167}\right).$$
(12)

Since $2^{t+82} \equiv 2^t \pmod{166}$ for $t \ge 1$, it follows that

$$m = \pm 4, \pm 14, \pm 18, \pm 20, \pm 22, \pm 24, \pm 26, \pm 40, \pm 42, \pm 50, \pm 52, \pm 58, \\ \pm 62, \pm 66, \pm 70, \pm 72, \pm 74, \pm 76, \pm 78, \text{ or } \pm 82 \pmod{166}.$$
(13)

But, modulo 167, the sequence $\{Q_n\}$ has period 166. This, together with (13) and (3), gives that

$$Q_m \equiv 17, 15, 153, 55, 10, 5, 20, 37, 95, 30, 131, 123, 86$$

129, 125, 151, 113, 26, 43, or 13 (mod 167)

and it can be seen that $\left(\frac{Q_m}{167}\right) = -1$ in all cases. Using this in (12), we get $\left(\frac{24Q_n+1}{Q_m}\right) = -1$, proving the theorem.

A consequence of Lemmas 2 and 3 is the following.

Lemma 4: Suppose $n \equiv 0, 1, \text{ or } 3 \pmod{2520}$. Then $24Q_n + 1$ is a perfect square only for n = 0, 1, or 3.

Lemma 5: $24Q_n + 1$ is not a perfect square if $n \neq 0, 1, \text{ or } 3 \pmod{2520}$.

Proof: We prove the lemma in different steps, eliminating at each stage certain integers $n \mod 2520$ for which $24Q_n + 1$ is not a square. In each step, we choose an integer m such

that the period k (of the sequence $\{Q_n\} \mod m$) is a divisor of 2520 and thereby eliminate certain residue classes modulo k. Table A gives the various choices of the modulo m, the corresponding period k of Q_n modulo m, the values of n (mod k) for which the Jacobi symbol $(24Q_n + 1/m)$ is -1 and the values of n (mod k) remaining at each stage. For example,

Modulo 7: The sequence $\{Q_n\}$ has period 6 so that, if $n \equiv 2, 4, \text{ or } 5 \pmod{6}$, then $Q_n \equiv Q_2, Q_4$, or $Q_5 \pmod{7}$. Thus, we have $Q_n \equiv 3$ or 6 (mod 7); hence, $24Q_n + 1 \equiv 3$ or 5 (mod 7). Therefore,

$$\left(\frac{24Q_n+1}{7}\right) = \left(\frac{3}{7}\right) \text{ or } \left(\frac{5}{7}\right),$$

showing that $(24Q_n + 1/7) = -1$ and, hence, $24Q_n + 1$ is not a square. Thus, $24Q_n + 1$ is not a square if $n \equiv 2$, 4, or 5 (mod 6). So there remain the cases $n \equiv 0$, 1, or 3 (mod 6); equivalently, the cases $n \equiv 0, 1, 3, 6, 7, \text{ or } 9 \pmod{12}$.

Period k	Modulus m	Values of n where $\left(\frac{24Q_n+1}{m}\right) = -1$	Left out values of n (mod t) where t is a positive integer
6	7	± 2 and 5.	0,1 or 3 (mod 6)
12	5	6, 7 and 9.	0, 1 or 3 (mod 12)
24	11	12 and 13.	0, 1, 3 or 15 (mod 24)
72	179	15, 25 and 51.	
	73	±24, 39 and 49.	0, 1, 3, 27 or 63 (mod 72).
504	1259	75, 99, 135, 145, 171,±216, 217, 219, 243, 289,351, 361, 433 and 459.	
56	337	11, ± 16 , 17, ± 24 , 39, 47 and 55.	0, 1, 3, 63, 147 or 315 (mod 504)
42	115	51 anu 51.	
126	127	21. 57	
120	41	7	Kartu kanan kan
20	29	+4 and 15	
30	31	9 and 19.	
60	269	25 and 51.	0, 1 or 3 (mod 2520).
40	19	33.	
	59	±8 and 23.	
280	139	203.	

TABLE A

We are now able to prove the following theorem.

Theorem 1: (a) Q_n is a generalized pentagonal number only for n = 0, 1, or 3, and (b) Q_n is a pentagonal number only for n = 0 or 1.

Proof: Part (a) of the theorem follows from Lemmas 4 and 5. For part (b), since an integer N is pentagonal if and only if $24N + 1 = (6m - 1)^2$, where m is a positive integer, and since $Q_3 = 7$, we have $24Q_3 + 1 \neq (6m - 1)^2$ for positive integer m, it follows that Q_3 is not pentagonal.

AUG.

4. SOLUTIONS OF CERTAIN DIOPHANTINE EQUATIONS

It is well known that, if $x_1 + y_1\sqrt{D}$ is the fundamental solution of Pell's equation $x^2 - Dy^2 = \pm 1$, where D is a positive integer which is not a perfect square, then $x_n + y_n\sqrt{D} = (x_1 + y_1\sqrt{D})^n$ is also a solution of the same equation; conversely, every solution of $x^2 - Dy^2 = \pm 1$ is of this form.

Now, by (5), we have $Q_n^2 = 2P_n^2 + (-1)^n$ for every *n*. Therefore, it follows that

$$Q_{2n} + \sqrt{2}P_{2n}$$
 is a solution of $x^2 - 2y^2 = 1$, (14)

while

$$Q_{2n+1} + \sqrt{2}P_{2n+1}$$
 is a solution of $x^2 - 2y^2 = -1$. (15)

Theorem 2: The solution set of the Diophantine equation

$$x^2(3x-1)^2 = 8y^2 + 4 \tag{16}$$

is {(1, 0)}.

Proof: Writing X = x(3x-1)/2, equation (16) reduces to the form

$$X^2 - 2y^2 = 1, (17)$$

whose solutions are, by (14), $Q_{2n} + \sqrt{2}P_{2n}$ for any integer *n*.

Now x = a, y = b is a solution of (16) $\Leftrightarrow \{a(3a-1)/2\} + \sqrt{2}b$ is a solution of (17) $\Leftrightarrow a(3a-1)/2 = Q_{2n}$ and $b = P_{2n}$ for some integer *n*.

Therefore, by Theorem 1(a), the ordered pair $\left(\frac{a(3a-1)}{2}, b\right) = (Q_0, P_0)$, giving that (a, b) = (1, 0) and proving the theorem.

Similarly, we can prove the following theorem.

Theorem 3: The solution set of the Diophantine equation

$$x^2(3x-1)^2 = 8y^2 - 4 \tag{18}$$

is $\{(1, \pm 1), (-2, \pm 5)\}$.

REFERENCES

- 1. W. L. McDaniel. "Triangular Numbers in the Pell Sequence." *The Fibonacci Quarterly* **34.2** (1996):105-07.
- 2. Luo Ming. "Pentagonal Numbers in the Fibonacci Sequence." In *Fibonacci Numbers and Their Applications* 6. Ed. G. E. Bergum et al. Dordrecht: Kluwer, 1996.
- 3. Luo Ming. "Pentagonal Numbers in the Lucas Sequence." *Portugaliae Mathematica* 53.3 (1996):325-29.

AMS Classification Numbers: 11B39, 11D25, 11B37

18)